二次函数压轴题解析

2024-06-17

二次函数压轴题解析(精选8篇)

二次函数压轴题解析 篇1

决胜2021中考数学压轴题全揭秘精品

专题17二次函数的面积问题

【考点1】二次函数的线段最值问题

【例1】(2020·湖北荆门·中考真题)如图,抛物线与x轴正半轴交于点A,与y轴交于点B.

(1)求直线的解析式及抛物线顶点坐标;

(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;

(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物线的解析式.

【答案】(1)直线的解析式为,抛物线顶点坐标为;(2)当时,的最大值为;

;(3).

【分析】

(1)先根据函数关系式求出A、B两点的坐标,设直线的解析式为,利用待定系数法求出AB的解析式,将二次函数解析式配方为顶点式即可求得顶点坐标;

(2)过点D作轴于E,则.求得AB=5,设点P的坐标为,则点D的坐标为,ED=x,证明,由相似三角形的性质求出,用含x的式子表示PD,配方求得最大值,即可求得点P的坐标;

(3)设平移后抛物线的解析式,将L′的解析式和直线AB联立,得到关于x的方程,设,则是方程的两根,得到,点A为的中点,可求得m的值,即可求得L′的函数解析式.

【详解】

(1)在中,令,则,解得,∴.

令,则,∴.

设直线的解析式为,则,解得:,∴直线的解析式为.,∴抛物线顶点坐标为

(2)如图,过点D作轴于E,则.

∵,∴,设点P的坐标为,则点D的坐标为,∴.

∵,∴,∴,∴,∴.

而,∴,∵,由二次函数的性质可知:

当时,的最大值为.,∴.

(3)设平移后抛物线的解析式,联立,∴,整理,得:,设,则是方程的两根,∴.

而A为的中点,∴,∴,解得:.

∴抛物线的解析式.

【点睛】

本题考查二次函数的图象和性质、相似三角形的判定与性质、待定系数法求一次函数解析式,解题的关键是熟练掌握二次函数的图象和性质.

【变式1-1】(2020·前郭尔罗斯蒙古族自治县哈拉毛都镇蒙古族中学九年级期中)如图,二次函数的图象交x轴于点,交y轴于点C.点是x轴上的一动点,轴,交直线于点M,交抛物线于点N.

(1)求这个二次函数的表达式;

(2)①若点P仅在线段上运动,如图1.求线段的最大值;

②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.

【答案】(1);(2)①,②存在,【分析】

(1)把代入中求出b,c的值即可;

(2)①由点得,从而得,整理,化为顶点式即可得到结论;

②分MN=MC和两种情况,根据菱形的性质得到关于m的方程,求解即可.

【详解】

解:(1)把代入中,得

解得

∴.

(2)设直线的表达式为,把代入.

得,解这个方程组,得

∴.

∵点是x轴上的一动点,且轴.

∴.

∵,∴此函数有最大值.

又∵点P在线段上运动,且

∴当时,有最大值.

②∵点是x轴上的一动点,且轴.

∴.

(i)当以M,N,C,Q为顶点的四边形为菱形,则有MN=MC,如图,∵C(0,-3)

∴MC=

整理得,∵,∴,解得,∴当时,CQ=MN=,∴OQ=-3-()=

∴Q(0,);

当m=时,CQ=MN=-,∴OQ=-3-(-)=

∴Q(0,);

(ii)若,如图,则有

整理得,∵,∴,解得,当m=-1时,MN=CQ=2,∴Q(0,-1),当m=-5时,MN=-10<0(不符合实际,舍去)

综上所述,点Q的坐标为

【点睛】

本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m的方程,要分类讨论,以防遗漏.

【变式1-2】如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).

(1)求顶点A的坐标

(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;

(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.

【答案】(1)(﹣1,1);(2)P(,);(3).【解析】

【分析】

(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标;

(2)过点P作y轴的平行线交OB与点Q,求出直线BP的解析式,表示出点Q的坐标,根据三角形的面积公式列出函数关系式,利用二次函数的最值可得P点坐标;

(3)根据平移规律,可得新抛物线,根据联立抛物线与OA的解析式,可得C、D点的横坐标,根据勾股定理,可得答案.

【详解】

解:(1)把B(3,﹣3)代入y=﹣x2+mx+m2得:﹣3=﹣32+3m+m2,解得m=2,∴y=﹣x2+2x=﹣(x+1)2+1,∴顶点A的坐标是(﹣1,1);

(2)过点P作y轴的平行线交OB与点Q.∵直线OB的解析式为y=﹣x,故设P(n,﹣n2+2n),Q(n,﹣n),∴PQ=﹣n2+2n﹣(﹣n)=﹣n2+3n,∴S△OPB=(﹣n2+3n)=﹣(n﹣)+,当n=时,S△OPB的最大值为.

此时y=﹣n2+2n=,∴P(,);

(3)∵直线OA的解析式为y=x,∴可设新的抛物线解析式为y=﹣(x﹣a)2+a,联立,∴﹣(x﹣a)2+a=x,∴x1=a,x2=a﹣1,即C、D两点间的横坐标的差为1,∴CD=.

【点睛】

本题考查了待定系数法求函数解析式,三角形的面积公式,利用二次函数求最值,勾股定理二次函数与一次函数的交点问题,难度适中,是常见题型.【考点2】二次函数的面积定值问题

【例2】已知二次函数.

(1)图象经过点时,则_________;

(2)当时,函数值y随x的增大而减小,求m的取值范围;

(3)以抛物线的顶点A为一个顶点作该抛物线的内接正三角形(M,N两点在抛物线上),请问:的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.

【答案】(1)4;(2)m≥2;(3)的面积是与m无关的定值,S△AMN=.【解析】

【分析】

(1)将点代入二次函数解析式即可求出m;

(2)求出二次函数的对称轴为x=m,由抛物线的开口向上,在对称轴的左边y随x的增大而减小,可求出m的取值范围;

(3)在抛物线内作出正三角形,求出正三角形的边长,然后计算三角形的面积,可得到△AMN的面积是与m无关的定值.

【详解】

解:(1)将点代入可得:,解得:m=4;

(2)二次函数的对称轴是:x=m,∵当x≤2时,函数值y随x的增大而减小,∴m≥2;

(3)的面积是与m无关的定值;

如图:顶点A的坐标为(m,−m2+4m−8),△AMN是抛物线的内接正三角形,MN交对称轴于点B,∵tan∠AMB=tan60°=,∴AB=BM=BN,设BM=BN=a,则AB=a,∴点M的坐标为(m+a,a−m2+4m−8),∵点M在抛物线上,∴a−m2+4m−8=(m+a)2−2m(m+a)+4m−8,整理得:,解得:a=或a=0(舍去),∴△AMN是边长为的正三角形,∴AB=3,S△AMN=,与m无关.【点睛】

本题是二次函数综合题,考查了二次函数的图象和性质、等边三角形的性质以及特殊角三角函数的应用,其中(3)问有一定难度,根据点M在抛物线上,求出正三角形的边长是解题关键.

【变式2-1】(2020·湖南九年级其他模拟)若抛物线L:y=ax2+bx+c(a,b,c是常数,a≠0)与直线l:y=ax+b满足a2+b2=2a(2c﹣b),则称此直线l与该抛物线L具有“支干”关系.此时,直线l叫做抛物线L的“支线”,抛物线L叫做直线l的“干线”.

(1)若直线y=x﹣2与抛物线y=ax2+bx+c具有“支干”关系,求“干线”的最小值;

(2)若抛物线y=x2+bx+c的“支线”与y=﹣的图象只有一个交点,求反比例函数的解析式;

(3)已知“干线”y=ax2+bx+c与它的“支线”交于点P,与它的“支线”的平行线l′:y=ax+4a+b交于点A,B,记△ABP得面积为S,试问:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.

【答案】(1)﹣;(2)y=﹣或y=﹣;(3)是定值,理由见解析.

【分析】

(1)根据“支干”关系的定义,求出a、b、c的值,利用配方法确定函数的最值.

(2)由题意a=1,1+b2=2(2c﹣b)

①,可得抛物线y=x2+bx+c的“支线”为y=x+b,由,消去y得到x2+bx+4c=0,由抛物线y=x2+bx+c的“支线”与的图象只有一个交点,可知△=0,得b2﹣16c=0

②,由①②解方程组即可解决问题.

(3)的值是定值.不妨设a>0,如图所示,y=ax2+bx+c与它的“支线”交y轴于C,直线y=ax+4a+b与y轴交于点D,A(x1,y1),B(x2,y2),由,消去y得到ax2+(b﹣a)x+c﹣4a﹣b=0,推出x1+x2=,x1x2=,推出|x1﹣x2|==

=,把

=2a(2c﹣b)代入上式化简=4,由AB∥PC,可得S=S△PAB=S△CAB=S△CDB﹣S△CDA═

•CD•=

•4=8•,由此即可解决问题.

【详解】

解:(1)由题意a=1,b=﹣2,12+(﹣2)2=2(2c+2),解得c=,∴抛物线的解析式为y=x2﹣2x+,∵y=x2﹣2x+

=(x﹣1)2﹣,∵a=1>0,∴x=1时,y有最小值,最小值为﹣.

(2)由题意a=1,1+b2=2(2c﹣b)

∴抛物线y=x2+bx+c的“支线”为y=x+b,由,消,消去y得到x2+bx+4c=0,∵抛物线y=x2+bx+c的“支线”与的图象只有一个交点,∴△=0,∴b2﹣16c=0

由①②可得b=﹣2,或,∴反比例函数的解析式为y=﹣或y=﹣.

(3)是定值.理由如下:

不妨设a>0,如图所示,y=ax2+bx+c与它的“支线”交y轴于C,直线y=ax+4a+b与y轴交于点D,A(x1,y1),B(x2,y2),由

得到ax2+(b﹣a)x+c﹣4a﹣b=0,∴x1+x2=,x1x2=,|x1﹣x2|=

把a2+b2=2a(2c﹣b)代入上式化简得到|x1﹣x2|=4,∵AB∥PC,∴S=S△PAB=S△CAB=S△CDB﹣S△CDA═•CD•|Bx﹣Ax|=•|4a|•4=8•|a|,∴=8,的值是定值.

【点睛】

本题考查了二次函数综合题、一次函数的应用、反比例函数的性质、一元一次方程的根与系数的关系等知识,解题的关键是理解题意,学会构建方程组解决问题,学会用分割法求三角形的面积.

【变式2-2】(2020·山东济南·中考真题)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0m3),过点E作直线l⊥x轴,交抛物线于点M.

(1)求抛物线的解析式及C点坐标;

(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;

(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.

【答案】(1);(2)或;(3)

【分析】

(1)用待定系数法即可求解;

(2)若△ACD是以∠DCA为底角的等腰三角形,则可以分CD=AD或AC=AD两种情况,分别求解即可;

(3)S1=AE×yM,2S2=ON•xM,即可求解.

【详解】

解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2+2x+3,当x=0时,y=3,故点C(0,3);

(2)当m=1时,点E(1,0),设点D的坐标为(1,a),由点A、C、D的坐标得,AC=,同理可得:AD=,CD=,①当CD=AD时,即=,解得a=1;

②当AC=AD时,同理可得a=(舍去负值);

故点D的坐标为(1,1)或(1,);

(3)∵E(m,0),则设点M(m,﹣m2+2m+3),设直线BM的表达式为y=sx+t,则,解得:,故直线BM的表达式为y=﹣x+,当x=0时,y=,故点N(0,),则ON=;

S1=AE×yM=×(m+1)×(﹣m2+2m+3),2S2=ON•xM=×m=S1=×(m+1)×(﹣m2+2m+3),解得m=﹣2±(舍去负值),经检验m=﹣2是方程的根,故m=﹣2.

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.

【考点3】二次函数的面积最值问题

【例3】(2020·四川绵阳·中考真题)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.

(1)求点F的坐标及抛物线的解析式;

(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;

(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.

【答案】(1)(,﹣);y=﹣x2+2x+1

(2)(,);

(3)Q,R或Q(,﹣10),R()

【分析】

(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;

(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+n,由二次函数的性质可得出答案;

(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.

【详解】

解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.

∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;

(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣,∴当n=时,△ABP的面积最大为,此时P(,).

(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;

②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().

综上所述,Q,R;或Q(,﹣10),R().

【点睛】

本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.

【变式3-1】(2020·重庆中考真题)如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,.

(1)求该抛物线的函数表达式;

(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.

【答案】(1);(2)面积最大值为;(3)存在,【分析】

(1)将点A、B的坐标代入抛物线表达式,即可求解;

(2)设,求得解析式,过点P作x轴得垂线与直线AB交于点F,设点,则,即可求解;

(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.

【详解】

解:(1)∵抛物线过,∴

(2)设,将点代入

过点P作x轴得垂线与直线AB交于点F

设点,则

由铅垂定理可得

∴面积最大值为

(3)(3)抛物线的表达式为:y=x2+4x−1=(x+2)2−5,则平移后的抛物线表达式为:y=x2−5,联立上述两式并解得:,故点C(−1,−4);

设点D(−2,m)、点E(s,t),而点B、C的坐标分别为(0,−1)、(−1,−4);

①当BC为菱形的边时,点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),即−2+1=s且m+3=t①或−2−1=s且m−3=t②,当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,联立①③并解得:s=−1,t=2或−4(舍去−4),故点E(−1,2);

联立②④并解得:s=-3,t=-4±,故点E(-3,-4+)或(-3,-4−);

②当BC为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m+t⑤,此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,联立⑤⑥并解得:s=1,t=−3,故点E(1,−3),综上,点E的坐标为:(−1,2)或或或(1,−3).

∴存在,【点睛】

本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.

【变式3-2】(2020·江苏宿迁·中考真题)二次函数的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.

(1)求这个二次函数的表达式,并写出点E的坐标;

(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;

(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.

【答案】(1);(4,-1);(2)(4,3+)或(4,3-);(3)(10,8)或(,24)

【分析】

(1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入,计算出a的值即可求出抛物线解析式,由配方法求出E点坐标;

(2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得=,解方程可得出答案;

(3)设CQ交抛物线的对称轴于点M,设P(,),则Q(,),设直线CQ的解析式为,则,解得,求出M(,),ME=,由面积公式可求出n的值,则可得出答案.

【详解】

(1)将A(2,0),B(6,0)代入,得,解得,∴二次函数的解析式为;

∵,∴E(4,);

(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD,设D(4,m),当时,∴C(0,3),∵=,由勾股定理可得:

=,解得m=3±,∴满足条件的点D的坐标为(4,3+)或(4,3-);

(3)如图3,设CQ交抛物线的对称轴于点M,设P(,),则Q(,),设直线CQ的解析式为,则,解得,于是直线CQ的解析式为:,当时,∴M(,),ME==,∵S△CQE=S△CEM+S△QEM=,∴,解得或,当时,P(10,8),当时,P(,24).

综合以上可得,满足条件的点P的坐标为(10,8)或(,24).

【点睛】

本题是二次函数综合题,考查了待定系数法,二次函数图象与性质,垂直平分线的性质,勾股定理,三角形的面积;熟练掌握二次函数的性质及方程思想是解题的关键.

【考点4】二次函数面积的其它问题

【例4】(2020·辽宁鞍山·中考真题)在矩形中,点E是射线上一动点,连接,过点B作于点G,交直线于点F.

(1)当矩形是正方形时,以点F为直角顶点在正方形的外部作等腰直角三角形,连接.

①如图1,若点E在线段上,则线段与之间的数量关系是________,位置关系是_________;

②如图2,若点E在线段的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;

(2)如图3,若点E在线段上,以和为邻边作,M是中点,连接,,求的最小值.

【答案】(1)①相等;垂直;②成立,理由见解析;(2)

【分析】

(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;

②根据(1)中同样的证明方法求证即可;

(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出EF=,求出最值即可得到GM的最小值.

【详解】

解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;

②成立,理由是:

当点E在线段BC的延长线上时,同理可得:△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH;

(2)∵∠EGF=∠BCD=90°,∴C、E、G、F四点共圆,∵四边形BCHF是平行四边形,M为BH中点,∴M也是EF中点,∴M是四边形BCHF外接圆圆心,则GM的最小值为圆M半径的最小值,∵AB=3,BC=2,设BE=x,则CE=2-x,同(1)可得:∠CBF=∠BAE,又∵∠ABE=∠BCF=90°,∴△ABE∽△BCF,∴,即,∴CF=,∴EF=

=

=,设y=,当x=时,y取最小值,∴EF的最小值为,故GM的最小值为.

【点睛】

本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.

【变式4-1】(2020·湖北中考真题)已知抛物线过点和,与x轴交于另一点B,顶点为D.

(1)求抛物线的解析式,并写出D点的坐标;

(2)如图1,E为线段上方的抛物线上一点,垂足为F,轴,垂足为M,交于点G.当时,求的面积;

(3)如图2,与的延长线交于点H,在x轴上方的抛物线上是否存在点P,使?若存在,求出点P的坐标:若不存在,请说明理由.

【答案】(1),;(2);(3)存在,,【解析】

【分析】

(1)利用待定系数法求出a的值即可得到解析式,进而得到顶点D坐标;

(2)先求出BC的解析式,再设直线EF的解析式为,设点E的坐标为,联立方程求出点F,G的坐标,根据列出关于m的方程并求解,然后求得G的坐标,再利用三角形面积公式求解即可;

(3)过点A作AN⊥HB,先求得直线BD,AN的解析式,得到H,N的坐标,进而得到,设点,过点P作PRx轴于点R,在x轴上作点S使得RS=PR,证明,根据相似三角形对应边成比例得到关于n的方程,求得后即可得到点P的坐标.

【详解】

(1)把点A(-1,0),C(0,3)代入中,解得,当时,y=4,(2)

令或x=3

设BC的解析式为

将点代入,得,解得,设直线EF的解析式为,设点E的坐标为,将点E坐标代入中,得,把x=m代入

解得m=2或m=-3

∵点E是BC上方抛物线上的点

∴m=-3舍去

∴点

(3)过点A作AN⊥HB,∵点

∵点,点

设,把(-1,0)代入,得b=

设点

过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR

且点S的坐标为

在和中,或

【点睛】

本题考查的是二次函数的综合,涉及到的知识点较多,运算较复杂,第3问的解题关键在于添加适当的辅助线,利用数形结合的思想列出方程求解.

【变式4-2】(2020·山东日照·九年级二模)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C(0,﹣8),连接AC,D是抛物线对称轴上一动点,连接AD,CD,得到△ACD.

(1)求该抛物线的函数解析式.

(2)△ACD周长能否取得最小值,如果能,请求出D点的坐标;如果不能,请说明理由.

(3)在(2)的条件下,在抛物线上是否存在点E,使得△ACE与△ACD面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.

【答案】(1)抛物线的解析式为:y=x2﹣3x﹣8;(2)△ACD周长能取得最小值,点D(3,﹣5);(3)存在,点E(﹣1,﹣4+11)或(﹣﹣1,4+11)

【分析】

(1)由抛物线过A(﹣2,0),点B(8,0)和C(0,﹣8),利用待定系数法可求解析式;

(2)求△ACD周长=AD+AC+CD,AC是定值,当AD+CD取最小值时,△ACD周长能取得最小值,点A,点B关于对称轴直线x=3对称,连结BC交抛物线对称轴于D,利用待定系数法可求BC解析式,把x=3代入即可求解点D坐标;

(3)△ACE与△ACD面积相等,两个三角形同底,只要点E与点D到AC的距离相等即可,先求出AC解析式,由面积相等可得DE∥AC,利用待定系数法可求DE的解析式,与抛物线联立方程组可求解.

【详解】

解:(1)由题意可得:,解得:,∴抛物线的解析式为:y=x2﹣3x﹣8;

(2)△ACD周长能取得最小值,∵点A(﹣2,0),点B(8,0),∴对称轴为直线x=3,∵△ACD周长=AD+AC+CD,AC是定值,∴当AD+CD取最小值时,△ACD周长能取得最小值,∵点A,点B关于对称轴直线x=3对称,∴连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC解析式为:y=kx﹣8,∴0=8k﹣8,∴k=1,∴直线BC解析式为:y=x﹣8,当x=3,y=﹣5,∴点D(3,﹣5);

(3)存在,∵点A(﹣2,0),点C(0,﹣8),∴直线AC解析式为y=﹣4x﹣8,如图,∵△ACE与△ACD面积相等,∴DE∥AC,∴设DE解析式为:y=﹣4x+n,∴﹣5=﹣4×3+n,∴n=7,∴DE解析式为:y=﹣4x+7,联立方程组可得:,解得:,∴点E(﹣1,﹣4+11)或(﹣﹣1,4+11).

【点睛】

本题考查抛物线解析式,三角形最短周长,和面积相等时抛物线上点的坐标问题,会用待定系数法求解析式,周长最短问题转化线段的和最短问题,会用过找对称点实现转化,利用底相同,高相同,转化平行线问题是解题关键.

1.(广东梅州·中考真题)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.

(1)b

=_________,c

=_________,点B的坐标为_____________;(直接填写结果)

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

【答案】(1),(-1,0);(2)存在P的坐标是或;(3)当EF最短时,点P的坐标是:(,)或(,)

【分析】

(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;

(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;

(3)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.

【详解】

解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3,∴抛物线的解析式为.

∵令,解得:,∴点B的坐标为(﹣1,0).

故答案为﹣2;﹣3;(﹣1,0).

(2)存在.理由:如图所示:

①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).

设AC的解析式为y=kx﹣3.

∵将点A的坐标代入得3k﹣3=0,解得k=1,∴直线AC的解析式为y=x﹣3,∴直线CP1的解析式为y=﹣x﹣3.

∵将y=﹣x﹣3与联立解得,(舍去),∴点P1的坐标为(1,﹣4).

②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.

∵将x=3,y=0代入得:﹣3+b=0,解得b=3,∴直线AP2的解析式为y=﹣x+3.

∵将y=﹣x+3与联立解得=﹣2,=3(舍去),∴点P2的坐标为(﹣2,5).

综上所述,P的坐标是(1,﹣4)或(﹣2,5).

(3)如图2所示:连接OD.

由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.

由(1)可知,在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中点.

又∵DF∥OC,∴DF=OC=,∴点P的纵坐标是,∴,解得:x=,∴当EF最短时,点P的坐标是:(,)或(,).

2.(2020·湖北武汉·九年级一模)已知抛物线y=ax2+bx+c的顶点为D

(,-),经过点C

(0,-1),且与x轴交于A、B两点(A在B的左侧).

(1)

求抛物线的解析式:

(2)

P为抛物线上一点,连CP交OD于点Q,若S△COQ=S△PDQ,求P点的横坐标;

(3)点M为直线BC下方抛物线上一点,过M的直线与x轴、y轴分别交于E、F,且与抛物线有且只有一个公共点.

若∠FCM=∠OEF,求点M的坐标.

【答案】(1)y=x2-3x-1;(2)P的横坐标为;(3)点M的坐标为(,-)或(2,-2)

【分析】

(1)运用待定系数法求解即可;

(2)联立方程组求解即可;

(3)根据直线EF与抛物线只有一个公共点求出M点横坐标,设直线CM的解析式为y=-x-1,与抛物线联立,即可求出结论.

【详解】

(1)∵抛物线的顶点为D

(,-),设抛物线的顶点式为y=a(x-)2-,把C

(0,-1)代入,得a(0-)2-=-1,解得a=.

∴抛物线的解析式为y=

(x-)2-.

亦即:y=x2-3x-1.

(2)

连OP、DP、CD,由S△COQ=S△PDQ,得S△OCD=S△PDC,则CD∥OP.

由C

(0,-1)、D

(,-),可得直线CD为y=-x-1.

则直线OP的解析式为y=-x.

与抛物线的解析式联立,得点P的横坐标为(舍去负值).

(3)

设直线EF为y=kx+b,与抛物线y=x2-3x-1联立,得x2-(k+3)x-1-b=0,∵直线EF与抛物线只有一个公共点,∴x1=x2=-=

(k+3).

即M点横坐标xM=

(k+3).

∵∠FCM=∠OEF,可得CM⊥EF,故可设直线CM的解析式为y=-x-1,与抛物线联立,得:xM=

(3-).

于是得:

(k+3)=

(3-).

解得k=1或2.

∴点M的坐标为(,-)或(2,-2).

【点睛】

本题考查了二次函数综合题,二次函数性质,待定系数法求解析式.

3.(2020·广东九年级一模)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.

(1)求该抛物线的函数解析式;

(2)连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF∶S△CDF=3∶2时,求点D的坐标.

【答案】(1)y=﹣x2+2x+3;(2)(1,4)或(2,3)

【分析】

(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,即可求解;

(2)S△COF∶S△CDF=3∶2,则OF∶FD=3∶2,DH∥CO,故CO∶DM=3∶2,则DM=CO=2,而DM=﹣x2+2x+3﹣(﹣x+3)=2,即可求解.

【详解】

解:(1)∵OB=OC=3.

∴c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;

(2)如图,过点D作DH⊥x轴于点H,交AB于点M,S△COF∶S△CDF=3∶2,则OF∶FD=3∶2,∵DH∥CO,故CO∶DM=3∶2,则DM=CO=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3).

【点睛】

本题主要考查了二次函数综合,准确计算是解题的关键.

4.(2020·福建南平·九年级二模)已知抛物线y=﹣(x+5)(x﹣m)(m>0)与x轴交于点A、B(点A在点B的左边),与y轴交于点C.

(1)直接写出点B、C的坐标;(用含m的式子表示)

(2)若抛物线与直线y=x交于点E、F,且点E、F关于原点对称,求抛物线的解析式;

(3)若点P是线段AB上一点,过点P作x轴的垂线交抛物线于点M,交直线AC于点N,当线段MN长的最大值为时,求m的取值范围.

【答案】(1)B(m,0),C(0,);(2);(3)0<m≤.

【分析】

(1)y=﹣(x+5)(x﹣m),令x=0,则y=,令y=0,则x=﹣5或m,即可求解;

(2)设点E,F的坐标分别为(a,),(﹣a,),将点E、F的坐标,代入二次函数表达式即可求解;

(3)分﹣5≤t≤0、0<t≤m,两种情况分别求解即可.

【详解】

解:(1)y=﹣(x+5)(x﹣m),令x=0,则y=,令y=0,则x=﹣5或m,故:B(m,0),C(0,);

(2)设点E,F的坐标分别为(a,),(﹣a,),代入,得,解得:(m﹣5)a=a,∵a≠0,∴m=6,∴抛物线的解析式为;

(3)依题意得A(﹣5,0),C(0,),由m>0,设过A,C两点的一次函数解析式是y=kx+b,将A,C代入,得

解得

∴过A,C两点的一次函数解析式是,设点P(t,0),则﹣5≤t≤m(m>0),∴M(t,),N(t,).

①当﹣5≤t≤0时,∴MN==,∵,∴该二次函数图象开口向下,又对称轴是直线,∴当时,MN的长最大,此时MN=,②当0<t≤m时,∴MN==,∵,∴该二次函数图象开口向上,又对称轴是直线,∴当0<t≤m时,MN的长随t的增大而增大,∴当t=m时,MN的长最大,此时MN=,∵线段MN长的最大值为,∴,整理得:,由图象可得:≤m≤

∵m>0,∴m的取值范围是0<m≤.

【点睛】

本题考查二次函数图象性质、与x轴、y轴交点坐标、一次函数图象性质、原点对称、线段最值、分类讨论法等知识,是重要考点,综合性较强,掌握相关知识是解题关键.

5.(2018·四川眉山·中考真题)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为

:P1(,),P2(,),P3(,),P4(,).【解析】

分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;

(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;

(3)存在四种情况:

如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.

详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;

(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG•AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴当m=时,S有最大值是;

(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,∴P的坐标为(,)或(,);

如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:x=或;

P的坐标为(,)或(,);

综上所述,点P的坐标是:(,)或(,)或(,)或(,).

点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.

6.(2018·湖南怀化·中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求抛物线的解析式和直线AC的解析式;

(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;

(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);

(3)符合条件的点P的坐标为(,)或(,﹣),【解析】

分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;

(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;

(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.

详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;

当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;

(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);

(3)存在.

过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);

过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣).综上所述,符合条件的点P的坐标为(,)或(,﹣).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.

7.(2020·四川中考真题)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.

(1)求抛物线的解析式;

(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;

(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N

(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.

【答案】(1);(2)或;(3)是,3NE+NF为定值4

【分析】

(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;

(2)设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;

(3)设点D(n,﹣n2+n+1),利用待定系数法求直线AD和BD的解析式,表示FN和OK的长,直接代入计算可得结论.

【详解】

(1)如图1,y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴A(﹣1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即,∴OC=1,∴C(0,1),将C(0,1)代入y=ax2﹣2ax﹣3a,得:﹣3a=1,∴a=﹣,∴该二次函数的解析式为y=﹣x2+x+1;

(2)如图2,设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解得:x1=1+,x2=1﹣,∴点P的坐标为(1﹣,m),点Q的坐标为(1+,m),∴点G的坐标为(1﹣,0),点H的坐标为(1+,0),∵矩形PGHQ为正方形,∴PQ=PG,∴1+﹣(1﹣)=m,解得:m1=﹣6﹣2,m2=﹣6+2,∴当四边形PGHQ为正方形时,边长为6+2或2﹣6;

(3)如图3,设点D(n,﹣n2+n+1),延长BD交y轴于K,∵A(﹣1,0),设AD的解析式为:y=kx+b,则,解得:,∴AD的解析式为:y=(﹣)x﹣,当x=2时,y=﹣n+2﹣n+1=﹣n+3,∴F(2,3﹣n),∴FN=3﹣n,同理得直线BD的解析式为:y=(﹣)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴,∵EN∥OK,∴,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3﹣n=4,∴在点D运动过程中,3NE+NF为定值4.

【点睛】

本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式以及平行线分线段成比例定理等知识,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)利用AD和BD的解析式确定FN和OK的长,可解决问题.

8.(2020·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线经过点A,与y轴交于点B,连接.

(1)求b的值及点M的坐标;

(2)将直线向下平移,得到过点M的直线,且与x轴负半轴交于点C,取点,连接,求证::

(3)点E是线段上一动点,点F是线段上一动点,连接,线段的延长线与线段交于点G.当时,是否存在点E,使得?若存在,求出点E的坐标;若不存在,请说明理由.

【答案】(1)b=3,M(3,-3);(2)详见解析;(3)点E的坐标为(,).【分析】

(1)将配方后可得顶点M的坐标,利用求出点A的坐标后代入即可求出b的值;

(2)先求出平移后的直线CM的解析式为y=-x,过点D作DH⊥直线y=-x,得到直线DH的解析式为y=2x-4,根据求出交点H(1,-2),分别求得DH=,DM=,根据sin∠DMH=得到∠DMH=45°,再利用外角与内角的关系得到结论;

(3)过点G作GP⊥x轴,过点E作EQ⊥x轴,先求出AB=,根据得到∠BAO=∠AFE,设GF=4a,则AE=EF=3a,证明△AEQ∽△ABO,求得AQ=a,AF=a,再证△FGP∽△AEQ,得到FP=a,OP=PG=,由此得到+a+a=6,求出a得到AQ=,将x=代入中,得y=,即可得到点E的坐标.【详解】

(1)∵=,∴顶点M的坐标为(3,-3).令中y=0,得x1=0,x2=6,∴A(6,0),将点A的坐标代入中,得-3+b=0,∴b=3;

(2)∵由平移得来,∴m=-,∵过点M(3,-3),∴,解得n=,∴平移后的直线CM的解析式为y=-x.过点D作DH⊥直线y=-x,∴设直线DH的解析式为y=2x+k,将点D(2,0)的坐标代入,得4+k=0,∴k=-4,∴直线DH的解析式为y=2x-4.解方程组,得,∴H(1,-2).∵D(2,0),H(1,-2),∴DH=,∵M(3,-3),D(2,0),∴DM=,∴sin∠DMH=,∴∠DMH=45°,∵∠ACM+∠DMH=∠ADM,∴;

(3)存在点E,过点G作GP⊥x轴,过点E作EQ⊥x轴,∵A(6,0),B(0,3),∴AB=.∵,∠BEF=∠BAO+∠AFE,∴∠BAO=∠AFE,∴AE=EF,∵,∴,设GF=4a,则AE=EF=3a,∵EQ⊥x轴,∴EQ∥OB,∴△AEQ∽△ABO,∴,∴,∴AQ=a,∴AF=a.∵∠AFE=∠PFG,∴△FGP∽△AEQ,∴,∴FP=a,∴OP=PG=,∴+a+a=6,解得a=,∴AQ=,∴OQ=,将x=代入中,得y=,∴当时,存在点E,使得,此时点E的坐标为(,).【点睛】

此题考查了抛物线的性质,待定系数法求函数解析式,一次函数平移的性质,两个一次函数交点坐标与方程组的关系,相似三角形的判定及性质,等腰三角形的性质,三角形的外角的性质定理,是一道抛物线的综合题,较难.9.(2020·福建厦门一中九年级其他模拟)如图,在平面直角坐标系中,已知四边形ABCD为平行四边形,点A在y轴上且在B的下方,B(0,3),且点C,点D在第一象限.

(1)若点A(0,1),点D(2,2),求点C的坐标;

(2)若点C在直线y=0.5x+3上,①若CD=BC,点D在抛物线y=x2﹣x+3上,求点C的坐标;

②若CD=BC,抛物线y=x2﹣ax+4﹣a经过点D、E,与y轴交于点F,若点E在直线BD上,求的最大值.

【答案】(1)D(2,4);(2)①C(3+,)或(3﹣,),②

【分析】

(1)由点A、B的坐标知,AB=3﹣1=2=CD,即可求解;

(2)①作BH⊥CD于H,则D(m,m2﹣m+3),则CB=CD=﹣m2+3m,BH=m,CH=m,m≠0,则1+()2=(﹣m+3)2,即可求解;

②利用CD=CB,求出m=1或m=1﹣a,再分m=1、m=1﹣a两种情况,分别求解即可.

【详解】

解:(1)由点A、B的坐标知,AB=3﹣1=2=CD,故点D(2,4);

(2)如图,设C(m,m+3),则D(m,m2﹣m+3),①作BH⊥CD于H,则D(m,m2﹣m+3),则CB=CD=﹣m2+3m,BH=m,CH=m,m≠0,∴1+()2=(﹣m+3)2,m=3±,故C(3+,)或(3﹣,);

②∵y=x+3,BH=m,∴BC=m.

CD=CB=m,又CD∥y轴,∴D(m,m2﹣am+4﹣a),由点B、D的坐标得,直线DB解析式:y=x+3,解方程:x+3=x2﹣ax+4﹣a,整理得:mx2﹣(m2+1﹣a)x+m(1﹣a)=0,即[mx﹣(1﹣a)](x﹣m)=0,解得:x=m或x=,即,而CD=m+3﹣(m2﹣am+4﹣a)=﹣m2+(a+)m﹣1+a,且CD=CB,∴m=﹣m2+(a+)m﹣1+a,整理得:m2+(2﹣a)m+1﹣a=0,[m﹣(1﹣a)](m﹣1)=0,解得:m=1或m=1﹣a.

(I)当m=1时,C(1,),D(1,),F(0,4﹣a),xE=1﹣a,则S△DEF=BF•(xD﹣xE)=(a﹣1)[1﹣(1﹣a)]=(a2﹣a),而S▱ABCD=BH•CD=1×=,故S△DEF﹣S▱ABCD=(a2﹣a)﹣=(a﹣)2﹣,∵>0,故S△DEF﹣S▱ABCD没有最大值;

(II)

当m=1﹣a时,C(1﹣a,),D(1﹣a,2a+1),则F(0,4﹣a),xE=1,而S△DEF=BF•(xD﹣xE)=(a﹣1)[(1﹣a)﹣1]=﹣(a2﹣a),S▱ABCD=BH•CD=(1﹣a)•(1﹣a)=(1﹣a)

2,∴S△DEF﹣S▱ABCD=﹣(a2﹣a)﹣(1﹣a)

2=﹣3a2+a﹣=﹣3(a﹣)2+≤,∴S△DEF﹣S▱ABCD的最大值为.

【点睛】

本题主要考查二次函数的综合,熟练掌握二次函数与一次函数的性质及平行四边形的性质是解题的关键.

10.(2020·河南九年级二模)如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,-1),另一顶点B坐标为(-2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A'D'∥y轴且经过点B,直尺沿x轴正方向平移,当A'D'与y轴重合时运动停止.

(1)求点C的坐标及二次函数的关系式;

(2)若运动过程中直尺的边A'D'交边BC于点M,交抛物线于点N,求线段MN长度的最大值;

(3)如图②,设点P为直尺的边A'D'上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.

(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D'在抛物线外.)

【答案】(1)C(-1,-3).y=x2+x-3.(2).(3)PB-PC=PA.

【详解】

试题分析:(1)求C点坐标,考虑作x,y轴垂线,表示横纵坐标,易得△CDA≌△AOB,所以C点坐标易知.进而抛物线解析式易得.

(2)横坐标相同的两点距离,可以用这两点的纵坐标作差,因为两点分别在直线BC与抛物线上,故可以利用解析式,设横坐标为x,表示两个纵坐标.作差记得关于x的二次函数,利用最值性质,结果易求.

(3)计算易得,BC=,因为Q为BC的中点,PQ=恰为半径,则以作圆,P点必在圆上.此时连接PB,PC,PA,因为BC为直径,故BP2+CP2=BC2为定值,而PA不固定,但不超过BC,所以易得结论BP2+CP2≥PA2,题目要求考虑三种情况,其中P在抛物线上时,P点只能与B或C重合,此时,PA,PB,PC可求具体值,则有等量关系.

试题解析:(1)如图1,过点C作CD⊥y轴于D,此时△CDA≌△AOB,∵△CDA≌△AOB,∴AD=BO=2,CD=AO=1,∴OD=OA+AD=3,∴C(-1,-3).

将B(-2,0),C(-1,-3)代入抛物线y=x2+bx+c,解得

b=,c=-3,∴抛物线的解析式为y=x2+x-3.

(2)设lBC:y=kx+b,∵B(-2,0),C(-1,-3),∴,解得,∴lBC:y=-3x-6,设M(xM,-3xM-6),N(xN,xN2+xN-3),∵xM=xN(记为x),yM≥yN,∴线段MN长度=-3x-6-(x2+x-3)=-(x+)2+,(-2≤x≤-1),∴当x=-时,线段MN长度为最大值.

(3)答:P在抛物线外时,BP2+CP2≥PA2;P在抛物线上时,BP+CP=AP;P在抛物线内,BP2+CP2≥PA2.

分析如下:

如图2,以Q点为圆心,为半径作⊙Q,∵OB=2,OA=1,∴AC=AB==,∴BC=,∴BQ=CQ=,∵∠BAC=90°,∴点B、A、C都在⊙Q上.

①P在抛物线外,如图3,圆Q与BD′的交点即为点P,连接PB,PC,PA,延长PC交y轴于点D

∵BC为直径,∴∠BPC=90°

∵BD′与y轴平行

∴∠ADC=90°,且D点为抛物线与y轴交点

∴PD∥x轴

易得PC=1,PB=3,PA=2

∴BP+CP=AP.

②P在抛物线上,此时,P只能为B点或者C点,∵AC=AB=,∴AP=,∵BP+CP=BC=,∴BP+CP=AP.

③P在抛物线内,有两种情况,如图4,5,如图4,在PC上取BP=PT,∵BC为直径,∴∠BPC=90°

∴△BPT为等腰直角三角形

∴∠PBT=45°=∠1+∠2

∵∠ABC=∠3+∠2=45°

∴∠1=∠3

∵∠BAP=∠BCP(同弧BP)

∴△BPA∽△BTC

∵PC=PT+CT

∴PC=PT+PA=PB+PA

∴PC-PB=PA

同理,如图5,也可得PB-PC=PA.

考点:二次函数综合题.

11.(2020·湖北武汉·九年级其他模拟)抛物线与轴交于点,与轴交于点.

(1)求抛物线的解析式;

(2)如图1,直线交抛物线于另一点,过点作轴于点,过点作交于点.求证:轴;

(3)如图2,为抛物线上两点,直线,交轴于点,,求面积的最小值.

【答案】(1);(2)见解析;(3)的最小值为1.

【分析】

(1)把点,代入解析式构建方程组求解即可;

(2)由题易得,设,则,然后根据在平面直接坐标系里两条直线平行时,进行求解即可;

(3)设直线的解析式为:,直线的解析式为,直线的解析式为,由题意得,进而可得,然后把三角形的面积表示出来利用二次函数的性质求解即可.

【详解】

(1)∵过,∴解得.

∴抛物线的解析式为.

(2)当时,.∴

设,则,∴,.

∴,∴,∵,∴设,则,.

∴.

设直线,∴,∴.

由得

∵,∴轴.

(3)设直线的解析式为:,由得,.

∴,∴.

设直线的解析式为,同理可得:,∴.

设直线的解析式为,由得.

∴,.

∵,∴,,∴直线.

不论为何值,当时,∴直线过点.

∵,∴轴,∴的最小值为1.

【点睛】

本题主要考查二次函数与一次函数的综合,关键是根据题意得到二次函数的表达式,然后利用一次函数的知识点进行求解问题即可.

12.(2020·广东深圳·九年级其他模拟)如下图,抛物线与轴正半轴交于点,过点作直线轴,点是抛物线在第一象限部分上的一动点,连接并延长交直线于点,连接并延长交轴于点,过点作轴,垂足为,连接.设.

(1)请直接写出点坐标并求出的最大值;

(2)如图1,随着点的运动,的值是否会发生变化?若变化,请说明理由,若不变,则求出它的值;

(3)连接,如图2,则当点位于何处时,点到直线的距离最大?请你求出此时点的坐标.

【答案】(1)A点坐标为,4;(2)不会发生变化,理由见解析,;(3)点坐标为

【分析】

(1)根据P点的坐标得到,根据即可得到结果;

(2)由(1)知:,,根据计算即可;

(3)取的中点,过作轴的垂线,垂足为,交直线于点,得矩形;连接,得到,在根据题意得,联立方程计算即可;

【详解】

解:(1)A点坐标为.

∵,∴点坐标为

∴.

又,.

∴.

∴.

∴的最大值为4.

(2)的值不会发生变化理由如下:

由(1)知:,.

所以,,.

又,.

∴,∴.

(3)如下左图,取的中点,过作轴的垂线,垂足为,交直线于点,得矩形;连接.

易得,∴.

∴.

由(2)知,.

∴.又,∴点的坐标为.

即,直线绕定点在旋转.

如上右图,表示的任一位置,长是点到它的距离.则,∵,∴的最大值等于.

显然,获得最大值的条件是.

∵此时,易得,此时,从而,得.

∴此时,点坐标为

∴直线的解析式为:.

由得,(舍).

故,此时点坐标为.

【点睛】

本题主要考查了二次函数综合,准确计算是解题的关键.

13.(2020·广东九年级一模)如图,抛物线与轴交于点,对称轴为直线平行于轴的直线与抛物线交于两点,点在对称轴左侧,.

(1)求此抛物线和直线的解析式;

(2)点在轴上,直线将三角形面积分成两部分,求点的坐标.

【答案】(1);(2)或

【分析】

(1)根据对称轴直线求出b,把点代入抛物线解析式求出c,即可求出抛物线解析式,根据抛物线对称性和抢救车点B坐标,利用待定系数法即可求出直线的解析式;

(2)作出直线与交于点,过作轴,与轴交于点与轴交于点,得到进而得到,根据直线将面积分成两部分,分别得到或两种情况,分别求出Q横坐标,进而求出Q坐标,直线CQ解析式,即可求出点P坐标.

【详解】

解:由题意得:,解得:,则此抛物线的解析式为;

抛物线对称轴为直线,横坐标为横坐标为,把代入抛物线解析式得:,设直线解析式为,把坐标代入得:

直线解析式为

(2)作出直线与交于点,过作轴,与轴交于点与轴交于点,可得,点在轴上,直线将面积分成两部分,或,即或,或,当时,把代入直线解析式得:

此时,直线解析式为,令,得到,即;

当时,把代入直线解析式

得:,此时,直线解析式为,令得到

此时,综上,的坐标为或.

【点睛】

本题为二次函数综合题,综合性强,难度大.熟练掌握二次函数性质,深刻理解坐标系内求点的坐标方法,添加辅助线构造相似是解题关键.

14.(2020·湖北九年级一模)如图.抛物线交轴于两点.其中点坐标为,与轴交于点.

求抛物线的函数表达式;

如图①,连接.点在抛物线上﹐且满足.求点的坐标;

如图②,点为轴下方抛物线上任意一点,点是抛物线对称轴与轴的交点,直线分别交抛物线的对称轴于点,求的值.

【答案】(1);(2)点的坐标为或;(3)8

【分析】

(1)把点A、C坐标代入抛物线解析式即求得b、c的值.

(2)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠PAB=2∠BAG=2∠ACO,利用∠ACO的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.

(3)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=−1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.

【详解】

解:抛物线经过点

解得

抛物线的函数表达式为

①若点在轴下方,如图1

延长到,使,过点作轴,连接,作中点,连接并延长交于点,过点作于点

当,解得

中,为中点,即

在中,中,即

设直线解析式为

解得

直线

解得(即点),②若点在轴上方,如图2,在上截取,则于关于轴对称

设直线解析式为

解得

直线

解得(即点),、综上所述,点的坐标为或

为定值

抛物线的对称轴为,直线

设直线解析式为

解得

直线

当时,设直线解析式为

解得

直线

当时,为定值.

【点睛】

本题考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.第(2)题由于不确定点P位置需分类讨论;(2)(3)计算量较大,应认真理清线段之间的关系再进行计算.

15.(2020·贵阳清镇北大培文学校九年级其他模拟)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.

(1)求抛物线的解析式;

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.

(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

【答案】(1);(2),时有最大值;(3)或或或.

【分析】

(1)先假设出函数解析式,利用三点法求解函数解析式.

(2)设出M点的坐标,利用S=S△AOM+S△OBM−S△AOB即可进行解答;

(3)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合.

【详解】

解:(1)设此抛物线的函数解析式为:,将,三点代入函数解析式得:,解得,所以此函数解析式为:;

(2)∵点的横坐标为,且点在这条抛物线上,∴点的坐标为:,∴

∵,当时,有最大值为:.

答:时有最大值.

(3)设.

当为边时,根据平行四边形的性质知,且,∴的横坐标等于的横坐标,又∵直线的解析式为,则.

由,得,解得,.(不合题意,舍去)

如图,当为对角线时,知与应该重合,.

四边形为平行四边形则,横坐标为4,代入得出为.

由此可得或或或.

【点睛】

本题考查了三点式求抛物线的方法,以及抛物线的性质和最值的求解方法.

16.(2020·山东烟台·九年级其他模拟)如图,抛物线y=ax2+x+c的图象与x轴交于A(-3,0),B两点,与y轴交于点C(0,-2),连接AC.点P是x轴上的动点.

(1)求抛物线的表达式;

(2)过点P作x轴的垂线,交线段AC于点D,E为y轴上一点,连接AE,BE,当AD=BE时,求AD+AE的最小值;

(3)点Q为抛物线上一动点,是否存在点P,使得以A、C、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.

【答案】(1);(2)4;(3)存在,点P的坐标为(-5,0)或(,0)或(,0)或(-1,0).

【分析】

(1)将A、C两点代入,利用待定系数法求得抛物线的表达式;

(2)由AD=BE,将AD+AE转化为BE+AE,通过两点之间线段最短即可得解;

(3)分情况讨论,AC为平行四边形的对角线、AQ为对角线、AP为对角线三种情况讨论.

【详解】

(1)将A(-3,0),C(0,-2),代入y=ax2+x+c得,解得,∴抛物线的表达式为;

(2)令,解得x=-3或1,∴点B的坐标为(1,0),当AD=BE时,AD+AE=BE+AE,∴当A、E、B三点共线时,BE+AE最小,最小值为AB的长,∴当AD=BE时,AD+AE的最小值为AB=1-(-3)=4;

(3)存在.设点P的坐标为(m,0),点Q的坐标为(n,),①若AQ为平行四边形的对角线,则PA=QC,QC∥x轴,如图①,∴-3-m=0-n,解得n=-2或0(舍去),∴m=-5,∴点P的坐标为(-5,0);

②若AP为对角线,则AC=PQ,如图②所示,即m-n=3,解得n=-1+或-1-,∴m=2+或2-,∴点P的坐标为(2+,0)或(2-,0);

③当AC是平行四边形的对角线时,则AQ=PC,如图③,即m-(-3)=0-n,解得n=-2或0(舍去),∴m=-1,∴点P的坐标为(-1,0).

综上所述,点P的坐标为(-5,0)或(2+,0)或(2-,0)或(-1,0).

【点睛】

本题是二次函数的综合应用题,考查了待定系数法求函数解析式,二次函数的图象及性质,平行四边形的性质;熟练掌握二次函数的图象及性质,灵活应用平行四边形的性质是解题的关键.第(3)问需分类讨论,以防遗漏.

17.(2020·河南九年级二模)如图,在平面直角坐标系中,为坐标原点,抛物线交轴于,两点,交轴于点,且.

(1)求,的值.

(2)点为第一象限内抛物线上一点,连接交轴于点,设点的横坐标为,线段的长为,求与之间的函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下,点为抛物线上一动点,当时,是否存在点,使得?若存在,请直接写出点的横坐标;若不存在,请说明理由.

【答案】(1)的值为,的值为;(2)与之间的函数关系式为;(3)存在满足题意的点,点的横坐标为或.

【分析】

(1)本题根据题意得出点B、点C坐标后,将点代入二次函数解析式即可求解.

(2)本题首先利用函数解析式表示P点坐标,继而分别求解PK、AK长度,进一步以正切三角函数作为中介求解OD,最后利用边长关系即可求解本题.

(3)本题首先根据已知求解△APQ的面积,继而求解点D坐标与直线AP解析式,进一步分类讨论点Q所在位置,求解手段是做辅助线并利用函数表示MQ距离,继而利用割补法表示△APQ面积,最后根据限制条件确定最终答案.

【详解】

(1)∵,∴,.

将点,代入抛物线中,得,解得,∴的值为,的值为.

(2)由第一问可知抛物线的解析式为.

∵点为第-象限内抛物线上一点,且横坐标为,∴.

∵,∴.

过点作轴于点,如下图所示,则.

当时,即,解得,.

∴,即.

∴.

∵,即,∴.

∴.

∴与之间的函数关系式为.

(3)存在.

由题意易得,∴.

∵,∴.

∴.

∴,.

由可知点的横坐标为9,故易得直线的解析式为.

由题意,可知点的位置需分以下两种情况进行讨论.

①当点在直线下方的抛物线上时,过点作轴的平行线,交于点,如下图3所示:

设,则.

∴.

∴.

其中是P点横坐标,是A点横坐标.

∴的最大值为72.

∵,∴在直线下方不存在满足题意的点.

②当点在直线上方的抛物线上时,过点作轴的平行线,交于点,如下图2所示:

设,或,则.

∴.

∴,解得,.

综上所述,存在满足题意的点,点的横坐标为或.

【点睛】

本题考查二次函数的综合,难度较高,待定系数法求解函数解析式需要熟练掌握,对三角函数的基本概念要清楚,该知识点通常作为边长比例关系的媒介,涉及动点问题需要分类讨论.

18.(2020·山东九年级一模)已知,抛物线y=-x2

+bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.

(1)直接填写抛物线的解析式________;

(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.求证:MN∥y轴;

(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG

•CH为定值.【答案】(1);(2)见详解;(3)见详解.

【分析】

(1)把点C、D代入y=-x2

+bx+c求解即可;

(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;

(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.

【详解】

详解:(1)∵y=-x2

+bx+c过点C(0,2),点Q(2,2),∴,解得:.∴y=-x2+x+2;

(2)

设直线PM的解析式为:y=mx,直线PC的解析式为:y=kx+2

得x2+(k-1)x=0,解得:,xp=

得x2+(m-1)x-2=0,即xp•xm=-4,∴xm==.由

得xN==xM,∴MN∥y轴.(3)设G(0,m),H(0,n).设直线QG的解析式为,将点代入

直线QG的解析式为

同理可求直线QH的解析式为;

解得:

同理,设直线AE的解析式为:y=kx+4,由,得x2-(k-1)x+2=0

即xDxE=4,即(m-2)•(n-2)=4

∴CG•CH=(2-m)•(2-n)=4.19.(2020·重庆八中九年级一模)如图,抛物线y=x2+2x﹣6交x轴于A、B两点(点A在点B的左侧),交y轴于C点,D点是该抛物线的顶点,连接AC、AD、CD.

(1)求△ACD的面积;

(2)如图,点P是线段AD下方的抛物线上的一点,过P作PE∥y轴分别交AC于点E,交AD于点F,过P作PG⊥AD于点G,求EF+FG的最大值,以及此时P点的坐标;

(3)如图,在对称轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以BN为直角边的等腰Rt△BMN?若存在,求出点M的横坐标,若不存在,请说明理由.

【答案】(1)24;(2)最大值为,点P(﹣3,﹣);(3)存在,点M的横坐标为﹣﹣或2﹣2.

【分析】

(1)先求出抛物线与坐标轴的交点坐标和顶点坐标,再用待定系数法求得AC的解析式,进而求出点N、D的坐标,再根据三角形的面积公式求出结果;

(2)证明EF+FG即为EP的长度,即可求解;

(3)分∠BNM为直角、∠MBN为直角,利用三角形全等即可求解.

【详解】

解:(1)令x=0,得,∴C(0,﹣6),令y=0,得,解得,∴A(,0),点B(,0),设直线AC的解析式为:y=kx+b(k≠0),则,∴,∴直线AC的解析式为:,∵,∴D(,),过D作DM⊥x轴于点M,交AC于点N,如图,令,则N(,),∴,∴;

(2)如图,过点D作x轴的平行线交FP的延长线于点H,由点A、D的坐标得,直线AD的表达式为:,∴tan∠FDH=2,则sin∠FDH=,∵∠HDF+∠HFD=90°,∠FPG+∠PFG=90°,∴∠FDH=∠FPG,在Rt△PGF中,PF==

=FG,则EF+FG=EF+PF=EP,设点P(x,),则点E(x,),则EF+FG=EF+PF=EP=,∵﹣<0,故EP有最大值,此时x=﹣=﹣3,最大值为;

当x=时,故点P(,);

(3)存在,理由:

设点M的坐标为(m,n),则,点N(0,s),①当∠MNB为直角时,如图,过点N作x轴的平行线交过点B与y轴的平行线于点H,交过点M与y轴的平行线于点G,∵∠MNG+∠BNH=90°,∠MNG+∠GMN=90°,∴∠GMN=∠BNH,∵∠NGM=∠BHN=90°,MN=BN,∴△NGM≌△BHN(AAS),∴GN=BH,MG=NH,即且,联立并解得:(舍去正值),故,则点M(,);

②当∠NBM为直角时,如图,过点B作y轴的平行线交过点N与x轴的平行线于点G,交过点M与x轴的平行线于点H,同理可证:△MHB≌△BGN(AAS),则BH=NG,即,当时,解得:(舍去正值),故,则点M(,);

综上,点M的横坐标为或.

【点睛】

本题考查二次函数的综合题,涉及三角形面积的求解,用胡不归原理求最值,等腰直角三角形的存在性问题,解题的关键是需要掌握这些特定题型的特定解法,熟练运用数形结合的思想去解决问题.

20.(2020·天津中考真题)已知点是抛物线(为常数,)与x轴的一个交点.

(1)当时,求该抛物线的顶点坐标;

(2)若抛物线与x轴的另一个交点为,与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,.

①当点E落在抛物线上(不与点C重合),且时,求点F的坐标;

②取的中点N,当m为何值时,的最小值是?

【答案】(1)抛物线的顶点坐标为;(2)①点F的坐标为或;②当m的值为或时,MN的最小值是.

【分析】

(1)根据,则抛物线的解析式为,再将点A(1,0)代入,求出b的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;

(2)①首先用含有m的代数式表示出抛物线的解析式,求出,点.过点A作于点H,在Rt中,利用勾股定理求出AE的值,再根据,可求出m的值,进一步求出F的坐标;

②首先用含m的代数式表示出MC的长,然后分情况讨论MN什么时候有最值.【详解】

解:(1)当,时,抛物线的解析式为.

∵抛物线经过点,.解得.

抛物线的解析式为.,抛物线的顶点坐标为.

(2)①∵抛物线经过点和,,即.,.

抛物线的解析式为.

根据题意,得点,点.

过点A作于点H.

由点,得点.

在Rt中,,.,.解得.

此时,点,点,有.

点F在y轴上,在Rt中,.

点F的坐标为或.

②由N是EF的中点,得.

根据题意,点N在以点C为圆心、为半径的圆上.

由点,点,得,.

在中,.

当,即时,满足条件的点N落在线段MC上,MN的最小值为,解得;

当,时,满足条件的点N落在线段CM的延长线上,MN的最小值为,解得.

当m的值为或时,MN的最小值是.

【点睛】

本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..

二次函数压轴题解析 篇2

一、试题回顾

如图, 抛物线y=ax2+c (a≠0) 经过C (2, 0) , D (0, -1) 两点, 并与直线y=kx交于A、B两点, 直线l过点E (0, -2) 且平行于x轴, 过A、B两点分别作直线l的垂线, 垂足分别为点M、N.

(1) 求此抛物线的解析式;

(2) 求证:AO=AM;

(3) 探究:1当k=0时, 直线y=kx与x轴重合, 求出此时1/AM+1/BN的值;

2试说明无论k取何值, 1/AM+1/BN的值都等于同一个常数.

二、试题赏析

这是一道二次函数综合题, 作为试卷的压轴题之一, 试题以二次函数为载体, 条件简洁、内涵丰富, 在代数与几何的核心知识处交汇, 融几何性质与代数运算为一体.通过线段长度相等, 求1/AM+1/BN的值, 考查的主要内容有:待定系数法求二次函数解析式、函数的图象与性质、勾股定理、点到直线的距离、根与系数的关系、相似、等腰三角形、梯形、比例、三角函数等内容.突出了对待定系数法、配方法、数形结合、归纳概括、化归转化、函数与方程、演绎推理、几何模型等主要数学思想方法的考查.几何中考查函数, 函数中考查几何, 用函数研究变化的图形中的数量关系, 使函数与几何融为一体.第一问主要考查待定系数法, 把点C、D的坐标代入抛物线解析式求出a、c, 即可得解;第二问主要是应用解析法求解, 即利用代数的方法研究几何图形的性质, 这也是解析几何的灵魂;第三问通过第一小题特殊位置的计算概括归纳得到第二小题的答案并证明, 考查了学生的猜想归纳能力.第三问的求解过程重视方法, 思维的考查, 重视一题多解, 解决问题的能力考查, 这一小问结论开放、方法开放、思路开放, 能给予优秀学生充分施展才能的空间, 培养学生的独立思考能力和探索精神.

三、解法展示

四、写在最后

东北师大史宁中教授认为, 数学教育不仅要让学生记住一些必要的数学知识, 掌握一些基本的技能, 教师还要注重培养学生基本的数学素养, 这才是数学教育的核心.数学教学活动中, 教师应当注重引导学生用心体验如何发现问题, 如何选择适合自己完成的问题, 如何设计解决问题的方案, 如何呈现自己探究成果的价值, 如何总结和运用获得的经验去解决实际问题, 教师应当鼓励与倡导解决问题策略的多样化, 引导学生从多方面、多角度选择研究基点, 激发并唤起学生的学习兴趣, 点燃学生智慧的火花, 促使学生的探究能力和创新能力得到充分发展.

参考文献

[1]满天银.中考二次函数试题特点分析[J].数理化学习 (初中版) .2013年第6期.11—12

二次函数压轴题解析 篇3

中考压轴题希望遏制“题海战术”,注重试题公平性与原创性,注重试题的过程立意与能力立意。福建省莆田市2011年中考数学试卷第24题,是经过命题者精心编制的以二次函数为背景的压轴题,具有典型性、示范性、拓展性、研究性并有多种不同的解法。只有教师认真钻研,学会拓展延伸、类比迁移,才能让自己从一个单纯的执行者转变为开发者,从而能够更好地训练学生思维的创造性,教学也必将更加有效。现分析如下;

一、试题展示

已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与轴交于点A、B两点,与轴交于点C,其中A(1,0),C(0,-3)

(1)求抛物线的解析式;

(2)若点P在抛物线上运动(点P异于点A)

①如图1,当△PBC的面积和△ABC面积相等时,求点P的坐标;

②如图2,当∠PCB=∠BCA时,求直线CP的解析式(图略)

二、试题功能分析

本题作为试卷的压轴题之一,试题以二次函数为载体,条件简洁、内涵丰富;在代数与几何的核心知识交汇,融几何性质与代数运算为一体。试题通过面积相等与角度相等两个条件,通过点的运动带来的面积变化以及图形变化,考查的知识代数中有函数的解析式、图象与性质等,几何中有相似、全等、面积等内容。突出了对待定系数法、配方法、数形结合、归纳概括、化归转化、分类讨论、函数与方程、演绎推理、函数建模等主要数学思想方法的考查。试题重视方法,思维的考查,重视一题多解、重视用运动的观点来分析问题,解决问题的能力考查。试题呈现科学性、思想性和导向性。本题结论开放、方法开放、思路开放,因而能有效地反映高层次思维,能给予优秀学生充分施展才能的空间。同时该试题的考核也与过程性的目标相一致,体现出一定的数学思考和解决问题能力方面的要求,因而能更好地培养学生的独立思考能力和探索精神,培养学生的创造意识与创新能力。

三、试题解法荟萃(例试解法略)

四、试题解答情况

1、得分情况

本题难度0.16、区分度0.38,各个分数段分布如下: (图略)因统计含缺考等所以零分的人较多,若不考虑零分,显然试题能让不同水平的学生充分展示自己不同的探究深度, 较好地考查了学生运用数学思想方法探索规律、获取新知以及运用知识解决问题的能力。试题在注意控制难度的同时,又有恰当的区分度,不仅有利于高一级学校选拔合格的新生,而且对初中数学教学和减轻学生的课业负担有良好的导向作用。

2、典型错误:

(1)设y=a(x-2)2-3错把a(x-h)2+k与函数上点(10,3)等同起来

(2) ①学生直接利用面积相等,计算量很大,不能正确运算或只求出 P1 (2,1) ,漏掉P2、P3。对同底等高的三角形面积相等性质不清,在方法上还不够灵活,思维不够全面。

②中学生直接解答由∠PCB=∠BCA △ABC≌△PBC,然后得出点P的坐标。

连接PB认为PB与AD分别为△ABC和△PBC的高,因为S△ABC=S△PBC所以AD=PB,忽视了PB是否是 △PBC的高,即PB是否一定垂直于CB。主要原因:学生对知识理解存在错误认识,思维存在偏差。评卷中发现学生大都只想求出点P的坐标,未能把握知识和方法的迁移与应用、等价与转化,从而没有思路或思维单一,无法入手。

五、试题教学启示

研究以二次函数为背景的解答题,可以发现试题的设计大都由简单到复杂的两到三个问题组成,由浅入深,逐层递进,涵盖了图形与坐标、图形与变换、函数图像与性质等核心知识,突出了对待定系数法、配方法、数形结合、归纳概括、转化化归、分类讨论、函数与方程、演绎推理、函数建模等主要数学思想方法的考查。试题一般不会以纯函数的形式出现,而是结合几何图形或点的运动,使几何图形发生变化,从而让函数与几何有机结合起来。试题所运用的知识类型主要有两种。一是以建立函数模型为主的代数综合性问题、二是代数与几何有机结合的综合性问题。其中运动型问题居多,常见的有:(1)设置动点。通过点的运动对图形产生的影响,探求有关图形形状问题、最值问题、存在性问题等。(2)设置图形的平移、翻折与旋转。在图形的运动变化过程中,寻找规律,用函数研究变化的图形中的数量关系。

二次函数是中考的重点与热点,复习二次函数应掌握二次函数的基本概念、图像与性质的相互联系和相互转化,掌握二次函数与方程、不等式等知识的交汇与综合。注重教材的内涵、注重过程和联系、注重构建二次函数有关的知识网络。利用数形结合法,抓住图象特征掌握二次函数的性质是解决问题的主要方法。复习中应强化数形结合意识,掌握函数的基本技能和方法,注意观察、归纳、分析、比较,总结基本的方法、规律。其中常见的有:利用函数图像比较函数值的大小;利用函数图像求方程的近似解;利用函数图像求实际问题中的最大值与最小值等。要求学生会观察图像,利用数形结合的思想解决一些实际问题。

二次函数压轴题解析 篇4

一.解答题(共50小题)

1.数列{an}满足a1=1,a2=+,…,an=++…+(n∈N*)

(1)求a2,a3,a4,a5的值;

(2)求an与an﹣1之间的关系式(n∈N*,n≥2);

(3)求证:(1+)(1+)…(1+)<3(n∈N*)

2.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;

(Ⅱ)2xn+1﹣xn≤;

(Ⅲ)≤xn≤.

3.数列{an}中,a1=,an+1=(n∈N*)

(Ⅰ)求证:an+1<an;

(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.

4.已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.

(1)求a2的值;

(2)证明:对任意实数n∈N*,an≤2an+1;

(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2﹣≤Sn<3.

5.已知在数列{an}中,.,n∈N*

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

6.设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤an≤1;

(II)当a1>1时,an>(a1﹣1)a1n﹣1;

(III)当a1=时,n﹣<Sn<n.

7.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).

(Ⅰ)求S1,S2及数列{Sn}的通项公式;

(Ⅱ)若数列{bn}满足,且{bn}的前n项和为Tn,求证:当n≥2时,.

8.已知数列{an}满足a1=1,(n∈N*),(Ⅰ)

证明:;

(Ⅱ)

证明:.

9.设数列{an}的前n项的和为Sn,已知a1=,an+1=,其中n∈N*.

(1)证明:an<2;

(2)证明:an<an+1;

(3)证明:2n﹣≤Sn≤2n﹣1+()n.

10.数列{an}的各项均为正数,且an+1=an+﹣1(n∈N*),{an}的前n项和是Sn.

(Ⅰ)若{an}是递增数列,求a1的取值范围;

(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣(n﹣1),证明:Sn<2n+1.

11.设an=xn,bn=()2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn﹣1,x∈R,a∈N*.

(Ⅰ)若x=2,求数列{}的前n项和Tn;

(Ⅱ)求证:对∀n∈N*,方程fn(x)=0在xn∈[,1]上有且仅有一个根;

(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn﹣xn+p<.

12.已知数列{an},{bn},a0=1,(n=0,1,2,…),Tn为数列{bn}的前n项和.

求证:(Ⅰ)an+1<an;

(Ⅱ);

(Ⅲ).

13.已知数列{an}满足:a1=,an=an﹣12+an﹣1(n≥2且n∈N).

(Ⅰ)求a2,a3;并证明:2﹣≤an≤•3;

(Ⅱ)设数列{an2}的前n项和为An,数列{}的前n项和为Bn,证明:=an+1.

14.已知数列{an}的各项均为非负数,其前n项和为Sn,且对任意的n∈N*,都有.

(1)若a1=1,a505=2017,求a6的最大值;

(2)若对任意n∈N*,都有Sn≤1,求证:.

15.已知数列{an}中,a1=4,an+1=,n∈N*,Sn为{an}的前n项和.

(Ⅰ)求证:n∈N*时,an>an+1;

(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<.

16.已知数列{an}满足,a1=1,an=﹣.

(1)求证:an≥;

(2)求证:|an+1﹣an|≤;

(3)求证:|a2n﹣an|≤.

17.设数列{an}满足:a1=a,an+1=(a>0且a≠1,n∈N*).

(1)证明:当n≥2时,an<an+1<1;

(2)若b∈(a2,1),求证:当整数k≥+1时,ak+1>b.

18.设a>3,数列{an}中,a1=a,an+1=,n∈N*.

(Ⅰ)求证:an>3,且<1;(Ⅱ)当a≤4时,证明:an≤3+.

19.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).

(Ⅰ)证明:an>1;

(Ⅱ)证明:++…+<(n≥2).

20.已知数列{an}满足:.

(1)求证:;

(2)求证:.

21.已知数列{an}满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣).

(1)求数列{an}的通项公式;

(2)求证:++…+<;

(3)记Sn=++…+,证明:对于一切n≥2,都有Sn2>2(++…+).

22.已知数列{an}满足a1=1,an+1=,n∈N*.

(1)求证:≤an≤1;

(2)求证:|a2n﹣an|≤.

23.已知数列{an]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)证明:+…(n∈N*)

24.已知数列{an}满足:a1=,an+1=+an(n∈N*).

(1)求证:an+1>an;

(2)求证:a2017<1;

(3)若ak>1,求正整数k的最小值.

25.已知数列{an}满足:an2﹣an﹣an+1+1=0,a1=2

(1)求a2,a3;

(2)证明数列为递增数列;

(3)求证:<1.

26.已知数列{an}满足:a1=1,(n∈N*)

(Ⅰ)求证:an≥1;

(Ⅱ)证明:≥1+

(Ⅲ)求证:<an+1<n+1.

27.在正项数列{an}中,已知a1=1,且满足an+1=2an(n∈N*)

(Ⅰ)求a2,a3;

(Ⅱ)证明.an≥.

28.设数列{an}满足.

(1)证明:;

(2)证明:.

29.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.

(Ⅰ)求证:{bn}是等比数列;

(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn;

(Ⅲ)求证:﹣<+…+.

30.已知数列{an}中,a1=3,2an+1=an2﹣2an+4.

(Ⅰ)证明:an+1>an;

(Ⅱ)证明:an≥2+()n﹣1;

(Ⅲ)设数列{}的前n项和为Sn,求证:1﹣()n≤Sn<1.

31.已知数列{an}满足a1=,an+1=,n∈N*.

(1)求a2;

(2)求{}的通项公式;

(3)设{an}的前n项和为Sn,求证:(1﹣()n)≤Sn<.

32.数列{an}中,a1=1,an=.

(1)证明:an<an+1;

(2)证明:anan+1≥2n+1;

(3)设bn=,证明:2<bn<(n≥2).

33.已知数列{an}满足,(1)若数列{an}是常数列,求m的值;

(2)当m>1时,求证:an<an+1;

(3)求最大的正数m,使得an<4对一切整数n恒成立,并证明你的结论.

34.已知数列{an}满足:,p>1,.

(1)证明:an>an+1>1;

(2)证明:;

(3)证明:.

35.数列{an}满足a1=,an+1﹣an+anan+1=0(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

36.已知数列{an}满足a1=1,an+1=an2+p.

(1)若数列{an}就常数列,求p的值;

(2)当p>1时,求证:an<an+1;

(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.

37.已知数列{an}满足a1=a>4,(n∈N*)

(1)求证:an>4;

(2)判断数列{an}的单调性;

(3)设Sn为数列{an}的前n项和,求证:当a=6时,.

38.已知数列{an}满足a1=1,an+1=.

(Ⅰ)求证:an+1<an;

(Ⅱ)求证:≤an≤.

39.已知数列{an}满足:a1=1,.

(1)若b=1,证明:数列是等差数列;

(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;

(3)若b=﹣1,求证:.

40.已知数列{an}满足,(n=1,2,3…),Sn=b1+b2+…+bn.

证明:(Ⅰ)an﹣1<an<1(n≥1);

(Ⅱ)(n≥2).

41.已知数列{an}满足a1=1,an+1=,n∈N*,记S,Tn分别是数列{an},{a}的前n项和,证明:当n∈N*时,(1)an+1<an;

(2)Tn=﹣2n﹣1;

(3)﹣1<Sn.

42.已知数列{an}满足a1=3,an+1=an2+2an,n∈N*,设bn=log2(an+1).

(I)求{an}的通项公式;

(II)求证:1+++…+<n(n≥2);

(III)若=bn,求证:2≤<3.

43.已知正项数列{an}满足a1=3,n∈N*.

(1)求证:1<an≤3,n∈N*;

(2)若对于任意的正整数n,都有成立,求M的最小值;

(3)求证:a1+a2+a3+…+an<n+6,n∈N*.

44.已知在数列{an}中,,n∈N*.

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

45.已知数列{an}中,(n∈N*).

(1)求证:;

(2)求证:是等差数列;

(3)设,记数列{bn}的前n项和为Sn,求证:.

46.已知无穷数列{an}的首项a1=,=n∈N*.

(Ⅰ)证明:0<an<1;

(Ⅱ)

记bn=,Tn为数列{bn}的前n项和,证明:对任意正整数n,Tn.

47.已知数列{xn}满足x1=1,xn+1=2+3,求证:

(I)0<xn<9;

(II)xn<xn+1;

(III).

48.数列{an}各项均为正数,且对任意n∈N*,满足an+1=an+can2(c>0且为常数).

(Ⅰ)若a1,2a2,3a3依次成等比数列,求a1的值(用常数c表示);

(Ⅱ)设bn=,Sn是数列{bn}的前n项和,(i)求证:;

(ii)求证:Sn<Sn+1<.

49.设数列满足|an﹣|≤1,n∈N*.

(Ⅰ)求证:|an|≥2n﹣1(|a1|﹣2)(n∈N*)

(Ⅱ)若|an|≤()n,n∈N*,证明:|an|≤2,n∈N*.

50.已知数列{an}满足:a1=1,an+1=an+.(n∈N*)

(Ⅰ)证明:≥1+;

(Ⅱ)求证:<an+1<n+1.

高考数列压轴题

参考答案与试题解析

一.解答题(共50小题)

1.数列{an}满足a1=1,a2=+,…,an=++…+(n∈N*)

(1)求a2,a3,a4,a5的值;

(2)求an与an﹣1之间的关系式(n∈N*,n≥2);

(3)求证:(1+)(1+)…(1+)<3(n∈N*)

【解答】解:(1)a2=+=2+2=4,a3=++=3+6+6=15,a4=+++=4+4×3+4×3×2+4×3×2×1=64,a5=++++=5+20+60+120+120=325;

(2)an=++…+=n+n(n﹣1)+n(n﹣1)(n﹣2)+…+n!

=n+n[(n﹣1)+(n﹣1)(n﹣2)+…+(n﹣1)!]

=n+nan﹣1;

(3)证明:由(2)可知=,所以(1+)(1+)…(1+)=•…

==+++…+=+++…+

=+++…+≤1+1+++…+

=2+1﹣+﹣+…+﹣=3﹣<3(n≥2).

所以n≥2时不等式成立,而n=1时不等式显然成立,所以原命题成立.

2.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;

(Ⅱ)2xn+1﹣xn≤;

(Ⅲ)≤xn≤.

【解答】解:(Ⅰ)用数学归纳法证明:xn>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则xk>0,那么n=k+1时,若xk+1<0,则0<xk=xk+1+ln(1+xk+1)<0,矛盾,故xn+1>0,因此xn>0,(n∈N*)

∴xn=xn+1+ln(1+xn+1)>xn+1,因此0<xn+1<xn(n∈N*),(Ⅱ)由xn=xn+1+ln(1+xn+1)得xnxn+1﹣4xn+1+2xn=xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0

∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1)≥0,故2xn+1﹣xn≤;

(Ⅲ)∵xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1,∴xn≥,由≥2xn+1﹣xn得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴xn≤,综上所述≤xn≤.

3.数列{an}中,a1=,an+1=(n∈N*)

(Ⅰ)求证:an+1<an;

(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.

【解答】证明:(Ⅰ)∵>0,且a1=>0,∴an>0,∴an+1﹣an=﹣an=<0.

∴an+1<an;

(Ⅱ)∵1﹣an+1=1﹣=,∴=.

∴,则,又an>0,∴.

4.已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.

(1)求a2的值;

(2)证明:对任意实数n∈N*,an≤2an+1;

(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2﹣≤Sn<3.

【解答】解:(1)an2+an=3a2n+1+2an+1,a1=1,即有a12+a1=3a22+2a2=2,解得a2=(负的舍去);

(2)证明:an2+an=3a2n+1+2an+1,可得an2﹣4a2n+1+an﹣2an+1+a2n+1=0,即有(an﹣2an+1)(an+2an+1+1)+a2n+1=0,由于正项数列{an},即有an+2an+1+1>0,4a2n+1>0,则有对任意实数n∈N*,an≤2an+1;

(3)由(1)可得对任意实数n∈N*,an≤2an+1;

即为a1≤2a2,可得a2≥,a3≥a2≥,…,an≥,前n项和为Sn=a1+a2+…+an≥1+++…+

==2﹣,又an2+an=3a2n+1+2an+1>a2n+1+an+1,即有(an﹣an+1)(an+an+1+1)>0,则an>an+1,数列{an}递减,即有Sn=a1+a2+…+an<1+1+++…+

=1+=3(1﹣)<3.

则有对任意n∈N*,2﹣≤Sn<3.

5.已知在数列{an}中,.,n∈N*

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

【解答】证明:(1)先用数学归纳法证明1<an<2.

①.n=1时,②.假设n=k时成立,即1<ak<2.

那么n=k+1时,成立.

由①②知1<an<2,n∈N*恒成立..

所以1<an+1<an<2成立.

(2),当n≥3时,而1<an<2.所以.

由,得,所以

(3)由(1)1<an<2得sn>n

由(2)得,6.设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤an≤1;

(II)当a1>1时,an>(a1﹣1)a1n﹣1;

(III)当a1=时,n﹣<Sn<n.

【解答】证明:(Ⅰ)用数学归纳法证明.

①当n=1时,0≤an≤1成立.

②假设当n=k(k∈N*)时,0≤ak≤1,则当n=k+1时,=()2+∈[]⊂[0,1],由①②知,.

∴当0≤a1≤1时,0≤an≤1.

(Ⅱ)由an+1﹣an=()﹣an=(an﹣1)2≥0,知an+1≥an.

若a1>1,则an>1,(n∈N*),从而=﹣an=an(an﹣1),即=an≥a1,∴,∴当a1>1时,an>(a1﹣1)a1n﹣1.

(Ⅲ)当时,由(Ⅰ),0<an<1(n∈N*),故Sn<n,令bn=1﹣an(n∈N*),由(Ⅰ)(Ⅱ),bn>bn+1>0,(n∈N*),由,得.

∴=(b1﹣b2)+(b2﹣b3)+…+(bn﹣bn+1)=b1﹣bn+1<b1=,∵≥,∴nbn2,即,(n∈N*),∵==,∴b1+b2+…+bn[()+()+…+()]=,即n﹣Sn,亦即,∴当时,.

7.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).

(Ⅰ)求S1,S2及数列{Sn}的通项公式;

(Ⅱ)若数列{bn}满足,且{bn}的前n项和为Tn,求证:当n≥2时,.

【解答】解:(Ⅰ)数列{an}满足Sn=2an+1,则Sn=2an+1=2(Sn+1﹣Sn),即3Sn=2Sn+1,∴,即数列{Sn}为以1为首项,以为公比的等比数列,∴Sn=()n﹣1(n∈N*).

∴S1=1,S2=;

(Ⅱ)在数列{bn}中,Tn为{bn}的前n项和,则|Tn|=|=.

而当n≥2时,即.

8.已知数列{an}满足a1=1,(n∈N*),(Ⅰ)

证明:;

(Ⅱ)

证明:.

【解答】(Ⅰ)

证明:∵①,∴②

由②÷①得:,∴

(Ⅱ)

证明:由(Ⅰ)得:(n+1)an+2=nan

令bn=nan,则③

∴bn﹣1•bn=n④

由b1=a1=1,b2=2,易得bn>0

由③﹣④得:

∴b1<b3<…<b2n﹣1,b2<b4<…<b2n,得bn≥1

根据bn•bn+1=n+1得:bn+1≤n+1,∴1≤bn≤n

=

=

一方面:

另一方面:由1≤bn≤n可知:.

9.设数列{an}的前n项的和为Sn,已知a1=,an+1=,其中n∈N*.

(1)证明:an<2;

(2)证明:an<an+1;

(3)证明:2n﹣≤Sn≤2n﹣1+()n.

【解答】证明:(1)an+1﹣2=﹣2=,由于+2=+1>0,+2=2+>0.

∴an+1﹣2与an﹣2同号,因此与a1﹣2同号,而a1﹣2=﹣<0,∴an<2.

(2)an+1﹣1=,可得:an+1﹣1与an﹣1同号,因此与a1﹣1同号,而a1﹣1=>0,∴an>1.

又an<2.∴1<an<2.an+1﹣an=,可得分子>0,分母>0.

∴an+1﹣an>0,故an<an+1.

(3)n=1时,S1=,满足不等式.

n≥2时,==,∴,即2﹣an≥.

∴2n﹣Sn≥=1﹣.即Sn≤2n﹣1+.

另一方面:由(II)可知:.,=≤.

从而可得:=≤.

∴2﹣an≤,∴2n﹣Sn≤=.

∴Sn≥2n﹣>2n﹣.

综上可得:2n﹣≤Sn≤2n﹣1+()n.

10.数列{an}的各项均为正数,且an+1=an+﹣1(n∈N*),{an}的前n项和是Sn.

(Ⅰ)若{an}是递增数列,求a1的取值范围;

(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣(n﹣1),证明:Sn<2n+1.

【解答】(I)解:由a2>a1>0⇔﹣1>a1>0,解得0<a1<2,①.

又a3>a2>0,⇔>a2,⇔0<a2<2⇔﹣1<2,解得1<a1<2,②.

由①②可得:1<a1<2.

下面利用数学归纳法证明:当1<a1<2时,∀n∈N*,1<an<2成立.

(1)当n=1时,1<a1<2成立.

(2)假设当n=k∈N*时,1<an<2成立.

则当n=k+1时,ak+1=ak+﹣1∈⊊(1,2),即n=k+1时,不等式成立.

综上(1)(2)可得:∀n∈N*,1<an<2成立.

于是an+1﹣an=﹣1>0,即an+1>an,∴{an}是递增数列,a1的取值范围是(1,2).

(II)证明:∵a1>2,可用数学归纳法证明:an>2对∀n∈N*都成立.

于是:an+1﹣an=﹣1<2,即数列{an}是递减数列.

在Sn≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.

下证:(1)当时,Sn≥na1﹣(n﹣1)恒成立.

事实上,当时,由an=a1+(an﹣a1)≥a1+(2﹣)=.

于是Sn=a1+a2+…+an≥a1+(n﹣1)=na1﹣.

再证明:(2)时不合题意.

事实上,当时,设an=bn+2,可得≤1.

由an+1=an+﹣1(n∈N*),可得:bn+1=bn+﹣1,可得=≤≤.

于是数列{bn}的前n和Tn≤<3b1≤3.

故Sn=2n+Tn<2n+3=na1+(2﹣a1)n+3,③.

令a1=+t(t>0),由③可得:Sn<na1+(2﹣a1)n+3=na1﹣﹣tn+.

只要n充分大,可得:Sn<na1﹣.这与Sn≥na1﹣(n﹣1)恒成立矛盾.

∴时不合题意.

综上(1)(2)可得:,于是可得=≤≤.(由可得:).

故数列{bn}的前n项和Tn≤<b1<1,∴Sn=2n+Tn<2n+1.

11.设an=xn,bn=()2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn﹣1,x∈R,a∈N*.

(Ⅰ)若x=2,求数列{}的前n项和Tn;

(Ⅱ)求证:对∀n∈N*,方程fn(x)=0在xn∈[,1]上有且仅有一个根;

(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn﹣xn+p<.

【解答】解:(Ⅰ)若x=2,an=2n,则=(2n﹣1)()n,则Tn=1×()1+3×()2+…+(2n﹣1)()n,∴Tn=1×()2+3×()3+…+(2n﹣1)()n+1,∴Tn=+2×[()2+()3+…+()n]﹣(2n﹣1)()n+1

=+2×﹣(2n﹣1)()n+1=+1﹣()n﹣1﹣(2n﹣1)()n+1,∴Tn=3﹣()n﹣2﹣(2n﹣1)()n=3﹣;

(Ⅱ)证明:fn(x)=﹣1+x+++…+(x∈R,n∈N+),fn′(x)=1+++…+>0,故函数f(x)在(0,+∞)上是增函数.

由于f1(x1)=0,当n≥2时,fn(1)=++…+>0,即fn(1)>0.

又fn()=﹣1++[+++…+]≤﹣+•()i,=﹣+×=﹣•()n﹣1<0,根据函数的零点的判定定理,可得存在唯一的xn∈[,1],满足fn(xn)=0.

(Ⅲ)证明:对于任意p∈N+,由(1)中xn构成数列{xn},当x>0时,∵fn+1(x)=fn(x)+>fn(x),∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0.

fn+1(x)

在(0,+∞)上单调递增,可得

xn+1<xn,即

xn﹣xn+1>0,故数列{xn}为减数列,即对任意的n、p∈N+,xn﹣xn+p>0.

由于

fn(xn)=﹣1+xn+++…+=0,①,fn+p

(xn+p)=﹣1+xn+p+++…++[++…+],②,用①减去②并移项,利用

0<xn+p≤1,可得

xn﹣xn+p=+≤≤<=﹣<.

综上可得,对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn﹣xn+p<.

12.已知数列{an},{bn},a0=1,(n=0,1,2,…),Tn为数列{bn}的前n项和.

求证:(Ⅰ)an+1<an;

(Ⅱ);

(Ⅲ).

【解答】解:证明:(Ⅰ)=,所以an+1<an

(Ⅱ)法一、记,则,原命题等价于证明;用数学归纳法

提示:构造函数在(1,+∞)单调递增,故==+>+×=+×(﹣)=,法二、只需证明,由,故:n=1时,n≥2,可证:,(3)由,得=,可得:,叠加可得,所以,13.已知数列{an}满足:a1=,an=an﹣12+an﹣1(n≥2且n∈N).

(Ⅰ)求a2,a3;并证明:2﹣≤an≤•3;

(Ⅱ)设数列{an2}的前n项和为An,数列{}的前n项和为Bn,证明:=an+1.

【解答】解:(I)a2=a12+a1==,a3=a22+a2==.

证明:∵an=an﹣12+an﹣1,∴an+=an﹣12+an﹣1+=(an﹣1+)2+>(an﹣1+)2,∴an+>(an﹣1+)2>(an﹣2+)4>>(an﹣3+)8>…>(a1+)=2,∴an>2﹣,又∵an﹣an﹣1=an﹣12>0,∴an>an﹣1>an﹣2>…>a1>1,∴an2>an,∴an=an﹣12+an﹣1<2a,∴an<2a<2•22<2•22•24<…<2•22•24•…•2a1

=2•()=•3.

综上,2﹣≤an≤•3.

(II)证明:∵an=an﹣12+an﹣1,∴an﹣12=an﹣an﹣1,∴An=a12+a22+a32+…an2=(a2﹣a1)+(a3﹣a2)+…+(an+1﹣an)=an+1﹣,∵an=an﹣12+an﹣1=an﹣1(an﹣1+1),∴==,∴=,∴Bn=…+=()+()+(﹣)+…+()

=﹣.

∴==.

14.已知数列{an}的各项均为非负数,其前n项和为Sn,且对任意的n∈N*,都有.

(1)若a1=1,a505=2017,求a6的最大值;

(2)若对任意n∈N*,都有Sn≤1,求证:.

【解答】解:(1)由题意知an+1﹣an≤an+2﹣an+1,设di=ai+1﹣ai(i=1,2,…,504),则d1≤d2≤d3≤…≤d504,且d1+d2+d3+…+d504=2016,∵=,所以d1+d2+…+d5≤20,∴a6=a1+(d1+d2+…+d5)≤21.

(2)证明:若存在k∈N*,使得ak<ak+1,则由,得ak+1≤ak﹣ak+1≤ak+2,因此,从an项开始,数列{an}严格递增,故a1+a2+…+an≥ak+ak+1+…+an≥(n﹣k+1)ak,对于固定的k,当n足够大时,必有a1+a2+…+an≥1,与题设矛盾,所以{an}不可能递增,即只能an﹣an+1≥0.

令bk=ak﹣ak+1,(k∈N*),由ak﹣ak+1≥ak+1﹣ak+2,得bk≥bk+1,bk>0,故1≥a1+a2+…+an=(b1+a2)+a2+…+an=b1+2(b2+a3)+a3+…+an,=…=b1+2b2+…+nbn+nan,所以,综上,对一切n∈N*,都有.

15.已知数列{an}中,a1=4,an+1=,n∈N*,Sn为{an}的前n项和.

(Ⅰ)求证:n∈N*时,an>an+1;

(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<.

【解答】证明:(I)n≥2时,作差:an+1﹣an=﹣=,∴an+1﹣an与an﹣an﹣1同号,由a1=4,可得a2==,可得a2﹣a1<0,∴n∈N*时,an>an+1.

(II)∵2=6+an,∴=an﹣2,即2(an+1﹣2)(an+1+2)=an﹣2,①

∴an+1﹣2与an﹣2同号,又∵a1﹣2=2>0,∴an>2.

∴Sn=a1+a2+…+an≥4+2(n﹣1)=2n+2.

∴Sn﹣2n≥2.

由①可得:=,因此an﹣2≤(a1﹣2),即an≤2+2×.

∴Sn=a1+a2+…+an≤2n+2×<2n+.

综上可得:n∈N*时,2≤Sn﹣2n<.

16.已知数列{an}满足,a1=1,an=﹣.

(1)求证:an≥;

(2)求证:|an+1﹣an|≤;

(3)求证:|a2n﹣an|≤.

【解答】证明:(1)∵a1=1,an=﹣.

∴a2=,a3=,a4=,猜想:≤an≤1.

下面用数学归纳法证明.

(i)当n=1时,命题显然成立;

(ii)假设n=k时,≤1成立,则当n=k+1时,ak+1=≤<1.,即当n=k+1时也成立,所以对任意n∈N*,都有.

(2)当n=1时,当n≥2时,∵,∴.

(3)当n=1时,|a2﹣a1|=<;

当n≥2时,|a2n﹣an|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|an+1﹣an|.

17.设数列{an}满足:a1=a,an+1=(a>0且a≠1,n∈N*).

(1)证明:当n≥2时,an<an+1<1;

(2)若b∈(a2,1),求证:当整数k≥+1时,ak+1>b.

【解答】证明:(1)由an+1=知an与a1的符号相同,而a1=a>0,∴an>0,∴an+1=≤1,当且仅当an=1时,an+1=1

下面用数学归纳法证明:

①∵a>0且a≠1,∴a2<1,∴=>1,即有a2<a3<1,②假设n=k时,有ak<ak+1<1,则

ak+2==<1且=>1,即ak+1<ak+2<1

即当n=k+1时不等式成立,由①②可得当n≥2时,an<an+1<1;

(2)若ak≥b,由(1)知ak+1>ak≥b,若ak<b,∵0<x<1以及二项式定理可知(1+x)n=1+Cn1x+…+Cnnxn≥nx,而ak2+1<b2+1<b+1,且a2<a3<…<ak<b<1

∴ak+1=a2••…,=a2•

>a2•()k﹣1>a2•()k﹣1=a2•(1+)k﹣1,≥a2•[1+(k﹣1)],∵k≥+1,∴1+(k﹣1)≥+1=,∴ak+1>b.

18.设a>3,数列{an}中,a1=a,an+1=,n∈N*.

(Ⅰ)求证:an>3,且<1;

(Ⅱ)当a≤4时,证明:an≤3+.

【解答】证明:(I)∵an+1﹣3=﹣3=.=﹣=,∴()=>0,∴与同号,又a>3,∴=a﹣>0,∴>0,∴an+1﹣3>0,即an>3(n=1时也成立).

∴==<1.

综上可得:an>3,且<1;

(Ⅱ)当a≤4时,∵an+1﹣3=﹣3=.

∴=,由(I)可知:3<an≤a1=a≤4,∴3<an≤4.

设an﹣3=t∈(0,1].

∴==≤,∴•…•≤,∴an﹣3≤(a1﹣3)×≤,∴an≤3+.

19.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).

(Ⅰ)证明:an>1;

(Ⅱ)证明:++…+<(n≥2).

【解答】证明:(Ⅰ)由题意得(n+1)an+12﹣(n+1)=nan2﹣n+an﹣1,∴(n+1)(an+1+1)(an+1﹣1)=(an﹣1)(nan+n+1),由an>0,n∈N*,∴(n+1)(an+1+1)>0,nan+n+1>0,∴an+1﹣1与an﹣1同号,∵a1﹣1=1>0,∴an>1;

(Ⅱ)由(Ⅰ)知,故(n+1)an+12=nan2+an<(n+1)an2,∴an+1<an,1<an≤2,又由题意可得an=(n+1)an+12﹣nan2,∴a1=2a22﹣a12,a2=3a32﹣2a22,…,an=(n+1)an+12﹣nan2,相加可得a1+a2+…+an=(n+1)an+12﹣4<2n,∴an+12≤,即an2≤,n≥2,∴≤2(+)≤2(﹣)+(﹣+),n≥2,当n=2时,=<,当n=3时,+≤<<,当n≥4时,++…+<2(+++)+(++﹣)=1+++++<,从而,原命题得证

20.已知数列{an}满足:.

(1)求证:;

(2)求证:.

【解答】证明:(1)由,所以,因为,所以an+2<an+1<2.

(2)假设存在,由(1)可得当n>N时,an≤aN+1<1,根据,而an<1,所以.

于是,….

累加可得(*)

由(1)可得aN+n﹣1<0,而当时,显然有,因此有,这显然与(*)矛盾,所以.

21.已知数列{an}满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣).

(1)求数列{an}的通项公式;

(2)求证:++…+<;

(3)记Sn=++…+,证明:对于一切n≥2,都有Sn2>2(++…+).

【解答】解:(1)a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣),可得an+12+an2﹣2an+1an﹣2an+1+2an+1=0,即有(an+1﹣an)2﹣2(an+1﹣an)+1=0,即为(an+1﹣an﹣1)2=0,可得an+1﹣an=1,则an=a1+n﹣1=n,n∈N*;

(2)证明:由=<=﹣,n≥2.

则++…+=1+++…+

<1++﹣+﹣+…+﹣=﹣<,故原不等式成立;

(3)证明:Sn=++…+=1++…+,当n=2时,S22=(1+)2=>2•=成立;

假设n=k≥2,都有Sk2>2(++…+).

则n=k+1时,Sk+12=(Sk+)2,Sk+12﹣2(++…++)

=(Sk+)2﹣2(++…+)﹣2•

=Sk2﹣2(++…+)++2•﹣2•

=Sk2﹣2(++…+)+,由k>1可得>0,且Sk2>2(++…+).

可得Sk2﹣2(++…+)>0,则Sk+12>2(++…++)恒成立.

综上可得,对于一切n≥2,都有Sn2>2(++…+).

22.已知数列{an}满足a1=1,an+1=,n∈N*.

(1)求证:≤an≤1;

(2)求证:|a2n﹣an|≤.

【解答】证明:(1)用数学归纳法证明:

①当n=1时,=,成立;

②假设当n=k时,有成立,则当n=k+1时,≤≤1,≥=,∴当n=k+1时,命题也成立.

由①②得≤an≤1.

(2)当n=1时,|a2﹣a1|=,当n≥2时,∵()()=()=1+=,∴|an+1﹣an|=||=≤|an﹣an﹣1|<…<()n﹣1|a2﹣a1|=,∴|a2n﹣a2n﹣1|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|an+1﹣an|

≤=

=()n﹣1﹣()2n﹣1≤,综上:|a2n﹣an|≤.

23.已知数列{an]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)证明:+…(n∈N*)

【解答】解:(Ⅰ)∵Sn=2an﹣n(n∈N+),∴Sn﹣1=2an﹣1﹣n+1=0(n≥2),两式相减得:an=2an﹣1+1,变形可得:an+1=2(an﹣1+1),又∵a1=2a1﹣1,即a1=1,∴数列{an+1}是首项为2、公比为2的等比数列,∴an+1=2•2n﹣1=2n,an=2n﹣1.

(Ⅱ)由,(k=1,2,…n),∴=,由=﹣,(k=1,2,…n),得﹣=,综上,+…(n∈N*).

24.已知数列{an}满足:a1=,an+1=+an(n∈N*).

(1)求证:an+1>an;

(2)求证:a2017<1;

(3)若ak>1,求正整数k的最小值.

【解答】(1)证明:an+1﹣an=≥0,可得an+1≥an.

∵a1=,∴an.

∴an+1﹣an=>0,∴an+1>an.

(II)证明:由已知==,∴=﹣,由=,=,…,=,累加求和可得:=++…+,当k=2017时,由(I)可得:=a1<a2<…<a2016.

∴﹣=++…+<<1,∴a2017<1.

(III)解:由(II)可得:可得:=a1<a2<…<a2016<a2017<1.

∴﹣=++…+>2017×=1,∴a2017<1<a2018,又∵an+1>an.∴k的最小值为2018.

25.已知数列{an}满足:an2﹣an﹣an+1+1=0,a1=2

(1)求a2,a3;

(2)证明数列为递增数列;

(3)求证:<1.

【解答】(1)解:∵a1=2,∴a2=22﹣2+1=3,同理可得:a3=7.

(2)证明:,对n∈N*恒成立,∴an+1>an.

(3)证明:

故=.

26.已知数列{an}满足:a1=1,(n∈N*)

(Ⅰ)求证:an≥1;

(Ⅱ)证明:≥1+

(Ⅲ)求证:<an+1<n+1.

【解答】证明:(I)数列{an}满足:a1=1,(n∈N*),可得:,⇒an+1≥an≥an﹣1≥…≥a1=1;

(Ⅱ)由(Ⅰ)可得:;

(Ⅲ),由(Ⅱ)得:,所以,累加得:,另一方面由an≤n可得:原式变形为,所以:,累加得.

27.在正项数列{an}中,已知a1=1,且满足an+1=2an(n∈N*)

(Ⅰ)求a2,a3;

(Ⅱ)证明.an≥.

【解答】解:(Ⅰ)∵在正项数列{an}中,a1=1,且满足an+1=2an(n∈N*),∴=,=.

证明:(Ⅱ)①当n=1时,由已知,成立;

②假设当n=k时,不等式成立,即,∵f(x)=2x﹣在(0,+∞)上是增函数,∴≥

=()k+()k﹣

=()k+

=()k+,∵k≥1,∴2×()k﹣3﹣3=0,∴,即当n=k+1时,不等式也成立.

根据①②知不等式对任何n∈N*都成立.

28.设数列{an}满足.

(1)证明:;

(2)证明:.

【解答】(本题满分15分)

证明:(I)易知an>0,所以an+1>an+>an,所以

ak+1=ak+<ak+,所以.

所以,当n≥2时,=,所以an<1.

又,所以an<1(n∈N*),所以

an<an+1<1(n∈N*).…(8分)

(II)当n=1时,显然成立.

由an<1,知,所以,所以,所以,所以,当n≥2时,=,即.

所以(n∈N*).

…(7分)

29.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.

(Ⅰ)求证:{bn}是等比数列;

(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn;

(Ⅲ)求证:﹣<+…+.

【解答】(I)证明:a1=2,an+1=2(Sn+n+1)(n∈N*),∴a2=2×(2+1+1)=8.

n≥2时,an=2(Sn﹣1+n),相减可得:an+1=3an+2,变形为:an+1+1=3(an+1),n=1时也成立.

令bn=an+1,则bn+1=3bn.∴{bn}是等比数列,首项为3,公比为3.

(II)解:由(I)可得:bn=3n.

∴数列{nbn}的前n项和Tn=3+2×32+3×33+…+n•3n,3Tn=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2Tn=3+32+…+3n﹣n•3n+1=﹣n•3n+1=×3n+1﹣,解得Tn=+.

(III)证明:∵bn=3n=an+1,解得an=3n﹣1.

由=.

∴+…+>…+==,因此左边不等式成立.

又由==<=,可得+…+<++…+

=<.因此右边不等式成立.

综上可得:﹣<+…+.

30.已知数列{an}中,a1=3,2an+1=an2﹣2an+4.

(Ⅰ)证明:an+1>an;

(Ⅱ)证明:an≥2+()n﹣1;

(Ⅲ)设数列{}的前n项和为Sn,求证:1﹣()n≤Sn<1.

【解答】证明:(I)an+1﹣an=﹣an=≥0,∴an+1≥an≥3,∴(an﹣2)2>0

∴an+1﹣an>0,即an+1>an;

(II)∵2an+1﹣4=an2﹣2an=an(an﹣2)

∴=≥,∴an﹣2≥(an﹣1﹣2)≥()2(an﹣2﹣2)≥()3(an﹣3﹣2)≥…≥()n﹣1(a1﹣2)=()n﹣1,∴an≥2+()n﹣1;

(Ⅲ)∵2(an+1﹣2)=an(an﹣2),∴==(﹣)

∴=﹣,∴=﹣+,∴Sn=++…+=﹣+﹣+…+﹣=﹣=1﹣,∵an+1﹣2≥()n,∴0<≤()n,∴1﹣()n≤Sn=1﹣<1.

31.已知数列{an}满足a1=,an+1=,n∈N*.

(1)求a2;

(2)求{}的通项公式;

(3)设{an}的前n项和为Sn,求证:(1﹣()n)≤Sn<.

【解答】(1)解:∵a1=,a,n∈N+.∴a2==.

(2)解:∵a1=,a,n∈N+.∴=﹣,化为:﹣1=,∴数列是等比数列,首项与公比都为.

∴﹣1=,解得=1+.

(3)证明:一方面:由(2)可得:an=≥=.

∴Sn≥+…+==,因此不等式左边成立.

另一方面:an==,∴Sn≤+++…+=×<×3<(n≥3).

又n=1,2时也成立,因此不等式右边成立.

综上可得:(1﹣()n)≤Sn<.

32.数列{an}中,a1=1,an=.

(1)证明:an<an+1;

(2)证明:anan+1≥2n+1;

(3)设bn=,证明:2<bn<(n≥2).

【解答】证明:(1)数列{an}中,a1=1,an=.

可得an>0,an2=anan+1﹣2,可得an+1=an+>an,即an<an+1;

(2)由(1)可得anan﹣1<an2=anan+1﹣2,可得anan+1﹣anan﹣1>2,n=1时,anan+1=a12+2=3,2n+1=3,则原不等式成立;

n≥2时,anan+1>3+2(n﹣1)=2n+1,综上可得,anan+1≥2n+1;

(3)bn=,要证2<bn<(n≥2),即证2<an<,只要证4n<an2<5n,由an+1=an+,可得an+12=an2+4+,且a2=3,an+12﹣an2=4+>4,且4+<4+=4+=,即有an+12﹣an2∈(4,),由n=2,3,…,累加可得

an2﹣a22∈(4(n﹣2),),即有an2∈(4n+1,)⊆(4n,5n),故2<bn<(n≥2).

33.已知数列{an}满足,(1)若数列{an}是常数列,求m的值;

(2)当m>1时,求证:an<an+1;

(3)求最大的正数m,使得an<4对一切整数n恒成立,并证明你的结论.

【解答】解:(1)若数列{an}是常数列,则,得.显然,当时,有an=1.

…(3分)

(2)由条件得,得a2>a1.…(5分)

又因为,两式相减得.

…(7分)

显然有an>0,所以an+2﹣an+1与an+1﹣an同号,而a2﹣a1>0,所以an+1﹣an>0,从而有an<an+1.…(9分)

(3)因为,…(10分)

所以an=a1+(a2﹣a1)+…+(an﹣an﹣1)≥1+(n﹣1)(m﹣2).

这说明,当m>2时,an越来越大,显然不可能满足an<4.

所以要使得an<4对一切整数n恒成立,只可能m≤2.…(12分)

下面证明当m=2时,an<4恒成立.用数学归纳法证明:

当n=1时,a1=1显然成立.

假设当n=k时成立,即ak<4,则当n=k+1时,成立.

由上可知an<4对一切正整数n恒成立.

因此,正数m的最大值是2.…(15分)

34.已知数列{an}满足:,p>1,.

(1)证明:an>an+1>1;

(2)证明:;

(3)证明:.

【解答】证明:(1)先用数学归纳法证明an>1.

①当n=1时,∵p>1,∴;

②假设当n=k时,ak>1,则当n=k+1时,.

由①②可知an>1.

再证an>an+1.,令f(x)=x﹣1﹣xlnx,x>1,则f'(x)=﹣lnx<0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0,所以,即an>an+1.

(2)要证,只需证,只需证其中an>1,先证,令f(x)=2xlnx﹣x2+1,x>1,只需证f(x)<0.

因为f'(x)=2lnx+2﹣2x<2(x﹣1)+2﹣2x=0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0.

再证(an+1)lnan﹣2an+2>0,令g(x)=(x+1)lnx﹣2x+2,x>1,只需证g(x)>0,令,x>1,则,所以h(x)在(1,+∞)上单调递增,所以h(x)>h(1)=0,从而g'(x)>0,所以g(x)在(1,+∞)上单调递增,所以g(x)>g(1)=0,综上可得.

(3)由(2)知,一方面,由迭代可得,因为lnx≤x﹣1,所以,所以ln(a1a2…an)=lna1+lna2+…+lnan=;

另一方面,即,由迭代可得.

因为,所以,所以=;

综上,.

35.数列{an}满足a1=,an+1﹣an+anan+1=0(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

【解答】解(Ⅰ):由已知可得数列{an}各项非零.

否则,若有ak=0结合ak﹣ak﹣1+akak﹣1=0⇒ak﹣1=0,继而⇒ak﹣1=0⇒ak﹣2=0⇒…⇒a1=0,与已知矛盾.

所以由an+1﹣an+anan+1=0可得.

即数列是公差为1的等差数列.

所以.

所以数列{an}的通项公式是(n∈N*).

(Ⅱ)

证明一:因为.

所以a1+a1a2+a1a2a3+…+a1a2…an=.

所以a1+a1a2+a1a2a3+…+a1a2…an<1.

证明二:a1+a1a2+a1a2a3+…+a1a2…an===.

所以a1+a1a2+a1a2a3+…+a1a2…an<1.

36.已知数列{an}满足a1=1,an+1=an2+p.

(1)若数列{an}就常数列,求p的值;

(2)当p>1时,求证:an<an+1;

(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.

【解答】解:(1)若数列{an}是常数列,则,;显然,当时,有an=1

(2)由条件得得a2>a1,又因为,两式相减得

显然有an>0,所以an+2﹣an+1与an+1﹣an同号,而a2﹣a1>0,所以an+1﹣an>0;

从而有an<an+1.

(3)因为,所以an=a1+(a2﹣a1)+…(an﹣an﹣1)>1+(n﹣1)(p﹣1),这说明,当p>1时,an越来越大,不满足an<2,所以要使得an<2对一切整数n恒成立,只可能p≤1,下面证明当p=1时,an<2恒成立;用数学归纳法证明:

当n=1时,a1=1显然成立;

假设当n=k时成立,即ak<2,则当n=k+1时,成立,由上可知对一切正整数n恒成立,因此,正数p的最大值是1

37.已知数列{an}满足a1=a>4,(n∈N*)

(1)求证:an>4;

(2)判断数列{an}的单调性;

(3)设Sn为数列{an}的前n项和,求证:当a=6时,.

【解答】(1)证明:利用数学归纳法证明:

①当n=1时,a1=a>4,成立.

②假设当n=k≥2时,ak>4,.

则ak+1=>=4.

∴n=k+1时也成立.

综上①②可得:∀n∈N*,an>4.

(2)解:∵,(n∈N*).

∴﹣=﹣2an﹣8=﹣9>(4﹣1)2﹣9=0,∴an>an+1.

∴数列{an}单调递减.

(3)证明:由(2)可知:数列{an}单调递减.

一方面Sn>a1+4(n﹣1)=4n+2.

另一方面:=<,∴an﹣4<,∴Sn﹣4n<<.即Sn<4n+.

∴当a=6时,.

38.已知数列{an}满足a1=1,an+1=.

(Ⅰ)求证:an+1<an;

(Ⅱ)求证:≤an≤.

【解答】解:(Ⅰ)证明:由a1=1,an+1=,得an>0,(n∈N),则an+1﹣an=﹣an=<0,∴an+1<an;

(Ⅱ)证明:由(Ⅰ)知0<an<1,又an+1=.,∴=≥,即an+1>an,∴an>an﹣1≥()2an﹣1≥…≥()2an﹣1≥()n﹣1a1=,即an≥.

由an+1=,则=an+,∴﹣=an,∴﹣=a1=1,﹣=a2=,﹣=a3=()2…﹣=an﹣1≥()n﹣2,累加得﹣=1++()2+…+()n﹣2==2﹣()n﹣2,而a1=1,∴≥3﹣()n﹣2==,∴an≤.

综上得≤an≤.

39.已知数列{an}满足:a1=1,.

(1)若b=1,证明:数列是等差数列;

(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;

(3)若b=﹣1,求证:.

【解答】解:(1)证明:当b=1,an+1=+1,∴(an+1﹣1)2=(an﹣1)2+2,即(an+1﹣1)2﹣(an﹣1)2=2,∴(an﹣1)2﹣(an﹣1﹣1)2=2,∴数列{(an﹣1)2}是0为首项、以2为公差的等差数列;

(2)当b=﹣1,an+1=﹣1,数列{a2n﹣1}单调递减.

可令an+1→an,可得1+an=,可得an→,即有an<(n=2,3,…),再令f(x)=﹣1,可得

在(﹣∞,1]上递减,可得{a2n﹣1}单调递减.

(3)运用数学归纳法证明,当n=1时,a1=1<成立;

设n=k时,a1+a3+…+22k﹣1<,当n=k+1时,a1+a3+…+a2k﹣1+a2k+1

<+=,综上可得,成立.

40.已知数列{an}满足,(n=1,2,3…),Sn=b1+b2+…+bn.

证明:(Ⅰ)an﹣1<an<1(n≥1);

(Ⅱ)(n≥2).

【解答】证明:(Ⅰ)由得:(*)

显然an>0,(*)式⇒

故1﹣an与1﹣an﹣1同号,又,所以1﹣an>0,即an<1…(3分)

(注意:也可以用数学归纳法证明)

所以

an﹣1﹣an=(2an+1)(an﹣1)<0,即an﹣1<an

所以

an﹣1<an<1(n≥1)…(6分)

(Ⅱ)(*)式⇒,由0<an﹣1<an<1⇒an﹣1﹣an+1>0,从而bn=an﹣1﹣an+1>0,于是,Sn=b1+b2+…+bn>0,…(9分)

由(Ⅰ)有1﹣an﹣1=2(1+an)(1﹣an)⇒,所以(**)…(11分)

所以Sn=b1+b2+…+bn=(a0﹣a1+1)+(a1﹣a2+1)+…(an﹣1﹣an+1)=…(12分)

=…(14分)

∴(n≥2)成立…(15分)

41.已知数列{an}满足a1=1,an+1=,n∈N*,记S,Tn分别是数列{an},{a}的前n项和,证明:当n∈N*时,(1)an+1<an;

(2)Tn=﹣2n﹣1;

(3)﹣1<Sn.

【解答】解:(1)由a1=1,an+1=,n∈N*,知an>0,故an+1﹣an=﹣an=<0,因此an+1<an;

(2)由an+1=,取倒数得:=+an,平方得:=+an2+2,从而﹣﹣2=an2,由﹣﹣2=a12,﹣﹣2=a22,…,﹣﹣2=an2,累加得﹣﹣2n=a12+a22+…+an2,即Tn=﹣2n﹣1;

(3)由(2)知:﹣=an,可得﹣=a1,﹣=a2,…,﹣=an,由累加得﹣=a1+a2+…+an=Sn,又因为=a12+a22+…+an2+2n+1>2n+2,所以>,Sn=an+an﹣1+…+a1

=﹣>﹣1>﹣1;

又由>,即>,得

当n>1时,an<=<=(﹣),累加得Sn<a1+[(﹣1)+(﹣)+…+(﹣)]=1+(﹣1)<,当n=1时,Sn成立.

因此﹣1<Sn.

42.已知数列{an}满足a1=3,an+1=an2+2an,n∈N*,设bn=log2(an+1).

(I)求{an}的通项公式;

(II)求证:1+++…+<n(n≥2);

(III)若=bn,求证:2≤<3.

【解答】解:(I)由,则,由a1=3,则an>0,两边取对数得到,即bn+1=2bn(2分)

又b1=log2(a1+1)=2≠0,∴{bn}是以2为公比的等比数列.

即(3分)

又∵bn=log2(an+1),∴(4分)

(2)用数学归纳法证明:1o当n=2时,左边为=右边,此时不等式成立;

(5分)

2o假设当n=k≥2时,不等式成立,则当n=k+1时,左边=(6分)

<k+1=右边

∴当n=k+1时,不等式成立.

综上可得:对一切n∈N*,n≥2,命题成立.(9分)

(3)证明:由得cn=n,∴,首先,(10分)

其次∵,∴,当n=1时显然成立.所以得证.(15分)

43.已知正项数列{an}满足a1=3,n∈N*.

(1)求证:1<an≤3,n∈N*;

(2)若对于任意的正整数n,都有成立,求M的最小值;

(3)求证:a1+a2+a3+…+an<n+6,n∈N*.

【解答】(1)证明:由正项数列{an}满足a1=3,n∈N*.

得+an+2=2an+1,两式相减得(an+2﹣an+1)(an+2+an+1+1)=2(an+1﹣an),∵an>0,∴an+2﹣an+1与an+1﹣an同号.

∵+a2=2a1=6,∴a2=2,则a2﹣a1<0,∴an+1﹣an<0,即数列{an}是单调减数列,则an≤a1=3.

另一方面:由正项数列{an}满足a1=3,n∈N*.

可得:+an+1=2an,得+an+1﹣2=2an﹣2,得(an+1+2)(an+1﹣1)=2(an﹣1),由an+1+2>0,易知an+1﹣1与an﹣1同号,由于a1﹣1=2>0,可知an﹣1>0,即an>1.

综上可得:1<an≤3,n∈N*.

(2)解:由(1)知:=,而3<an+1+2≤a2+2=4,则≤,∴.

故M的最小值为.

(3)证明:由(2)知n≥2时,an﹣1=(a1﹣1)×××…×<=2×,又n=1时,a1﹣1=2,故有an﹣1≤,n∈N*.

即an≤,n∈N*.

则a1+a2+a3+…+an<n+2=n+2×<n+6,n∈N*.

44.已知在数列{an}中,,n∈N*.

(1)求证:1<an+1<an<2;

(2)求证:;

(3)求证:n<sn<n+2.

【解答】证明:(1)先用数学归纳法证明1<an<2

1°.n=1时

2°.假设n=k时成立,即1<ak<2,n=k+1时,ak∈(1,2)成立.

由1°2°知1<an<2,n∈N*恒成立.=(an﹣1)(an﹣2)<0.

所以1<an+1<an<2成立.

(2),当n≥3时,而1<an<2.

所以.

由得,=

所以

(3)由(1)1<an<2得sn>n

由(2)得,=.

45.已知数列{an}中,(n∈N*).

(1)求证:;

(2)求证:是等差数列;

(3)设,记数列{bn}的前n项和为Sn,求证:.

【解答】证明:(1)当n=1时,满足,假设当n=k(k≥1)时结论成立,即≤ak<1,∵ak+1=,∴,即n=k+1时,结论成立,∴当n∈N*时,都有.

(2)由,得,∴,∴==﹣1,即,∴数列是等差数列.

(3)由(2)知,∴,∴==,∵当n≥2时,12n2+18n﹣(7n2+21n+14)=(5n+7)(n﹣2)≥0,∴n≥2时,∴n≥2时,又b1=,b2=,∴当n≥3时,==

46.已知无穷数列{an}的首项a1=,=n∈N*.

(Ⅰ)证明:0<an<1;

(Ⅱ)

记bn=,Tn为数列{bn}的前n项和,证明:对任意正整数n,Tn.

【解答】(Ⅰ)证明:①当n=1时显然成立;

②假设当n=k(k∈N*)时不等式成立,即0<ak<1,那么:当n=k+1时,>,∴0<ak+1<1,即n=k+1时不等式也成立.

综合①②可知,0<an<1对任意n∈N*成立.﹣﹣﹣﹣

(Ⅱ),即an+1>an,∴数列{an}为递增数列.

又=,易知为递减数列,∴也为递减数列,∴当n≥2时,==

∴当n≥2时,=

当n=1时,成立;

当n≥2时,Tn=b1+b2+…+bn<=

综上,对任意正整数n,47.已知数列{xn}满足x1=1,xn+1=2+3,求证:

(I)0<xn<9;

(II)xn<xn+1;

(III).

【解答】证明:(I)(数学归纳法)

当n=1时,因为x1=1,所以0<x1<9成立.

假设当n=k时,0<xk<9成立,则当n=k+1时,.

因为,且得xk+1<9

所以0<xn<9也成立.

(II)因为0<xn<9,所以.

所以xn<xn+1.

(III)因为0<xn<9,所以.

从而xn+1=2+3>+3.

所以,即.

所以.

又x1=1,故.

48.数列{an}各项均为正数,且对任意n∈N*,满足an+1=an+can2(c>0且为常数).

(Ⅰ)若a1,2a2,3a3依次成等比数列,求a1的值(用常数c表示);

(Ⅱ)设bn=,Sn是数列{bn}的前n项和,(i)求证:;

(ii)求证:Sn<Sn+1<.

【解答】(I)解:对任意n∈N*,满足an+1=an+can2(c>0且为常数).∴a2=.a3=.

∵a1,2a2,3a3依次成等比数列,∴=a1•3a3,∴=a1•3(),a2>0,化为4a2=3a1(1+ca2).

∴4()=3a1[1+c()],a1>0,化为:3c2x2﹣cx﹣1=0,解得x=.

(II)证明:(i)由an+1=an+can2(c>0且为常数),an>0.

∴﹣=﹣==﹣.即﹣=﹣.

(ii)由(i)可得:﹣=﹣.

∴bn==,∴Sn=+…+=.

由an+1=an+can2>an>0,可得﹣.

∴Sn<=Sn+1<.

∴Sn<Sn+1<.

49.设数列满足|an﹣|≤1,n∈N*.

(Ⅰ)求证:|an|≥2n﹣1(|a1|﹣2)(n∈N*)

(Ⅱ)若|an|≤()n,n∈N*,证明:|an|≤2,n∈N*.

【解答】解:(I)∵|an﹣|≤1,∴|an|﹣|an+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.

∴|an|≥2n﹣1(|a1|﹣2)(n∈N*).

(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)

≤++…+=<.

∴|an|<(+)•2n≤[+•()m]•2n=2+()m•2n.①

由m的任意性可知|an|≤2.

否则,存在n0∈N*,使得|a|>2,取正整数m0>log且m0>n0,则

2•()<2•()=|a|﹣2,与①式矛盾.

综上,对于任意n∈N*,都有|an|≤2.

50.已知数列{an}满足:a1=1,an+1=an+.(n∈N*)

(Ⅰ)证明:≥1+;

(Ⅱ)求证:<an+1<n+1.

【解答】证明:(Ⅰ)∵,∴an+1>an>a1≥1,∴.

(Ⅱ)∵,∴0<<1,即﹣=<<﹣,累加可得,﹣<1﹣,故an+1<n+1,另一方面,由an≤n可得,原式变形为

累加得,故<an+1<n+1.

END

求二次函数的解析式教案 篇5

靖和中心学校 王军

一、教学目标

知识目标:通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。

能力目标:能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。情感价值观 :让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。

二、教学重难点

重点:会根据不同的条件,利用待定系数法求二次函数的函数关系式

难点:在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题

三、教学方法:探究法、引导法、归纳法、讲解法

四、教学教具准备:三角板、课件

五、教学时间:1课时

六、教学过程

(一)温故而知新 问题一:(课件展示)

问题二:(课件展示)问题三:(课件展示)

先让学生看教材问题2,让学生知道在解决实际问题时,往往需要根据某些条件求出函数关系式。在函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件,确定反比例函数的关系式时,通常只需要一个条件,在确立正比例函数的解析式时,也只要一个条件就行了,下面我们来探讨,要确定二次函数的解析式,需要几个条件? 归纳总结:二次函数常见的几种表达方式:

(二)例题讲解

例1、已知二次函数的图象过A(0,-3),B(4,5),C(-1,0)三点,求这个二次函数解析式。(设为三点式可解)

小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。变式训练:

1、已知一个二次函数的图象过点(0,-3),(-1,0),(3,0)三点,求这个函数的解析式?

2、已知一个二次函数的图象过点(0,-3)(4,5)对称轴为直线x=1,求这个函数的解析式?

2、已知抛物线的顶点为(1,-4),且与y轴交于点(0,-3);求这个二次函数解析式。(设为顶点式可解)

小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。

3、已知抛物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式? 小结: 已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x1)(x-x2),其中x1,x2 为两交点的横坐标。变式训练:(课件展示)达标检测:(课件展示)

1、由学生小组讨论,合作交流自己完成。

2、同时,让学生演算,尝试完成。

3、老师点拨。

讨论:某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶. 它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(1)学生建立坐标系,解答。(2)让学生说一说如何解答的?(3)观察那些方法较为简单?(4)总结应用型函数的解答思路。

(三)课堂小结

1、二次函数解析式常用的有三种形式:(1)一般式:_______________(a≠0)(2)顶点式:_______________(a≠0)(3)两根式:_______________(a≠0)

2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式:

(1)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

(2)当已知抛物线的顶点坐标(或能求出顶点坐标)、对称轴、最值等与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。(h、k分别是顶点的横坐标与纵坐标)(3)当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)。(其中x1、x2是抛物线与x轴两交点的横坐标)

二次函数压轴题解析 篇6

学习目标

1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。

2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。

3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。

教学过程

一、合作交流 例题精析

1、一般地,形如y=ax2+bx+c (a,b,c是常数,a0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。

例1 已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。

小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。

2、二次函数y=ax2+bx+c用配方法可化成:y=a(x+h)2+k,顶点是(-h,k)。配方: y=ax2+bx+c=__________________=___________________=__________________=a(x+)2+。对称轴是x=-,顶点坐标是(-,), h=-,k=, 所以,我们把_____________叫做二次函数的顶点式。

例2 已知二次函数的图象经过原点,且当x=1时,y有最小值-1, 求这个二次函数的解析式。

小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。

3、一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x1)(x-x2),其中x1 ,x2 为两交点的横坐标。

例3 已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式。

想一想:还有其它方法吗?

二、应用迁移 巩固提高

1、根据下列条件求二次函数解析式

(1)已知一个二次函数的图象经过了点A(0,-1),B(1,0),C(-1,2);

(2)已知抛物线顶点P(-1,-8),且过点A(0,-6);

(3)二次函数图象经过点A(-1,0),B(3,0),C(4,10);

(4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4;

(5)已知二次函数的图象经过一次函数y=-x+3的图象与x轴、y轴的交点,且过(1,1);

(6)已知抛物线顶点(1,16),且抛物线与x轴的两交点间的距离为8;

2、如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)(0,4),求这个抛物线的解析式。

三、总结反思 突破重点

1、二次函数解析式常用的有三种形式:

(1)一般式:_______________ 0)

(2)顶点式:_______________ 0)

(3)交点式:_______________ 0)

2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式,要让学生熟练掌握配方法,并由此确定二次函数的顶点、对称轴,并能结合图象分析二次函数的有关性质。(1)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。(3)当已知抛物线与x轴的.交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)。

四、布置作业 拓展升华

1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数的解析式是_______________。

2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________。

3、已知二次函数y=x2+px+q的图象的顶点是(5,-2),那么这个二次函数解析式是_______________。

4、已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x=2,那么这个二次函数的解析式是_______________。

5、已知二次函数图象与x轴交点(2,0)(-1,0)与y轴交点是(0,-1),那么这个二次函数的解析式是_______________。

6、已知抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标为-1和3,与y轴的交点C的纵坐标为3,那么这个二次函数的解析式是_______________。

7、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是_______________。

8、已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),那么这个二次函数的解析式是_______________。

9、在平面直角坐标系中, AOB的位置如图所示,已知AOB=90,AO=BO,点A的坐标为(-3,1)。

(1)求点B的坐标。

(2)求过A,O,B三点的抛物线的解析式;

二次函数压轴题解析 篇7

双动点问题是指题设图形中存在两个动点, 它们从同一地点或不同地点出发, 在相同时间内沿不同途径运动的一类开放题.双动点问题是近年来中考中一个热点题型, 也是学生的一个难点, 这类题综合性强、开放性高, 要求学生能从运动、变化的角度去思考问题, 解答这类题目除了要牢固掌握相关的数学知识外, 还要综合运用数形结合、分类讨论、方程、函数转化等数学思想方法去探究解题的思路.本文以2011年全国各地的中考动点类问题为例进行分析, 以供参考.

一、两动点同时同地同速运动问题

这类问题中, 两动点运动的速度相同, 但运动方向不同, 其运动距离可用代数式表示, 然后结合动点在运动中所构成的特殊几何图形, 并依据图形的几何性质, 运用数形结合的思想方法, 使问题获得解决.

例1 (2011年淮安) 如图, 在Rt△ABC中, ∠C=90°, AC=8, BC=6, 点P在AB上, AP=2, 点E, F同时从点P出发, 分别沿PA, PB以每秒1个单位长度的速度向点A, B匀速运动, 点E到达点A后立刻以原速度沿AB向点B运动, 点F运动到点B时停止, 点E也随之停止.在点E, F运动过程中, 以EF为边作正方形EFGH, 使它与△ABC在线段AB的同侧.设E, F运动的时间为t (t>0) , 正方形EFGH与△ABC重叠部分面积为S.

(1) 当t=1时, 正方形EFGH的边长是____;当t=3时, 正方形EFGH的边长是____.

(2) 当0<t≤2时, 求S与t的函数关系式.

(3) 直接答出:在整个运动过程中, 当t为何值时, S最大?最大面积是多少?

分析 (1) 当t=1时, 可得EP=1, PF=1, EF=2即为正方形EFGH的边长;当t=3时, PE=1, PF=3, 即EF=4.

(2) 正方形EFGH与△ABC重叠部分的形状, 依次为正方形、五边形和梯形.可分三段:①当0t611时, ②当611t65时, ③当65t2时, 依次求S与t的函数关系式.

(3) 当t=5时, 面积最大.

解 (1) 当t=1时, 则PE=1, PF=1,

∴正方形EFGH的边长是2;

当t=3时, PE=1, PF=3, ∴正方形EFGH的边长是4.

(2) ①当0t611时,

S与t的函数关系式是y=2t×2t=4t2;

②当611t65时,

S与t的函数关系式是

y=4t2-12×[2t-34 (2-t) ]×43[2t-34 (2-t) ]=-7312t2+11t-3

③当65t2时,

S与t的函数关系式是

y=12 (t+2) ×34 (t+2) -12 (2-t) (2-t) =3t.

(3) 当t=5时, 最大面积是S=16-12×74×73=33524.

评析 本题考查了动点函数问题, 其中应用到了相似形、正方形及勾股定理的性质, 需要熟练地运用相似三角形和二次函数的知识, 确定正方形EFGH与△ABC重叠部分的几种形式, 从而分类求出分段函数和最大值.

二、两动点同时同地异速运动问题

由于两点在同一地点出发, 解题的关键主要是动点的运动时间和速度, 从而找出动点运动的轨迹, 其运动距离可用代数式表示, 找出其等量关系, 构建方程, 运用相应的数学思想方法, 使问题获得解决.

例2 (广西梧州) 如图, 在直角梯形ABCD中, AD//BC, ∠B=90°, AD=6 cm, AB=8 cm, BC=14 cm.动点P, Q都从点C出发, 点P沿C→B方向做匀速运动, 点Q沿C→D→A方向做匀速运动, 当P, Q其中一点到达终点时, 另一点也随之停止运动.

(1) 求CD的长.

(2) 若点P以1 cm/s速度运动, 点Q以22cm/s的速度运动, 连接BQ, PQ, 设△BQP面积为S (cm2) , 点P, Q运动的时间为t (s) , 求St的函数关系式, 并写出t的取值范围.

(3) 若点P的速度仍是1 cm/s, 点Q的速度为a cm/s, 要使在运动过程中出现PQ//DC, 请你直接写出a的取值范围.

分析 (1) 利用勾股定理即可求解.

(2) 分QCD上运动和DA上运动两种情况进行讨论求解.

(3) 分析PQ//DC成立时Q的运动情况求解.

解 (1) 过D点作DHBC, 垂足为点H, 则有DH=AB=8 cm, BH=AD=6 cm.

CH=BC-BH=14-6=8 (cm) .

在Rt△DCH中, CD=DΗ2+CΗ2=82cm.

(2) 当点P, Q运动的时间为t (s) , 则PC=t.

①当QCD上时, 过Q点作QGBC, 垂足为点G, 则QC=22t.

又 ∵DH=HC, DHBC,

∴∠C=45°.

∴在Rt△QCG中, QG=QCsinC=22t×sin45°=2t.

BΡ=BC-ΡC=14-tSBΡQ=12BΡ×QG=12 (14-t) ×2t=14t-t2.

QDt=CD22=8222=4S=14t-t2 (0t4) .

②当QDA上时, 过Q点作QGBC,

QG=AB=8cmBΡ=BC-ΡC=14-tSBΡQ=12BΡ×QG=12 (14-t) ×8=56-4t.

Q运动到A点时所需要的时间

t=CD+AD22=82+622=4+322S=56-4t (4t4+322) .

综合上述, 所求的函数关系式是

S=14t-t2 (0t4) S=56-4t (4t4+322) .

(3) 分析PQ//DC成立的条件, 求出a的取值范围是a1+432.

评析 本题考查了函数动点问题, 是一道以函数知识为背景的压轴题, 其中应用到解直角三角形的性质, 第 (1) 题比较简单, 第 (2) 题需要分类讨论写出分段函数解析式, 第 (3) 题需要熟练地运用代数知识和几何知识, 对平行存在的条件进行分析, 得出结果.

三、两动点同时异地同速运动问题

此类问题中, 由于两动点的运动时间和速度都相同, 因此, 它们运动的距离相等, 这是求解此题的关键, 再分析图形位置的变化位置, 注意运用分类讨论的思想方法, 不难求出其正确结果.

例3 (吉林) 如图, 梯形ABCD中, AD//BC, ∠BAD=90°, CEAD于点E, AD=8 cm, BC=4 cm, AB=5 cm.从初始时刻开始, 动点P, Q分别从点A, B同时出发, 运动速度均为1 cm/s, 动点P沿ABCE的方向运动, 到点E停止;动点Q沿BCED的方向运动, 到点D停止, 设运动时间为x s, △PAQ的面积为y cm2 (这里规定:线段是面积为0的三角形) .

解答下列问题:

(1) 当x=2s时, y=____cm2;当x=92s时, y=____cm2.

(2) 当5≤x≤14时, 求y与x之间的函数关系式.

(3) 当动点P在线段BC上运动时, 求出y=S梯形ABCD时x的值.

(4) 直接写出在整个运动过程中, 使PQ与四边形ABCE的对角线平行的所有x的值.

分析 (1) 利用三角形面积公式代入进去直接计算求解.

(2) 分时段讨论即可.

(3) 考虑当动点P在线段BC上运动时, 利用相对应的函数关系式即可求出.

(4) 根据相似三角形的判定和性质, 平行的判定, 分类讨论列出时间方程求解.

解 (1) 当x=2s时, 点P在AB上, 点Q在BC上,

y=1222=2.

x=92s时, 点PAB上, 点QCE上,

y=12924=9.

(2) 当5≤x≤9时,

y=SABCQ-SABΡ-SΡCQ=12 (5+x-4) ×4-12×5 (x-5) -12 (9-x) (x-4) =12x2-7x+652.

当9<x≤13时,

y=12 (x-9+4) (14-x) =-12x2+192x-35.

当13<x≤14时,

y=12×8 (14-x) =-4x+56.

(3) 当动点P在线段BC上运动时,

y=415SABCD=415×12 (4+8) ×5=812x2-7x+652=8

, 即x2-14x+49=0, 解得x1=x2=7,

∴当x=7时, y=415SABCD.

(4) 设x s时, PQ与四边形ABCE的对角线平行, 根据相似三角形的判定和性质, 平行的性质, 分三种情况:

①当点P在线段AB上运动时, 有BPBQ=ABBC, 即 (5-x) ∶x=5∶4, 解得x=219;

②当点P在线段BC上运动时, 有PCCQ=BCAB, 即 (9-x) ∶ (x-4) =4∶5, 解得x=619;

③当点P在线段CD上运动时, 有PDDQ=ABBC, 即 (14-x) ∶ (x-4) =5∶4, 解得x=1019.

评析 本题是一个动态图形中的面积是否变化的问题, 看一个图形是否变化, 关键是看决定这个面积的几个量是否变化, 分析其变量从而求出此题.本题有助于培养学生的思维能力, 但难度较大, 有明显的区分度.

四、两动点同时异地异速运动问题

这类问题中, 两动点运动的时间始终相同, 由于各自不同的速度, 其运动轨迹不同, 那么在运动中就构成特殊的几何图形, 然后依据图形的几何性质, 用代数式表示出距离, 根据题意, 列出方程, 运用合适的数学思想方法, 使问题得以解决.

例4 (新疆乌鲁木齐) 如图, 在△ABC中, ∠B=90°, AB=6 m, BC=8 m, 动点P以2 m/s的速度从A点出发, 沿AC向点C移动.同时, 动点Q以1 m/s的速度从C点出发, 沿CB向点B移动.当其中有一点到达终点时, 它们都停止移动.设移动的时间为t s.

(1) ①当t=2.5 s时, 求△CPQ的面积;

②求△CPQ的面积S (m2) 关于时间t (s) 的函数解析式.

(2) 在P, Q移动的过程中, 当△CPQ为等腰三角形时, 写出t的值.

(3) 以P为圆心, PA为半径的圆与以Q为圆心, QC为半径的圆相切时, 求出t的值.

分析 (1) 过点P, 作PDBCD, 利用30°的锐角所对的直角边等于斜边的一半, 即可求得PD的长, 然后利用三角形的面积公式即可求解.

(2) 分PC=QCPQ=QCPQ=PC三种情况进行讨论, 求解.

(3) PA为半径的圆与以Q为圆心, QC为半径的圆相切时, 分为两圆外切和内切两种情况进行讨论.在Rt△PFQ中利用勾股定理即可得到关于t的方程, 从而求解.

解 在Rt△ABC中, AB=6 m, BC=8 m, ∴AC=10 m.

由题意得AP=2t, 则CQ=1t, 则PC=10-2t.

(1) ①过点PPDBCD.

t=2.5sAΡ=2×2.5=5 (m) QC=2.5mΡD=12AB=3mS=12QCΡD=3.75m2

②过点QQEPC于点E,

RtQECRtABCQEQC=ABACQE=3t5S=12ΡCQE=12 (10-2t) 35t=-35t2+3t (0<t<5) .

(2) ①在△CPQ中, 当PC=QC时, 此时解得t=103秒;

②在△CPQ中, 当PQ=QC时, 此时解得t=259秒;

③在△CPQ中, 当PQ=PC时, 此时解得t=8021秒.

(3) 过点PPFBC于点F, 则△PCF∽△ACB.

则在Rt△PFQ中, ΡQ2=ΡF2+FQ2= (6-65t) 2+ (8-85t-t) 2=415t2-56t+100.

当⊙P与⊙Q外切时, 有PQ=PA+QC=3t, 此时ΡQ2=415t2-56t+100=9t2, 整理得t2+70t-125=0.

解得t1=156-35t2=-166-350 (舍去) .

故当⊙P与⊙Q外切时, t= (166-35) s;

当⊙P与⊙Q内切时, PQ=PA-QC=t, 此时, ΡQ2=415t2-56t+100=t2,

整理得9t2-70t+125=0, 解得t1=259t2=5.

故当⊙P与⊙Q外切时, t=259s或5 s.

评析 本题主要考查了相似三角形的性质以及圆和圆的位置关系, 正确把图形之间的位置关系转化为线段之间的相等关系是解题的关键.

从以上例题, 总结出解决双动点问题的总体思路是:在点的运动轨迹中, 寻找各种不同的情况, 构造出对应的图形, 从而找出运动中的特殊位置, 确定相应时间的分界点, 在动中求静, 在静中取出动的一般规律, 然后合理建构方程, 综合运用数形结合、分类讨论、方程、函数转化等数学思想方法, 从而赢得问题的求解.因此, 要想顺利解决双动点型问题, 必须重视基础知识和基本技能的培养和训练, 重视学习中的探究活动, 培养数学思想方法和数学能力, 从而在中考中数学取得优秀的成绩.

摘要:中考数学中的压轴题是考题中的重中之重, 因为这些试题往往在很大程度上决定了考分的高低, 而双动点型问题又是压轴题中频频出现的题型, 所以研究双动点型问题的解法有着深远的意义.因此, 本文结合2011年的中考数学试题谈谈压轴题中双动点型问题的解题策略.

关键词:中考,数学,压轴题,双动点,解析

参考文献

[1]葛云康.中考数学压轴题的解题策略[J].学科教学, 2008 (5) .

浅谈二次函数解析式的求法 篇8

【关键词】二次函数;解析式;求法

用待定系数法求二次函数的解析式是我们求解析式时最有效的常规方法,常见的有一般式、顶点式、交点式等方法,选用恰当的方法求二次函数解析式,常能简化计算,达到又快又准的效果。

一、用一般式y=ax2+bx+c

已知图象过三点,求二次函数的解析式,一般用它的一般形式:y=ax2+bx+c较方便。

例1:已知二次函数的图象过A(0,1),B(1,2),C(2,-1)三点,求此二次函数的解析式。

解:分析:因为图像过三点,且三个点不属于特殊点。因此,只能采用一般式求解。

设函数解析式为y=ax2+bx+c。

∵抛物线过(0,1),(1,2),(2,-1),c=1

∴a+b+c=2,4a+2b+c=-1,解之得a=-2,b=3,c=1;

∴函数解析式为y=-2x2+3x+1。

二、用顶点式y=a(x-h)2+k

已知顶点坐标,对称轴、最大值或最小值,求二次函数解析式,一般用它的顶点式y=a(x-h)2+k,较方便。

例2:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。

解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。

∴抛物线的顶点为(4,-3)且过点(1,0),故可设函数解析式为y=a(x-4)2-3,将(1,0)代入得0=a(1-4)2-3,解得a=13,∴y=13(x-4)2-3,即y=13x2-83x+73。

点评:解例2如果用一般式列三元方程组去解,则解的过程中容易出错。

在求有关二次函数图像的平移、对称等二次函数解析式,可根据图形的平移、对称等图形变换的特点,利用顶点式,比较容易解决。

1.将二次函数图像平移,其形状和开口方向、大小没有改变,发生变化的是顶点坐标。故可先将原函数解析式化成顶点形式,再按照“左加右减,上加下减”的法则,即可得出所求的抛物线的解析式。

2.利用对称的特点,通过翻转和旋转等得到二次函数图像的解析式。二次函数图像有关对称图像,其形状和大小没有改变,开口方向相反,根据顶点坐标情况可先将原函数解析式化成顶点形式进行考虑。①关于x轴对称的两个图象的顶点关于x轴对称(也可以说沿x轴翻折),两个图象的开口方向相反,即a互为相反数。②关于y轴对称的两个图象的顶点关于y轴对称(也可以说沿x轴翻折),两个图象的形状大小不变,即a相同。③关于经过其顶点且平行于x轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即a互为相反数。(也可以说抛物线图象绕顶点旋转180°)的图像的顶点坐标不变,开口方向相反,即a互为相反数。④关于原点对称,顶点也关于原点对称,而形状不变,开口方向相反,即二次项系数变为相反数。

三、用交点式(也称两根式)

已知图象与x轴两交点坐标,通常可设函数的解析式y=a(x-x1)(x-x2)求解比较简便,其中x1、x2为抛物线与x轴的交点的横坐标,也是一元二次方程ax2+bx+c=0(a≠0)的两个根。(与x轴只交于一点,即切于点(x0,0)时,两根式变为y=a(x-x0)2)

例3:已知二次函数的图象与x轴交于点(-4,0),(1,0),H

过点(2,6)。求此函数的解析式。

分析:本题可用一般式,得方程组后解之即可,但若已知函数与x轴的交点坐标(x1,0),(x2,0),则用根式y=a(x-x1)(x-x2),再代入第一点把a求出后化为一般式,更为简便。

解:设此函数的解析式为y=a(x-x1)(x-x2),由于抛物线与x轴交于(-4,0),(1,0),得y=a[x-(-4)](x-1)=a(x+4)(x-1),又函数图象经过(2,6),∵6=a(2+4)(2-1),∴a=1,∴其解析式为y=x2+

3x-4。

有时根据其它条件先求出交点坐标,再用交点式求二次函数解析式。

1.已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3。求这个二次函数的解析式。可求出另一交点为(5,0)。

2.已知抛物线y=-x2+6x+c和x的正半轴相交于A、B两点,

AB=4,求抛物线的解析式。由y=-x2+6x+c=-(x-3)2+c-9则对称轴为x=3,再由AB=4求出抛物线y=-x2+6x+c与x轴两交点为(1,0),(5,0)又因为二次项系数为-1,所以可用交点式求出解析式为y=-(x-1)(x-5)=-x2+6x-5。

因为二次函数与一元二次方程有密切的关系,其二次函数图像与横轴的交点就是相应一元二次方程的根,所以常利用一元二次方程根与系数的关系或根的判别式考虑二次函数的解析式。

例4:已知抛物线y=x2-4x+k与x轴有两个不同的交点,且两交点的横坐标的平方和等于20,求抛物线的解析式。

解:设抛物线与x轴交点的横坐标是x1、x2,由根与系数的关系得 x1+x2=4,x1x2=k,∴x12+x22=(x1+x2)2-2x1x2,∴42-2k=20∴k=-2,

故所求抛物线的解析式为y=x2-4x-2。

上一篇:财税[2012]75号 财政部 国家税务总局关于免征部分鲜活肉蛋产品流通环节增值税政策的通知下一篇:政府网站异地容灾方案