“苏教版”初中数学二次函数教学策略分析

2024-10-19

“苏教版”初中数学二次函数教学策略分析(共12篇)

“苏教版”初中数学二次函数教学策略分析 篇1

“苏教版”初中数学二次函数教学策略分析

摘 要:二次函数是初中数学教学的重要内容,它不仅关系到相关数学知识的整体应用,而且可以解决实际生活中的很多问题,是理论性和实践性都非常突出的数学教学内容。“苏教版”初中数学教材中关于二次函数教学内容的编排实践性很强,并且对相关知识的梳理也比较系统,这对初中数学教师的教学水平和能力提出了相应的挑战。基于此,文章对“苏教版”初中数学二次函数的相关教学活动进行分析和探究,以期为二次函数教学组织开展提供一定的参考。

关键词:“苏教版”;初中数学;教材策略;二次函数

作者简介:陈洁,江苏省苏州市相城实验中学教师,研究方向为中学数学教学。(江苏 苏州 215131)

中图分类号:G633.6 文献标识码:A 文章编号:1671-0568(2018)13-0069-02

二次函数在生活中的应用非常广泛。在新课改背景下,二次函数教学的设计和策略要体现出系统性、综合性和实践性的特点,通过教学培养学生运用数学思维发现问题、解决问题的能力。

一、“苏教版”初中数学二次函数教学内容的特点分析

“苏教版”初中数学教材中关于二次函数教学内容的设计和编排主要有两个方面的突出特点:一是教学内容与实际生活联系更加密切,运用的教学例子基本是生活实例,这不仅在某种程度上拉近了学生与二次函数学习之间的情感关系,而且让学生更加深刻地认知到“数学来源于生活、服务于生活”的学科教学理念;二是“苏教版”初中数学教材中关于二次函数教学内容的设计具有突出的系统性、逻辑性特点,尤其是突出强调了二次函数与其他数学知识,如一元二次方程、一次函数等相关知识之间的联系,这有利于学生更好地构建数学知识体系,提高数学教学活动的整体效能。因此,基于上述对教材内容特点的认知,建议初中数学教师从多个方面,运用灵活多变、形象丰富的教学方式开展二次函数相关内容的教学。二、二次函数教学设计和具体实践分析

根据上述对“苏教版”初中数学二次函数教学内容特点的分析,笔者建议从以下方面进行教学:

1.以生活实际为基点激发学生对二次函数教学的探究兴趣。初中生仍然以具象思维为主,但二次函数知识的抽象性和理论性比较强,运用生活实例对学生的探究兴趣进行激发符合初中生认知规律的特点,这需要教师特别注意。例如,教师可以运用篮球运动进行教学导入,问学生:“你们喜欢打篮球吗?谁能说一下篮球运动的路线是什么曲线?通过什么方式能够计算出篮球达到的最高点呢?”以学生比较感兴趣的问题设置悬念导入教学,能够有效激发学生对二次函数新知识的主动探究,奠定良好的教学基础。其中,概念理解是二次函数的重要教学内容,同时也是学习二次函数图像、性质、与方程关系及相关应用的重要基础。概念本身具有很强的抽象性,单纯地讲解难以让学生理解,建议教师应用对比教学、情境创设的方式引导学生正确理解二次函数的相关概念。

首先,通过回顾旧知识,如对比一次函数,引导学生再次认识函数、自变量、因变量等概念,然后通过问题情境导入概念教学。例如,将一粒石子投入水中,水面的波纹会不断扩展,你能尝试着列一下扩大的圆形与半径之间的关系式吗?又如,动物园打算用160米长的篱笆围成长方形来圈养动物,面积用y表示,围成的长方形的长用x表示,它们之间的函数关系是什么?通过这些具体的问题事例来引导学生列出关系式,也可以将学生分成不同的学习小组,根据列出的关系式来探究一下一次函数与二次函数之间的关系。

2.运用数学思维方式开展二次函数图像性质教学。二次函数的图像和性质是教学的重点和难点,建议初中数学教师充分应用数形结合的方式进行教学,这不仅能够有效凸显该节教学内容的本质,还能够在教学的过程中将代数问题与几何问题进行有机结合,有利于增强教学效果。具体地说,在图像和性质教学的过程中,教师要充分利用多媒体教学手段,有条件的可以将几何画板引入课堂进行辅助教学。首先,教师可以利用一次函数图像和性质的旧知识进行新课导入,带领学生再次复习画函数图像的描点法。然后,对学生进行分组,引导学生按照描点法的作图步骤做出“y=x2”图像,这里教师就可以借助多媒体对作图步骤进行演示。连线时,一次函数是通过直线连接的,但二次函数需要用平滑的曲线连接,学生就会对此产生疑惑,教师可以针对这个问题引导学生进行探究。图像画出之后,教师引导学习小组对画出的图像形状、特点、变化趋势等进行观察、总结。最后,教师要做好总结和归纳,进行二次函数抛物线的图像和性质教学。当然,在教学设计方面,教师也可以根据学生的实际特点进行改进,数形结合的教学方式是该内容教学的重要思想基础。

3.师生互动更好地认知函数与方程之间的关系。二次函数与一元二次方程是教学的重点和难点,函数和方程都是十分重要的数学概念,两者之间的关系是教学和考试的焦点。在这节内容教学方面,建议教师多利用师生互动和多媒体,营造良好的课堂氛围,开展高效教学。具体地说,教师可以根据教材中设计的教学例子进行知识探究引导,通过步骤解析函数、方程、x轴交点之间的关系。首先,以一次函数和一元一次方程之间的联系为切入点进行知识导入教学,通过旧知识的回顾思考来为二次函数与一元二次方程相关知识学习奠定基础;其次,对学生进行连续提问,如“你觉得二次函数与一元二次方程之间有关系吗?会有什么样的关系?”“从上述知识的迁移学习你觉得用什么方式能够推导出二次函数与一元二次方程之间的联系?”等等,可以让学生分组探究,更要注重与学生之间的互动交流。

4.设置游戏环节做好二次函数应用教学。二次函数在实际生活中有着广泛的应用,在进行该节内容的教学过程中,生活实例应用是这节教学的重要内容和手段。为了强化数学教学的趣味性,激发学生的学习兴趣,教师可以将这些实际问题转化为推理游戏、竞赛游戏等,通过设置相关游戏开展二次函数的应用教学。例如,对学生进行分组,给出最值问题、利润最大方案、最节省方案等多种题目,看看哪个学习小组能够快速、准确地解决这些问题。又如,教师可以围绕着双十一购物节这个热门的社会话题设置问题,引导学生进行解答,通过趣味的方式开展二次函数的实际应用教学。

“苏教版”初中数学二次函数教学是整个初中数学教学阶段的重点和难点,本文从教材内容设计的角度出发,简单地分析了二次函数教学的措施和方法。在实际教学过程中,教师要结合学生的学习需求和特点,科学高效地开展教学活动,提高二次函数内容教学的效果和质量。

参考文献:

[1] 曹越.初中数学“二次函数”的教学研究[J].文理导航(中旬),2017,(9):13.[2] 覃树标.初中数学二次函数教学存在的问题及其策略探析[J].课程教育研究,2016,(8):140.[3] 王正美.初中数学中“二次函数”的教学策略研究[J].学周刊,2014,(22):47.[4] 朱美红.论新课程标准下初中数学教学模式的创新――以苏教版“二次函数”为例[J].中国教育技术装备,2013,(13):102-103.[5] 赵玲萍.初中?笛Ф?次函数的教学思路分析[J].中学时代,2012,(20):127.

“苏教版”初中数学二次函数教学策略分析 篇2

关键词:初中数学,二次函数,教学实践

近年来, 随着教材的不断改革, 培养学生的实践能力和创新能力成为了教学的重点, 这也在一定程度上要求老师们在教学模式上有所改变。苏教版的初中数学教材的使用, 对于课堂教学模式的改革有很大的促进作用。这就要求初中数学老师在不违背二次函数知识特点的基础上, 不断创新教学模式, 让教与学真正的发挥最大的优势。

一、苏教版初中数学教材的主要特点

1. 教材中的知识更加适用于实际生活

苏教版初中数学的改革存在着特殊的年龄特征。初中这一时期的学生, 还不能脱离问题的实际内容来理解抽象概括的数量关系。改革调整后的苏教版初中数学更加注重数学知识与实际生活的相结合, 这样, 老师在讲解知识点时, 可以直接列举生活中的实例, 能够让学生更容易理解和掌握所学知识。

2. 在整体知识的设计中更加注重逻辑性和整体性

苏教版初中数学教材通过知识点之间的共同点进行科学合理的结合, 将数学内容之间进行联系和整合, 有利于学生在学习的过程中把每个知识点串联起来学习, 具有很强的逻辑性, 不仅方便学生学习, 更有利于老师的教学活动。

苏教版初中数学教材不仅实现了教材内容内部的结合, 还同其他学科知识点进行结合, 促进了初中不同学科的共同发展。

3. 教学方式的灵活化

苏教版初中数学教材要求老师采用灵活化的教学方式, 要求学生有自主学习能力, 提高学生的思维能力, 正确的面对学习中的不足。

二、苏教版初中数学“二次函数”的教学实践

1. 对于二次函数的概念, 要深入理解

函数概念放映了客观世界中各种事物的动态变化和相互依存的关系, 它的产生和发展经过了漫长的历史过程, 是从一般到特殊, 从抽象到具体, 逐步精确化的过程。在理解二次函数概念时, 必须由浅到深, 给学生一个逐步认识的过程, 也可结合生活中的实例, 以方便学生更好的理解。老师在讲解经典例题的时, 要在讲解过程中把二次函数的概念渗入进去。例如:给出圆的半径为r, 圆的面积为s, 让学生写出圆的面积的表达式为:s=πr2。在讲解这个公式的时候, 向学生讲解二次函数的性质, 有利于学生的整体学习。

2. 利用先进的教学技术培养学生的逻辑思维能力

初中时期, 是培养学生逻辑思维能力的关键时期, 正确的教学方式更加有利于学生逻辑思维能力的培养。二次函数的是以培养学生的逻辑思维能力为主要教学目标, 对学生的思维发展起着不可小觑的作用。传统仅依靠黑板和老师口头讲解的方式, 不能很好的给予学生直观的感受, 老师可利用先进的教学技术实现文字、图片、影像、声音的统一, 让二次函数更形象的展现在学生的面前, 不仅调动了学生的学习积极性, 也丰富了教学内容, 提高了学习效率。

3. 在二次函数的教学过程中, 将数形结合融入其中

在二次函数教学中, 老师要充分利用图像, 让学生能够直观的感受, 培养学生的观察能力以及对二次函数知识点的掌握。争取让学生在每次遇见二次函数时, 都能迅速并准确的画出相应的草图。并根据草图找出顶点位置、开口方向、顶点坐标等重要信息, 然后根据题目的要求, 快速进行解答。

三、苏教版初中数学“二次函数”的教学实践的注意事项

1. 注意区别二次函数和其他教学内容

数学教学是一个教与学的过程, 在这个过程中, 要不仅仅提高学生的逻辑思维能力、运算能力、空间想象能力和基本技能等方面的能力, 还要激发学生不断的提出问题, 探究问题以及解决问题, 让所学的知识和实际生活相结合。

数学内容是一个整体, 不同数学内容之间有着密不可分的联系, 因此, 老师在教学过程中要通过不同类型例题的讲解, 把二次函数与其他数学内容进行区分。以免学生把二次函数与其他数学内容相混淆, 有利于加深对二次函数的理解和认知。

2. 采取多样化的教学方式

培养学生的探索能力和逻辑思维能力是初中二次函数教学的主要目的, 这就需要老师在进行教学的这一过程中, 运用多样化的教学方式, 培养学生在已知条件下进行不同解题方式的能力。让学生能够更好的将二次函数用于解决生活中的实际问题。

3. 激发学生主动学习的积极性, 提高学习效率

二次函数具有很强的逻辑性, 教材比较枯燥, 时间一久, 学生容易产生厌学的念头, 给数学教学带来了很大的困难。这就要求老师要运用各种教学方式, 同时把实际生活和理论相结合, 用学生更容易理解的方式进行讲解。创造宽松的课堂氛围, 激发学生主动学习的积极性, 不断提高学习效率。

四、结束语

综上所述, 二次函数作为初中数学学习的重点和难点, 老师应根据苏教版初中教材的特点, 综合二次函数的特殊性以及初中这一时期青少年的发育特点, 理论联系实际, 将二次函数的知识点结合生活中的实例进行教学, 不断优化教学方式, 提高教学质量。

参考文献

[1]仲红斌.初中教学函数教学之我见[J].学生之友, 2012 (4)

[2]房玉华.对初中数学“二次函数”教学实践的分析[J].读与算, 2012 (65)

“苏教版”初中数学二次函数教学策略分析 篇3

【关键词】初中数学;二次函数;教学实践

近年来,随着教材的不断改革,培养学生的实践能力和创新能力成为了教学的重点,这也在一定程度上要求老师们在教学模式上有所改变。苏教版的初中数学教材的使用,对于课堂教学模式的改革有很大的促进作用。这就要求初中数学老师在不违背二次函数知识特点的基础上,不断创新教学模式,让教与学真正的发挥最大的优势。

一、苏教版初中数学教材的主要特点

1.教材中的知识更加适用于实际生活

苏教版初中数学的改革存在着特殊的年龄特征。初中这一时期的学生,还不能脱离问题的实际内容来理解抽象概括的数量关系。改革调整后的苏教版初中数学更加注重数学知识与实际生活的相结合,这样,老师在讲解知识点时,可以直接列举生活中的实例,能够让学生更容易理解和掌握所学知识。

2.在整体知识的设计中更加注重逻辑性和整体性

苏教版初中数学教材通过知识点之间的共同点进行科学合理的结合,将数学内容之间进行联系和整合,有利于学生在学习的过程中把每个知识点串联起来学习,具有很强的逻辑性,不仅方便学生学习,更有利于老师的教学活动。

苏教版初中数学教材不仅实现了教材内容内部的结合,还同其他学科知识点进行结合,促进了初中不同学科的共同发展。

3.教学方式的灵活化

苏教版初中数学教材要求老师采用灵活化的教学方式,要求学生有自主学习能力,提高学生的思维能力,正确的面对学习中的不足。

二、苏教版初中数学“二次函数”的教学实践

1.对于二次函数的概念,要深入理解

函数概念放映了客观世界中各种事物的动态变化和相互依存的关系,它的产生和发展经过了漫长的历史过程,是从一般到特殊,从抽象到具体,逐步精确化的过程。在理解二次函数概念时,必须由浅到深,给学生一个逐步认识的过程,也可结合生活中的实例,以方便学生更好的理解。老师在讲解经典例题的时,要在讲解过程中把二次函数的概念渗入进去。例如:给出圆的半径为r,圆的面积为s,让学生写出圆的面积的表达式为:s=πr2。在讲解这个公式的时候,向学生讲解二次函数的性质,有利于学生的整体学习。

2.利用先进的教学技术培养学生的逻辑思维能力

初中时期,是培养学生逻辑思维能力的关键时期,正确的教学方式更加有利于学生逻辑思维能力的培养。二次函数的是以培养学生的逻辑思维能力为主要教学目标,对学生的思维发展起着不可小觑的作用。传统仅依靠黑板和老师口头讲解的方式,不能很好的给予学生直观的感受,老师可利用先进的教学技术实现文字、图片、影像、声音的统一,让二次函数更形象的展现在学生的面前,不仅调动了学生的学习积极性,也丰富了教学内容,提高了学习效率。

3.在二次函数的教学过程中,将数形结合融入其中

在二次函数教学中,老师要充分利用图像,让学生能够直观的感受,培养学生的观察能力以及对二次函数知识点的掌握。争取让学生在每次遇见二次函数时,都能迅速并准确的画出相应的草图。并根据草图找出顶点位置、开口方向、顶点坐标等重要信息,然后根据题目的要求,快速进行解答。

三、苏教版初中数学“二次函数”的教学实践的注意事项

1.注意区别二次函数和其他教学内容

数学教学是一个教与学的过程,在这个过程中,要不仅仅提高学生的逻辑思维能力、运算能力、空间想象能力和基本技能等方面的能力,还要激发学生不断的提出问题,探究问题以及解决问题,让所学的知识和实际生活相结合。

数学内容是一个整体,不同数学内容之间有着密不可分的联系,因此,老师在教学过程中要通过不同类型例题的讲解,把二次函数与其他数学内容进行区分。以免学生把二次函数与其他数学内容相混淆,有利于加深对二次函数的理解和认知。

2.采取多样化的教学方式

培养学生的探索能力和逻辑思维能力是初中二次函数教学的主要目的,这就需要老师在进行教学的这一过程中,运用多样化的教学方式,培养学生在已知条件下进行不同解题方式的能力。让学生能够更好的将二次函数用于解决生活中的实际问题。

3.激发学生主动学习的积极性,提高学习效率

二次函数具有很强的逻辑性,教材比较枯燥,时间一久,学生容易产生厌学的念头,给数学教学带来了很大的困难。这就要求老师要运用各种教学方式,同时把实际生活和理论相结合,用学生更容易理解的方式进行讲解。创造宽松的课堂氛围,激发学生主动学习的积极性,不断提高学习效率。

四、结束语

综上所述,二次函数作为初中数学学习的重点和难点,老师应根据苏教版初中教材的特点,综合二次函数的特殊性以及初中这一时期青少年的发育特点,理论联系实际,将二次函数的知识点结合生活中的实例进行教学,不断优化教学方式,提高教学质量。

【参考文献】

[1]仲红斌.初中教学函数教学之我见[J].学生之友,2012(4)

[2]房玉华.对初中数学“二次函数”教学实践的分析[J].读与算,2012(65)

[3]刘小忠.苏教版初中数学“二次函数”的教学实践[J].中学生数理化,2011(12)

鲁教版初三数学二次函数教案 篇4

鲁教版初三数学二次函数教案

资源名称:鲁教版初三数学二次函数教案 资源分类:初中第五册教案 资源版本:鲁教版 文件类型:doc 学习目标: 1.探索并归纳二次函数的定义,能够表示简单变量之间的二次函数关系. 2.让学生学习了二次函数的定义后, 能够利用尝试求值的方法解决实际问题. 3.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用. 学习重点:二次函数的`定义,能够表示简单变量之间的二次函数关系 学习难点:经历探索和表示二次函数关系的过程,利用二次函数解决实际问题

“苏教版”初中数学二次函数教学策略分析 篇5

1.任意出示两个图形,学生观察,哪个图形面积大?

学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。

2.再出示例1图,仔细比比,哪个图形面积大?

由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。

3.用课件演示用平移和旋转转化成长方形比较大小的过程。

教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——

4.提问:(1)这是把什么转化成了什么?

学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。

(2)转化过程中什么变了?什么没变?(形状变了,大小没变)

(三)回顾旧知,体会转化策略的运用

1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。

2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。

四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。

3.举个例子说说你的发现。

学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数

②计算小数乘法时把小数乘法转化成整数乘法

提问:这里都用了转化策略,有什么共同地方?

引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。

小结:这么多地方用到转化的策略,说说你有什么体会? 学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。

(四)解决问题,深化转化策略

1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?

学生会想到把右边图形中的直条边通过平移,转化成和左边相同的图案,肯定学生不仅善于观察,还善于想象。

2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?

师:指名学生用手指出右边图形的周长是由哪些线段围成的 生:(边指边说)是这些线段围成的总长度

师:对,那如何来计算它的周长呢?谁来说说你的想法? 生:我想把这条边移到这儿,这条边移到这儿„„这样就成了一个长方形。

师:听明白了吗?谁再来说一说?

生:这两条横着的边移到这儿,这两条竖着的边移到这儿。师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?

生:没有。

师:现在你能快速计算它的周长了吗? 生:(3+5)×2=16(厘米)

师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了 3.用分数表示各图中的涂色部分。

先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。

②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。

③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8。

4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?

师:要求学生先独立思考,看如何计算比较简便?

生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。

师:对于一些复杂的图形都能被大家轻松攻破了,真不错。

(五)总结延伸,渗透思想

提问:通过今天的学习,你有什么收获? 师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。

今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。

(六)作业布置,用转化策略解决实际问题

谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。

相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。

(七)板书设计:

解决问题的策略

转化

不规则图形

“苏教版”初中数学二次函数教学策略分析 篇6

中点弦问题常见的题型有:1.求中点弦所在的直线方程;2.求弦的中点的轨迹方程;3.求弦长为定值的弦中点的坐标.常用的求解策略是:1.两式相减用中点公式求得斜率;2.联列方程组用韦达定理.

例1.已知直线xy2与抛物线y24x交于A,B两点,那么线段AB的中点的坐标为 .

xy2解析:设Ax1,y1,Bx2,y2,由2得y24y80,从而

y4xy1y24,x1x2y1y248,因此,线段AB的中点的坐标为4,2.

例2.椭圆3x24y212中,一组平行弦中点的轨迹是x2y0(在椭圆内的一段),则这组平行弦的斜率为 .

解析:设Ax1,y1,Bx2,y2是这组平行弦中的一条弦与椭圆的交点,从而x1x22y1y2,把A,B的坐标代入椭圆方程并相减得3x1x2x1x24k3x1x24y1y232y1y2y1y20,即.

22例3.直线l与椭圆x2y2交于P1,P2两点,线段P1P2的中点为P,设直线l的斜率为k1k10,直线OP的斜率为k2,则k1k2的值等于()A.2 B.2 C.12 D.12

x1x2212解析:D.设P1x1,y1,P2x2,y2x1x2,从而P,y1y2y1y2k,因此,把P1,P2代入椭2xx212圆方程并相减得k12y1y2,故k1k2.

例4.直线ykx2交抛物线y8x于A,B两点,若AB中点的横坐标为2,则|AB| .

2用心

爱心

专心 1

解析:设Ax1,y1,Bx2,y28kykx2,由2得ky28y160,又由6464k0知

y8x1844得k2. kkk1.又y1y2,从而x1x2例5.已知椭圆x216y241,求以点P2,1为中点的弦所在的直线方程.

解析:设所求直线与椭圆相交于Ax1,y1,Bx2,y2,把A,B的坐标代入椭圆方程并相减得又因为点P为弦AB的中点,则x1x24,y1y22,(x1x2)(x1x2)4(y1y2)(y1y2)0,从而得到k12,∴所求直线方程为x2y40.

例6.已知椭圆C的焦点分别为F122,0和F222,0,长轴长为6,设直线yx2交椭圆C于A,B两点,求线段AB的中点坐标.

解析:设Ax1,y1,Bx2,y2,并根据题意,得椭圆的方程为x29y29,把直线yx2方程代入椭圆方程并整理得10x236x270,从而x1x2AB的中点坐标为91,. 55185,y1y2185425.因此线段

用心

爱心

“苏教版”初中数学二次函数教学策略分析 篇7

关键词:初中;二次函数;策略探讨

一、新课程标准对初中二次函数知识的要求

1、课程标准对二次函数要求。作为教师应该明确新课标对二次函数的教学的要求,更要对二次函数的知识在总体上的主要内容有所了解,进而深入备课。课程标准对二次函数要求如下:①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。③会根据公式确定图象的顶点、开口方向和对称轴,并解决简单的实际问题。④会利用二次函数的图象求一元二次方程的近似解。

2、初中阶段的二次函数主要研究内容。初中阶段的二次函数主要研究内容如下:(1)二次函数的图象和性质,课标要求有三点:①要理解二次函数的抛物线的有关概念,会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;②要会根据公式或用配方法确定抛物线的顶点、开口方向和对称轴,并能解决简单的实际问题;③要会利用二次函数的图象求一元二次方程的近似解。(2)二次函数的解析式;对二次函数的解析式,课标要求:①会用待定系数法确定二次函数的解析式;②会将实际问题转化为二次函数问题,会求其解析式;③通过解析式和图象研究实际应用问题。(3)对二次函数的应用,课标要求:① 能结合简单实际问题中的函数关系进行分析;②能用适当的函数表示法刻画某些实际问题中变量之间的关系;③能用函数解决简单的实际问题。

二、学生在学习二次函数中出现的困难

1、基础知识出错或混淆。

2、对函数类型的确定不准,欠分类讨论。

3、分析实际问题时,学生往往在解题时,忽视了自变量的取值范围。

三、如何指导初中学生学好二次函数

1、指导学生“勤思考”。本章的关键是理解并掌握“二次函数”的图像和性质.可利用由“特殊”→“一般”规律来认识.提高学生理解能力。 例1:在同一平面直角坐标系中画出下列函数图像并观察其有何变化规律。①y=x2②y=x2+2③y=(x-3)2④y=(x-3)2+2。引导学生认真观察→思考,从图像上可以很容易发现它们之间的变化规律。通过引导学生观察,勤思考后会更容易理解,再不用死记硬背公式。

2、指导学生“善总结” 。常言道 :“数学不能不练,但不能多练,更不能乱练”。 也就是说要精练且要善于总结解题方法和技巧。才能提高解题能力。例如书本上有一道练习题:已知抛物线y=ax2+bx+c与x轴的公共点是(-1,0) ,(3,0)求这条抛物线的对称轴。 分析(一):引导学生从“数?形”结合的思想来总结,利用抛物线的对称性来解 解(一): 假设a>0 利用图像法可知A B两点的中点是1 ,即所求拋物线的对称轴是直线x=1。分析(二):也可以利用“代数法”由公式法可知对称轴为:x= -b/2a即要求出a 、b, 如何求出? 解(二):∵抛物线y=ax2+bx+c 经过(-1,0) ,(3,0) ∴ ②-① 得: b= -2a ∴所求抛物线的对称轴是:x= -b/2a= -2a/(-2a)=1。由上述解题方法可总结出结论: 若y=ax2+bx+c与x轴的两个交点为(x1,0)(x2,0)则所求抛物线的对称轴是: x=(x1+x2)/2。证明 : ∵抛物线 y=ax2+bx+c 经过(x1,0)(x2 ,0)∴ ①-②得:a[(x1)2-(x2)2]+b(x1-x2)=0;a(x1+x2) (x1- x2)+b(x1- x2)=0;(x1-x2)[a(x1+x2)+b]=0即x1-x2=0 (舍去)或者 a(x1+x2)+b=0 ∴(x1+ x2)= -b/a,由公式求的对称轴为:x=1。

3、指导学生提高课堂学习效率。(1)激发学生潜能,鼓励探索创新。要求教师在课堂教学中,要根据教学内容创设情境,激发学生的学习热情,挖掘学生的潜能,鼓励学生大胆创新与实践。要让学生在自主探索和合作交流过程中获得基本数学知识和技能,使他们觉得每项知识都是他们实践创造出来的,而不是教师强加给他们的。(2)转变教育观念,发扬教学民主。在教学过程中,教师要转变思想,更新教育观念,把学习的主动权交给学生,鼓励学生积极参与教学活动。教师要走出演讲者的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者。学生能自己做的事教师不能代劳。教师的主要任务应是在学生的学习过程中,在恰当的时候给予恰当的引导与帮助。要让学生通过亲身经历、体验数学知识的形成和应用过程来获取知识,发展能力。(3)联系生活实际,培养学习兴趣。某些学生不想学习或讨厌学习,是因为他们觉得学习枯燥无味,认为学习数学就是把那些公式、定理、法则和解题规律记熟,然后反反复复地做题。在教学过程中,教师要利用好教材列举的与我们生活息息相关的数学素材和形象的图表来培养学生的学习兴趣。要通过自己的教学,使学生乐学、愿学、想学,感受到学习是一件很有趣的事情,值得为学习而勤奋,不会有一点苦的感觉。二次函数这部分内容可渗透的数学思想多,解题方法多,老师在讲述这些题目时一定要注意循序渐进把握好梯度。在探究这些问题时,首先要让学生加深对函数知识的回顾,同时要注重数学思想的渗透,培养学生用数学的思想去思考问题、解决问题的习惯,发展学生的创新思维,使其形成自主学习、自主探索的意识。(4)关注个体差异,促使人人发展。数学教育要促进每一个学生的发展,即要为所有学生打好共同基础,也要注意发展学生的个性和特长。由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异,教师在教学中要承认这种差异,因材施教,因势利导。要从学生实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。教材中设计了不少如“思考”、“探索”、“讨论”、“观察”、“试一试”、“做一做”等问题,教师可根据实际情况组织学生小组合作学习,在小组成员的安排上优、中、差各级知识水平学生要合理搭配,以优等生的思维方式来启迪差生,以优等生的学习热情来感染差生。

四、结语

二次函数是一类十分重要的最基本的初等函数,也是初中数学的主要内容之一,它在中学数学中起着承上启下的作用,它与一元二次方程、一元二次不等式知识的综合运用,是初中代数的重点和难点之一。另外,二次函数在工程技术、商业、金融以及日常生活中都有着广泛的应用。故在这章的教学中更有必要加强一些重要的基本数学思想方法的渗透,这对于开发学生智力,培养他们良好的思维品质以及提高他们的综合素质都将是十分有益的。初中数学涉及的数学思想方法有很多,如“数学建模”、“数形结合”“整体化归”、“分类讨论”等等。在日常教学中,要结合实际,把数学思想方法根植于课本,着眼于提高,注意数学思想方法的渗透和强化,这将有助于提高学生分析问题、解决问题的能力,有助于提高学生的数学能力和数学水平,从而有助于培养学生良好的思维品质,从而尽快适应高中阶段的学习。二次函数的学习需要练就过硬的基本功,多记忆,多练习总结;还要加上对函数深刻的理解,多思考,这样才能更好的学习和掌握它。

参考文献

[1] 荣德基.“剖析九年级数学新课标新教材”;内蒙古少年儿童出版,2006.1.

[2] 昕刚.“二次函数的教学体会”[J].新课程(教研),2011.06.

[3] 刘继征.中考中的二次函数问题[J].中学生数学,2011.16.

[4] 陈圣文.关注二次函数学好二次函数[J].福建中学数学,2011.07.

初中数学二次函数解题技巧 篇8

数形结合的方法,就是将数字与图形二者进行相互变换,不仅可以把问题变得更加简单,而且可以把抽象的问题变得更加具体,这种方法在数学的学习过程中经常用到. 通过对二次函数的定义以及性质进行学习,我们了解到它的图像是一个抛物线,并且它的图像还具有非常多的特殊性

例如,它具有对称性、单调性等等,我们在对二次函数求解的过程中,可以充分地利用它的图像所具有的这些性质,它不仅可以把复杂的二次函数变得更加的简单,而且可以把二次函数变得更加直观. 抛物线具有的对称性是一个非常重要的解题思路. 二次函数图像的对称轴一般与y轴平行或者重合;它的另一大特性是连续性,并且与其对应的方程最多只能够有两个实根,因此就会产生一个区间,这可以为我们的解题带来很多方便. 在解题的过程中还可以利用二次函数的单调性,这也是经常用到的方法.

代数推理

众所周知,二次函数的函数式是y = ax2 + bx + c,观察其函数式非常的简单,而与其对应的抛物线图像却比较容易发生变形,例如,在其中会有一般式、顶点式以及零点式等等,因此,在解决二次函数问题的过程中,其函数式会得到非常广泛的应用. 在二次函数的函数式y = ax2 + bx + c中,具有三个变量a,b,c,在确定这三个变量时一定要给出三个相互独立的条件,有一些时候将所给出的条件全部应用完成之后还不能够得出三个变量的值,这时我们就要使用逆向思维,看给出的条件中是否含有隐含条件,我们不能够被其中的假象迷惑;

“苏教版”初中数学二次函数教学策略分析 篇9

〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗 1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会

用描点法画二次函数的图象;3.会平移二次函数 y =ax 2(a≠ 0 的图象得到二次函数 y =a(ax+m 2+k 的图象, 了解特 殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与 x 轴的交点

坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

内容

(1二次函数及其图象

如果 y=ax2+bx+c(a,b,c是常数, a ≠ 0, 那么, y 叫做 x 的二次函数。二次函数的图象是抛物线,可用描点法画出二次函数的图象。(2抛物线的顶点、对称轴和开口方向 抛物线 y=ax2 +bx+c(a≠ 0 的顶点是 44, 2(2 a

b ac a b--,对称轴是 a b x 2-=,当 a>0时, 抛物线开口向上,当 a<0时,抛物线开口向下。抛物线 y=a(x+h 2+k(a≠ 0 的顶点是(-h , k ,对称轴是 x=-h.〖考查重点与常见题型〗

1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以 x 为自变量的二次函数 y =(m-2x 2+m 2-m-2额图像经过原点, 则 m 的值是

2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角

坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数 y =kx +b 的图像在第一、二、三象限内,那么函数 y =kx 2+bx-1的图像大致是(3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中

档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3,(4,6两点,对称轴为 x =5 3 ,求这条抛物线的解析式。

4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题, 如: 已知抛物线 y =ax 2 +bx +c(a ≠ 0与 x 轴的两个交点的横坐标是-

1、3,与 y 轴交点的纵坐 标是-3 2(1确定抛物线的解析式;(2用配方法确定抛物线的开口方向、对称轴和顶点坐

标.5.考查代数与几何的综合能力,常见的作为专项压轴题。习题 1:

一、填空题:(每小题 3分,共 30分

1、已知A(3,6在第一象限,则点B(3,-6在第 象限

2、对于y=-1 x ,当x>0时,y随x的增大而

3、二次函数y=x 2+x-5取最小值是,自变量x的值是

4、抛物线y=(x-1 2

-7的对称轴是直线x=

5、直线y=-5x-8在y轴上的截距是

6、函数y=1 2-4x 中,自变量x的取值范围是

7、若函数y=(m+1x m2+3m+1是反比例函数,则 m 的值为

8、在公式 1-a 2+a =b中,如果b是已知数,则a=

9、已知关于x的一次函数y=(m-1x+7,如果y随x的增大而减小,则m的取值 范围是

10、某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨 ,与该乡人口数x的函

数关系式是

二、选择题:(每题 3分,共 30分

11、函数y= 中,自变量x的取值范围((A x>5(B x<5(C x≤5(D x≥5

12、抛物线y=(x+3 2-2的顶点在((A 第一象限(B 第二象限(C 第三象限(D 第四象限

13、抛物线y=(x-1(x-2与坐标轴交点的个数为((A 0(B 1(C 2(D 3

14、下列各图中能表示函数和在同一坐标系中的图象大致是((A(B(C(D

15.平面三角坐标系内与点(3,-5关于y轴对称点的坐标为((A(-3,5(B(3,5(C(-3,-5(D(3,-5 16.下列抛物线,对称轴是直线x=1 2 的是((A y=12x 2(B y=x 2+2x(C y=x 2+x+2(D y=x 2-x-2 17.函数y=3x 1-2x 中,x的取值范围是((A x≠ 0(B x>12(C x≠ 12(D x<1 2 18.已知 A(0,0 , B(3,2两点,则经过 A、B 两点的直线是((A y=23x(B y=32x(C y=3x(D y=1 3

x+1 19.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在((A 第一象限(B 第二象限(C 第三象限(D 第四象限 20.某幢建筑物,从 10米高的窗口 A 用水管和向外喷水,喷的水流呈抛物线(抛 物线所在平面与墙面垂直,(如图 如果抛物线的最高点 M 离墙 1米, 40 3米,则水流下落点 B 离墙距离 OB 是((A 2米(B 3米(C 4米(D 5米

三.解答下列各题(21题 6分, 22----25每题 4分, 26-----28每题 6分, 共 40分 21.已知:直线y=1 2x+k过点 A(4,-3。(1求k的值;(2判断点 B(-2,-6 是否在这条直线上;(3指出这条直线不过哪个象限。22.已知抛物线经过 A(0, 3 , B(4,6两点,对称轴为x=53 ,(1 求这条抛物线的解析式;

(2 试证明这条抛物线与 X 轴的两个交点中,必有一点 C ,使得对于x轴上任意一点 D 都

有 AC +BC ≤ AD +BD。

23.已知:金属棒的长 1是温度t的一次函数,现有一根金属棒,在 O ℃时长度为 200cm, 温度提高 1℃,它就伸长 0.002cm。

(1 求这根金属棒长度l与温度t的函数关系式;(2 当温度为 100℃时,求这根金属棒的长度;(3 当这根金属棒加热后长度伸长到 201.6cm时,求这时金属棒的温度。24.已知x 1,x 2,是关于x的方程x 2-3x+m=0的两个不同的实数根,设s=x 12 +x 22(1 求 S 关于m的解析式;并求m的取值范围;(2 当函数值s=7时,求x 13+8x 2的值;25.已知抛物线y=x 2-(a+2x+9顶点在坐标轴上,求a的值。

26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x, 已知AB=6,CD=3,AD=4,求:(1 四边形CGEF的面积S关于x的函数表达式和X的取值范围;(2 当x为何值时,S的数值是x的4倍。

D A

B C E F G X X X

27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8% ,台洲经 济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收 调整为每100元缴税(8-x元(即税率为(8-x% ,这样工厂扩大了生产,实际 销售比原计划增加2x%。

(1 写出调整后税款y(元与x的函数关系式,指出x的取值范围;(2 要使调整后税款等于原计划税款(销售m吨,税率为8%的78%,求x的值.28、已知抛物线y=x 2+(2-mx-2m(m≠2与y轴的交点为A,与x轴的交 点为B,C(B点在C点左边

(1 写出A,B,C三点的坐标;(2 设m=a 2-2a+4试问是否存在实数a, 使△ABC为Rt△?若存在, 求出a的 值,若不存在,请说明理由;(3 设m=a 2-2a+4,当∠BAC最大时,求实数a的值。习题 2: 一.填空(20分 1.二次函数 =2(x1 2(x+1 2+3的顶点坐标((A(1, 3(B(1,-3(C(-1,-3(D(-1, 3 13

y=kx2+bx-1的图象大致是(14.函数 y= 1 x + x(A x ≤2(B x<2(C x>x的图象与图象 y=x+1的交点在((A 第一象限(B 第二象限(C 第三象限(D 第四象限 18.如果以 y 轴为对称轴的抛物线 y=ax2+bx+c的图象,如图, 则代数式 b+c-a与 0的关系((A b+c-a=0(B b+c-a>0(C b+c-a<0(D 不能确定 19.已知:二直线 y=2,它们与 y 轴所围成的三角形的面积为((A 6(B 10(C 20(D 12 20.某学生从家里去学校,开始时匀速跑步前进,跑累了后,再匀速步行余下的路程。下图 所示图中,横轴表示该生从家里出发的时间 t ,纵轴表示离学校的路程 s ,则路程 s 与时间 t

三.解答题(21~23每题 5分, 24~28每题 7分,共 50分

21.已知抛物线 y=ax2+bx+c(a ≠0与 x 轴的两交点的横坐标分别是-1和 3,与 y 轴交点的

纵坐标是-3 2;y x O s t o s t o s t o s t o

A B C D x y o x y o x y o 1-1-1 B C D(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。

22、如图抛物线与直线

都经过坐标轴的正半轴上 A,B 两点,该抛物线的对称 Y B 轴 x=—1,与 x 轴交于点 C,且∠ABC=90°求:(1直线 AB 的解析式;(2抛物线的解析式。C A O X

23、某商场销售一批名脾衬衫,平均每天可售出 20 件,每件盈利 40 元,为了扩大销售,增 加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价 1 元,商 场平均每天可多售出 2 件:(1若商场平均每天要盈利 1200 元,每件衬衫要降价多少元,(2每件衬衫降价多少元时,商场平均每天盈利最多?

24、已知:二次函数

和 的图象都经过 x 轴 2 2 2 上两个不同的点 M、N,求 a、b 的值。

25、如图,已知⊿ABC 是边长为 4 的正三角形,AB

在 x 轴上,点 C 在第一象限,AC 与 y 轴交 于点 D,点 A 的坐标为{—1,0,求(1B,C,D 三点的坐标;(2抛物线

经过 B,C,D 三点,求它的解析式; 2(3过点 D 作 DE∥AB 交过 B,C,D 三点的抛物线于 E,求 DE 的长。Y C D E A O B X 26 某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超 100 度 时,按每度 0.57 元计费:每月用电超过 100 度时.其中的 100 度仍按原标准收费,超过部 分按每度 0.50 元计费。(1设月用电 x 度时,应交电费 y 元,当 x≤100 和 x>100 时,分别写出 y 关于 x 的函数 关系式;(2小王家第一季度交纳电费情况如下: 月 份 一月份 76 元 二月份 63 元 三月份 45 元 6 角 合 计 交费金额 184 元 6 角 问小王家第一季度共用电多少度?

27、巳知:抛物线

求证;不论 m 取何值,抛物线与 x 轴必有两个交点,并且有一个交点是 A(2,0;(2设抛物线与 x 轴的另一个交点为 B,AB 的长为 d,求 d 与 m 之间的函数关系式;(3设 d=10,P(a,b为抛物线上一点: ①当⊿ABP是直角三角形时,求 b 的值; ②当⊿ABP是锐角三角形,钝角三角形时,分别写出 b 的取值范围(第 2 题不要求写 出过程

28、已知二次函数的图象

“苏教版”初中数学二次函数教学策略分析 篇10

1.使学生初步学会根据题中的条件和问题,选择分析问题的思路,分析题目表示的数量

关系,进而培养学生学会分析问题的能力。

2.使学生养成认真审题,自觉检验的良好习惯,发展学生连贯、有序、有层次的思维能力。

教学重点:如何从问题开始想,根据问题分析数量关系。教学难点:根据问题分析数量关系。教学准备:课件 教学过程:

一、情境引入

谈话:同学们,你们有去过商场购物吗?

出示商场购物情境图,提问:如果你有100元,这些商品你想买什么?还剩多少元? 让学生观察画面,提出问题。学生自由发言,教师适时启发引导。

二、交流共享 1.教学例1。

(1)出示教材第27页例1情境图。

谈话:小明和爸爸今天也到商场购物,它们带300元去运动服饰商店购物。他们可能买什么?

利用课件把画面集中放大到运动服饰和运动鞋的场景中,让学生认真观察画面。提问:小明和爸爸买一套运动服和一双运动鞋,可能花多少元?

学生计算,并说出多种可能,教师相应板书。

明确:买一套运动服和一双运动鞋因为选择不同,有多种选法。购买不同价格的运动服和运动鞋,剩下的钱是不同的。

(2)出示问题:小明和爸爸带300元,买一套运动服和一双运动鞋,最多剩下多少元?

先让学生同桌互相讨论:最多剩下多少元?再指名汇报。师小结:购买的商品价格最低,剩下的钱就最多。

提问:你能根据问题说出数量之间的关系,确定先算什么吗? 学生独立思考后,把自己的想法在组内交流。学生汇报交流:

①剩下的钱等于带来的钱减去用去的钱,可以先算用去多少元。②求最多剩下多少元,可以先算购买价格最低的运动服和运动鞋一共要用多少元。引导:先想想每一步可以怎样算,再列式解答。学生列式,指名回答,教师板书。①一共用去多少元?130+85=215(元)②剩下多少元?300-215=85(元)

(3)想一想:如果买3顶帽子,付出100元,最少找回多少元? 提问:你能根据问题说出数量之间的关系,确定先算什么吗? 学生汇报交流。

引导:先想想每一步可以怎样算,再列式解答。①最多用去多少元?24×3=72(元)②最少找回多少元?100-72=28(元)

2.思考:回顾解决问题的过程,你有什么体会?

学生自由发言,师小结:我们要在读题后要弄清题目里已知条件和问题分别是什么,可以从问题开始想,根据问题分析数量关系,确定先算什么。要根据题中的条件和问题,选择分析问题的思路。

三、反馈完善

1.完成教材第28页“想想做做”第1题。

根据问题说出数量关系式,并说说缺少什么条件。

(1)出示问题(1),引导分析:从“桃树比梨树多多少棵”想到的数量关系是什么? 追问:有了这样的数量关系,要求这个问题,还缺少什么条件?

(2)学生独立分析问题(2),先根据问题写出数量关系,再说说缺少什么条件。

教师强调:在解答两步计算的实际问题时,关键是分析题中的数量关系,确定先算什么,再算什么。

2.完成教材第28页“想想做做”第2题。

让学生观察表格,并说明题意,明确计算的问题后,独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生得到启发。提示:要求足球组的人数,可以先算篮球组和田径组的人数之和,再将总人数减去篮球组和田径组的人数之和,即可求得足球组的人数。

3.完成教材第29页“想想做做”第3题。

让学生独立完成,完成后在小组内交流,并在交流中互相启发,加深理解。汇报解决问题的思路时,让学生说说每道题的数量关系。师提示:这两题都要先算四个茶杯的总价。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问? 课题:解决问题的策略——画线段图

教学目标:

1.经历探究和交流解决问题的过程,感受解决问题的策略,学会通过画线段图分析数量关系,掌握解决与倍有关的两步计算的实际问题及相应的变式问题。

2.感受数学与日常生活的密切联系,进一步增强学生对学习数学的兴趣和信心,初步形成独立思考的习惯和探究问题的意识。教学重点:用线段图辅助解决两步计算的实际问题。教学难点:分析数量关系。教学准备:课件 教学过程:

一、谈话引入

谈话:同学们,咱们身上穿的上衣和裤子是谁买的?你有自己去买过吗?今天,我们就去商场看看。

二、交流共享 1.教学例2。

课件出示教材第29页例2的教学情境图,引导学生认真观察。(1)理解题意。

让学生观察情境图,说说从中获得了哪些信息。(2)画线段图。

提出问题:上衣的价钱是裤子的3倍,买一套衣服要用多少元? 追问:你能理解买一套衣服的意思吗?

引导:怎样解决这一问题呢?今天我们还请来了一位数学小助手,它的名字叫线段图。我们可以借助线段图来分析题目中的数量关系。①先画一条线段表示出裤子的价钱。(在黑板上画出表示裤子价钱的线段)

48元

裤子

②上衣价钱的线段该怎么表示?画多长呢?(学生讨论)

引导:上衣的价钱是裤子的3倍,要画这样的3份。(指名板演)

48元 裤子 上衣

(3)列式解答。

?元

你能根据问题说出数量之间的关系吗?你是怎么列式的?先算什么?再算什么? 学生可能回答:

①方法一:先算买一件上衣要用多少元,48×3=144(元);再算买一套衣服要用多少元,144+48=192(元)。

②方法二:先算一套衣服一共有几个48,1+3=4;再算买一套衣服要用多少元,48×4=192(元)。

2.想一想:如果求买一件上衣比买一条裤子多用多少元,应该怎样解答?

(1)提问:你能说出这道题的数量关系吗? 学生讨论,说出数量关系式。指名回答,教师板书:

上衣的单价-裤子的单价=上衣比裤子多用多少元 引导思考:在这个数量关系里,哪一个量是直接告诉我们的?(裤子48元)要先求的是哪一部分?(上衣的价钱)和上面一题相比,什么不变?(已知条件)什么变了?(所求问题)问题改了,线段图要不要改?怎样改?

学生尝试画图,教师巡视指导。

提问:你能指出所求问题是哪一部分吗? 根据学生的回答,教师在黑板上改线段图:

(2)追问:现在你能解答这道题吗?先算什么?再算什么? 学生交流反馈回答,教师板书。3.比较:上面两题有什么相同,有什么不同?解答的过程呢?(学生讨论)

指名回答,教师适时引导。相同点:(1)已知条件相同,问题不同。(2)都可以根据问题分析数量关系,确定先算什么。(3)题中的数量关系不同,解题的方法也不同。(4)上衣的价格不知道,都要先算买一件上衣多少元。

三、反馈完善

1.完成教材第31页“想想做做”第1题。

让学生读线段图,根据问题说出数量关系式,并说说各可以先算什么。

2.完成教材第31页“想想做做”第2题。

让学生阅读小芸和小力的话,并说说从中获得的信息。

学生独立填表,完成后可以与同桌交流自己的解题思路。?元 教师巡视,适时进行引导。

3.完成教材第31页“想想做做”第3题。

先指名说说所求的问题是什么,数量关系是什么,让学生在练习本上画出线段图,表示出已知条件和所求问题。再让学生说说先算什么,再算什么,然后让学生独立计算。最后集体交流订正。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

课题:练习四

教学目标:

1.通过练习,使学生在解决实际问题的过程中,灵活运用合适的策略整理相关信息,感受画线段图是解决问题的一种常用策略。2.通过观察、交流、迁移等活动,提高学生运用策略解决实际问题的能力。

教学重点:综合运用知识解决问题,感受运用策略整理信息的必要性,提高运用策略的能力。教学难点:综合运用知识解决问题。教学准备:课件 教学过程:

一、知识再现

本单元我们学习了借助从问题想起和画线段图的策略解决两步计算的实际问题。本节课我们将对本单元的知识进行复习。完成教材第32页“练习四”第1题。

(1)出示题目,让学生根据问题说出数量之间的关系,确定先算什么。

分析:①还剩的米数等于总长度减去已修的米数;②求还剩的米数,等于总长度减去8天修的米数。指名列式解答,师板书:

已修的米数:45×8=360(米)还剩的米数:520-360=160(米)

(2)出示线段图,让学生先说说这道题的已知条件和所求问题。然后说出问题的数量关系,确定先算什么,再算什么。最后指名列式解答。

面粉的袋数:60-22=38(袋)一共的袋数:60+38=98(袋)

二、基本练习

1.完成教材第32页“练习四”第2题。

(1)让学生阅读题目的已知条件,说说你知道了什么。

(2)让学生说出数量关系,画出线段图,确定先算什么,再算什么,并列式解答。师板书。

(3)提问:要求楼下比楼上多多少个座位,我们必须知道什么条件?你能将上题的线段图改一改吗?师板书。追问:什么变了?什么不变?数量关系变了吗?先算什么,再算什么?

3.完成教材第33页“练习四”第7题。

提问:从问题想起,要求平均每分钟走多少米,缺少什么条件? 出示两幅情境图,让学生讨论:

①你能看懂两幅图吗?小宁走到的地方一样吗? ②小宁走了多少米? 600-300=300(米)

③怎样求平均每分钟走多少米? 300÷5=60(米)

4.完成教材第33页“练习四”第8题。

出示问题(1),并提问:从问题开始,要求一共缴纳的水费,数量关系式是什么?先算什么?再算什么?

出示问题(2),让学生仔细读题,说出数量关系,再列式解答。

三、综合练习

1.完成教材第32页“练习四”第4题。

解决问题(1):让学生先读题,从问题想起,说说数量关系,画出线段图,再列式解答。解决问题(2):在问题(1)的基础上,说出数量关系,更改线段图,再列式解答。2.完成教材第32页“练习四”第5题。

提问:这两题的问题是什么?数量关系是什么?解题过程相同吗?为什么? 学生列式解答,并反馈交流:(1)32×3=96(页)150-96=54(页)(2)40+32=72(页)150-72=78(页)3.完成教材第33页“练习四”第10题。

出示题目,让学生读一读,并提问:怎么比?(求出每袋多少元)让学生先计算,再汇报交流。

4.完成教材第33页“练习四”思考题。

让学生读题,并用线段图表示出已知条件和所求问题。

师讲解:从线段图中分析,妈妈比小芳多出的27岁,正好是小芳岁数的3倍,小芳的年龄是27÷3=9(岁),妈妈是9×4=36(岁)。

四、反思总结

通过本课的学习,你有什么收获? 你能用学会的知识解决我们身边的问题吗?

“苏教版”初中数学二次函数教学策略分析 篇11

1、等式:用等号把两个值相等的量或式子连接起来得到的式子称为等式。

2、方程:含有未知数的等式叫做方程。

注意:

(1)等式中必须含有等号,故不含等号的式子就不是等式;

(2)方程必须是等式,并且含有未知数,两个条件须同时具备;

(3)方程中可以含有几个未知数。

例题1、下列式子中,哪些是等式?哪些是方程?

(1)−1+7=6

(2)x+7=6

(3) x+7

(4)x+7=7−x

(5)4+7=7十4

(6)y3=1

(7)4x+y=7

方程中的项、系数、次数等概念

1、项:在方程中,被“+”、“-”,号隔开的每一部分(包括这部分前面的“十”、“-”号在内)称为一项。

2、未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母叫做未知数的系数。

3、项的次数:在一项中,所有未知数的指数和称为这一项的次数。

4、常数项:不含未知数的项,称为常数项。

列方程的方法

1、列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系,就是列方程。

2、列方程可分两步进行:第一步先根据题设条件设未知数;第二步要找到未知数和已知数之间的等量关系,从而得到方程。

例题2、根据条件列方程:

(1)某数的平方与它的4倍互为相反数

(2)某数的相反数与8的差等于这个数的倒数

(3)购买一本书,打八折比打九折少花2元钱,求这本书的原价

例题3、根据下列条件列出方程:

(1)a与6两数和的平方等于1

(2)a与6两数平方的和等于1

方程的解

方程的解和解方程

方程的解:使方程的左右两边相等的未知数的值叫做方程的解

解方程:求方程的解的过程叫做解方程

注意:

(1)方程的解一定能使方程左右两边的值相等;

(2)方程的解和解方程是两个不同的概念,它们一个是求得的结果,一个是变形的过程,要区别开,方程的解中的“解”是名词,解方程概念中“解”是一个动词。

方程的解

一元一次方程的概念

1、概念:在一个方程中,只含有一个未知数,并且未知数的次数是一次的方程叫一元一次方程。如:x+7=7−x

2、一元一次方程的最简形式:ax=b(a≠0)

3、一元一次方程的标准形式: ax+b=0(a≠0)

注意:理解一元一次方程的概念应把握:

(1)是一个方程;

(2)只含有一个未知数;

(3)未知数的次数是1;

(4)化简后未知数的系数不能为0;

(5)分母不能含有未知数。

等式基本性质

1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式。

2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。

注意:

(1)运用等式基本性质1时,一定要注意等式两边同时加上<或减去)同一个数或同一个代数式,才能保证所得结果仍是等式,这里要特别注意“同时”和“同一个”;

(2)运用等式基本性质2时,除了要注意等式两边同时乘以(或除以)同一个数,才能保证所得结果仍是等式以外,还必须注意,等式两边不能都除以O,因为0不能作除数或分母;

(3)等式还有其他的一些性质,在解方程中也时常会用到,它们是:对称性:如果a=b,那么b=a.即等式的左、右两边交换位置,所得结果仍是等式。

传递性:如果a=b,且b=c,那么a=c。这条性质也叫做等量代换。

利用等式的基本性质解一元一次方程

1、求方程的解的过程叫做解方程

2、具体步骤如下:

(1)利用等式的性质解一元一次方程,一般是先利用等式性质1,然后再利用等式性质2,将ax=−b变形为x=−ba即可。

(2)移项法则:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫做移项,这个法则称为移项法则,移项的根据是等式的基本性质1。

注意:

(1)移项时,不要忘记对移动的项变号,如从3+4x=7得到4x= 7+3,是错误的;

(2)没移项时,不要误以为有移项,如从−5=x,得到x= 5,这样的错误其原因在于对运用用等式的性质与移项的区别没有分清;

(3)去括号的方法:括号外的因数是正数,去括号后各项的符号不变,括号外的因数是负数,去括号后各项符号应变号;

“苏教版”初中数学二次函数教学策略分析 篇12

呼伦贝尔人事考试信息网:http://hlbe.offcn.com/

一、教材分析 1.教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2.教学目标和要求

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

3.教学重点:对二次函数概念的理解。

4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

二、教法学法设计

1.从创设情境入手,通过知识再现,孕伏教学过程。2.从学生活动出发,通过以旧引新,顺势教学过程。3.利用探索、研究手段,通过思维深入,领悟教学过程。

三、教学过程(一)复习提问

1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,k≠0;y=kx,k≠0;y=k/x,k≠0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响? 【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较。

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

了解更多考试资料:

呼伦贝尔人事考试信息网:http://hlbe.offcn.com/

例1圆的半径是r(cm)时,面积s(cm²)与半径之间的关系是什么? 解:s=πr²(r>0)例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)? 解: y=100(1+x)² =100(x²+2x+1)= 100x²+200x+100(0 教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点? 【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。巩固对二次函数概念的理解:

1.强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2.在 y=ax2+bx+c 中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)3.为什么二次函数定义中要求a≠0 ?(若a=0,ax2+bx+c就不是关于x的二次多项式了)4.在例2中,二次函数y=100x2+200x+100中,a=100,b=200,c=100。5.b和c是否可以为零? 由例1可知,b和c均可为零。若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2。

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c。(1)y=3(x-1)²+1

了解更多考试资料:

呼伦贝尔人事考试信息网:http://hlbe.offcn.com/

(2)s=3-2t²(3)y=(x+3)²-x²(4)s=10πr²(5)y=2²+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。(1)分别写出S与x,V与x之间的函数关系式子;(2)这两个函数中,那个是x的二次函数? 【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3(1)分别写出C关于r;V关于r的函数关系式;(2)两个函数中,都是二次函数吗? 【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

(五)拓展延伸

1.已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式。

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

了解更多考试资料:

呼伦贝尔人事考试信息网:http://hlbe.offcn.com/

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______ 【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0。

(六)小结思考

本节课你有哪些收获?还有什么不清楚的地方? 【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七)作业布置 必做题:

1.正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗? 2.在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

四、教学设计思考 以实现教学目标为前提 以现代教育理论为依据 以现代信息技术为手段

上一篇:甘浚清真寺搬请阿訇致词下一篇:文化遗产商业化的例子