数学教案-平行线分线段成比例定理 第二课时(精选3篇)
数学教案-平行线分线段成比例定理 第二课时 篇1
教学建议
知识结构
重难点分析
本节的重点是平行线分线段成比例定理.平行线分线段成比例定理是研究相似形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.
本节的难点也是平行线分线段成比例定理.平行线分线段成比例定理变式较多,学生在找对应线段时常常出现错误;另外在研究平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法研究几何问题,学生接触不多,也常常出现错误.
教法建议
1.平行线分线段成比例定理的引入可考虑从旧知识引入,先复习近平行线等分线段定理,再改变其中的条件引出平行线分线段成比例定理
2.也可考虑探究式引入,对给定几组图形由学生测量得出各直线与线段的关系,从而得到平行线分线段成比例定理,并加以证明,较附和学生的认知规律
(第一课时)
一、教学目标
1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.
2.使学生掌握三角形一边平行线的判定定理.
3.已知线的成已知比的作图问题.
4.通过应用,培养识图能力和推理论证能力.
5.通过定理的教学,进一步培养学生类比的数学思想.
二、教学设计
观察、猜想、归纳、讲解
三、重点、难点
l.教学重点:是平行线分线段成比例定理和推论及其应用.
2.教学难点:是平行线分线段成比例定理的`正确性的说明及推论应用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
找学生叙述平行线等分线段定理.
【讲解新课】
在四边形一章里,我们学过平行线等分线段定理,今天,在此基础上,我们来研究平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:
,且 ,
∴
由于
问题:如果 ,那么 是否还与 相等呢?
教师可带领学生阅读教材P211的说明,然后强调:
(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)
因此:对于 是任何正实数,当 时,都可得到:
由比例性质,还可得到:
为了便于记忆,上述6个比例可使用一些简单的形象化的语言
“ ”.
另外,根据比例性质,还可得到 ,即同一比中的两条线段不在同一直线上,也就是“ ”,这里不要让学生死记硬背,要让学生会看图,达到根据图作出正确的比例即可,可多找几个同学口答练习.
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.
根据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可根据情况选用其中任何一个,参见下图.
,
∴ .
其中后两种情况,为下一节学习推论作了准备.
例1 已知:如图所示, .
求:BC.
解:让学生来完成.
注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以减少错误,如例1可列比例式为:
例2 已知:如图所示,
求证: .
有了5.1节例4的教学,学生作此例题不会有困难,建议让学生来完成.
【小结】
1.平行线分线段成比例定理正确性的的说明.
2.熟练掌握由定理得出的六个比例式.(对照图形,并注意变化)
七、布置作业
教材P221中3(训练学生克服图形中各线段的干扰).
八、板书设计
平行线分线段成比例定理的应用 篇2
[关键词]:平行线分线段成比例定理 辅助线 应用
应用平行线分线段成比例定理(或推论)解题是学生们的一大难题,面对图中纵横交错的线段,学生们不知所措,其实应用平行线分線段成比例定理的关键是寻找题中的平行线,如果没有平行线,就需要作平行线(辅助线)使之满足定理的要求,那么如何作呢?一般地,可由比的两条线段去联想,从已知线段或要求线段的交点去作已知图形中的其余线段的平行线。
例1.如图1,在△ABC中,D在BC上,且BD:DC=3:2,E在AD上,且AE:ED=5:6,BE与AC交于F,求BE:EF的值。
分析:图中已知比值的BD、DC在线段BC上,AE、ED在线段AD上,它们的交点为D,我们要求的BE、EF在线段BF上,因此想到过点D作DG‖BF,这样通过线段DG,使得EF、BF与已知线段的比联系起来。
说明:过D作DH‖AC交BF于点H也可求解,但这时截出的线段是BH、HF,不是要求的BE、EF,虽然经过代换可以求解,但教麻烦。
我们也可通过已知线段AD与要求线段BF的交点E作另一已知线段BC的平行线求解。同样也可过点E作AC的平行线与BF交于一点,但解法较繁。
所以,在作辅助线时,通过交点(已知比值或要求比值的交点)作另一条已知比值或要求比值的线段的平行线较简单。
下面这一题条件很少,要求几条线段比值的乘积,题目中没有平行线,我们想到要去构造平行线找出这些线段的联系,根据前面的方法,这一题我们也可以做出几种解法。
例2.已知△ABC,(如图2)直线交AB、AC、BC(或其延长线)于D、E、F,求BF/CF•CE/AE•AD/BD.
分析:这一题给出的求解是线段的比值的乘积,这些线段没有直的联系,我们注意分析要求解的AE、CE在线AC上,BC、CF在线BF上,它们的交点为C,我们想到过点C作AB(要求的AD、DB在线段AB上)的平行线,这样就将要求的各县段,通过线段CH联系起来。
数学教案-平行线分线段成比例定理 第二课时 篇3
一、教学目标
1.理解平行线分三角形两边成比例定理;
2.进一步熟悉平行线分三角形两边成比例定理的应用
二、课时安排 1课时
三、教学重点 定理的应用。
四、教学难点
成比例的线段中比例线段的确认
五、教学过程
(一)导入新课
1、平行线分三角形两边成比例定理的内容?
2、几何语言如何表示?
(二)讲授新课
1、实践
如图,直线L1//L2//L3,直线L4被L1,L2,L3所截,其中截得的两条线段分别为AB,BC,L5是另外一条被L1,L2,L3所截的直线,其中截得的两条线段分别是DE,EF。
(1)度量线段AB,BC,DE,EF的长,并计算 ,你有什么发现?
(2)移动直线L1,L2,L3,并保持L1//L2//L3,前面发现的结论是否仍然成立? 我们发现,当L1//L2//L3时,都可得到 总结:
基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边,所得的对应线段成比例.议一议:
如图,AD是△ABC的中线,E是AC上任一点,BE交AD于点O,数学兴趣小组的同学在研究这个图形时,得到如下结论:
AO1AE1时,; AD2AC3AO1AE1时,;(2)当AD3AC5AO1AE1时,(3)当AD4AC7AEAO1猜想,当时,(n是正整数),的一般结论,并说明理由。
ACADn1(1)当
分析:
应用比例关系,需创造平行线,因此需要添加辅助线解决问题。辅助线添加方法:
过D点作DF∥BE交AC于点F
重难点精讲
例
1、已知:如图,在△ABC中,DE//BC,AD=4,DB=3,AC=10.求AE,EC的长。
注意引导学生使用适当的比例式; 练习:
1、如图1:已知L1∥L2∥L3,AB=3厘米,BC=2厘米,DF=4.5厘米.则EF=(),DE=().2、如图2:△ABC中,DE ∥BC,如果AE :EC=7 :3,则DB :AB=()
例
2、已知:如图,在△ABC中,DE//BC,EF//AB,试问成立吗?为什么?
引导学生分析,应用中间比解决问题,类比等量代换
练一练:
1、如图: △ABC中, DE ∥BC,DF ∥AC,AE=4,EC=2,BC=8,求线段BF,CF之长.(三)归纳小结
基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边,所得的对应线段成比例.(四)巩固练习
1.如图,⊿ABC中,DE∥BC,AD = 3k,BD = 3k,那么DE:BC ;
2.如图,在△ABC中,∠C的平分线交AB于D,过点D作DE∥BC交AC于E,若AD:DB=3:2,则EC:BC=______
3.如图,DF//AB,EF//BC,AE=5,EB=3,CD=2,求BD的长。
AEFBDC
4.已知DE∥BC,EF∥CD, 求证:
ADAB AFAD
六、板书设计
平行线分三角形两边成比例
基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边,所得的对应线段成比例.七、作业布置
【数学教案-平行线分线段成比例定理 第二课时】推荐阅读:
数学:一《平行线等分线段定理》教案1(新人教A版选修4-1)07-27
平行线等分线段定理教案08-20
九年级数学上册18.1比例线段教案10-09
八年级数学下册 24.3 平行线的判定定理教案 冀教版08-27
数学:3.5平行线的性质与判定(第3课时)教案(湘教版七年级下)08-31
《成正比例的量》教案设计11-11
三年级数学下册第二单元第一课时教案08-09
苏教版四年级上册数学教案第二单元第三课时08-23
成反比例的量(人教版六年级教案设计)06-26
植物籽粒拼图分课时教案10-21