小学奥数统筹规划题库教师版(精选2篇)
小学奥数统筹规划题库教师版 篇1
8-4统筹规划
知识点说明:
统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。“节省跑空车的距离”是物资调运问题的一个原则。“发生对流的调运方案”不可能是最优方案。
“小往大靠,支往干靠”。
板块
一、合理安排时间
【例 1】 一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎3张饼需几分钟?怎样煎?
【解析】 因为这只平底锅上可煎两只饼,如果只煎1个饼,显然需要2分钟;如果煎2个饼,仍然需要2分钟;如果煎3个饼,所以容易想到:先把两饼一起煎,需2分钟;再煎第3只,仍需2分钟,共需4分钟,但这不是最省时间的办法.最优方法应该是:首先煎第1号、第2号饼的正面用1分钟;其次煎第1号饼的反面及第3号饼的正面又用1分钟;最后煎第2号、第3号饼的反面再用1分钟;这样总共只用3分钟就煎好了3个饼.(因为每只饼都有正反两面,3只饼共6面,1分钟可煎2面,煎6面只需3钟.)
【巩固】(2000年《小学生数学报》数学邀请赛)烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?
【解析】 先将两块饼同时放人锅内一起烙,3分钟后两块饼都熟了一面,这时取出一块,第二块翻个身,再放人第三块,又烙了3分钟,第二块已烙熟取出,第三块翻个身,再将第一块放入烙另一面,再烙3分钟,锅内的两块饼均已烙熟.这样烙3块饼,用去9分钟,所以烙21块饼,至少用213963(分钟).
【巩固】 一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?
【解析】 我们归纳出煎1、2、3个饼分别需要2、2、3分钟,我们可以继续往下分析,煎4个饼最少需要4分钟,煎5个饼需要325分钟,煎6个饼需要6226分钟,煎7个饼需要34227分钟,那么煎2009个饼至少需要2009分钟.
【例 2】 星期天妈妈要做好多事情。擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。妈妈干完所有这些事情最少
用多长时间?
【解析】 如果按照题目告诉的几件事,一件一件去做,要95分钟。要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。
【巩固】 小明在家的一面墙上贴奖状,一共有32张,给一张奖状涂满胶水需要2分钟,涂完胶水后要过2分钟才能往墙上贴,贴的过程需要1分钟,但是如果等待超过6分钟的话胶水就会干掉不能再贴,问:小明最快用多长时间能贴完所有的奖状?
【解析】 用最短时间贴完所有的奖状就相当于问如何最节省时间,这道题目应该从反面来考虑:时间如果浪费了,会浪费在等待上,也就是说如果不想浪费时间,我们最需要做的就是不能等待.那么可以试验一下,当第一张奖状涂完的时候,这时候不能贴也不能等那么就只能继续涂下一张,等第二张涂完了就可以继续贴,但是这样下去到了最后一张的时候还是需要等待胶水可以粘贴的一段时间.
那么继续试验先涂第一张A然后涂B,然后涂C,这时候A等待了4分钟马上贴上,再涂一张D马上贴上已经等待了5分钟的B,再涂一张E贴上已经等待6分钟的C(题目中说等待超过6分钟就不可以,那么等于六分钟应是可以的)这样一直下去,会使每一张奖状花费的时间就只有涂的2分钟和贴的1分钟,那么总时间是96分钟.
【例 3】 小明骑在牛背上赶牛过河.共有甲、乙、丙、丁4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用多少分钟?
【解析】 要想用最少的时间,4头牛都能过河,保证时间最短:
第一步:甲与乙一起过河,并由小明骑甲牛返回,共用:213(分钟);
第二步:返回原地的小明再骑丙与丁过河后再骑乙牛返回,共用了628(分钟); 第三步:最后小明骑甲与乙一起过河用了2分钟;
所以,小明要把这4头牛都赶到对岸,最小要用38213(分钟).
【例 4】 有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?
【解析】 小强和中强先过桥,用2分钟;再用小强把电筒送过去,用1分钟,现在由大强跟太强一起过桥,用10分钟,过去以后叫中强把电筒送给小强用2分钟,最后小强与中强一起过河再用2分钟,他们一起用时间:21102217(分钟),正好在桥倒塌的时候全部过河.(时间最短过河的原则是:时间长的一起过,时间短的来回过.这样保证总的时间是最短的).
【例 5】 有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?
【解析】 首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3312161329(分钟).最后能够安全全部过河.
【巩固】(迎春杯试题)小强、小明、小红和小蓉4个小朋友效游回家时天色已晚,他们来到一条河的东岸,要通过一座小木桥到西岸,但是他们4个人只有一个手电筒,由于桥的承重量小,每次只能过2人,因此必须先由2个人拿着手电筒过桥,并由1个人再将手电筒送回,再由2个人拿着手电筒过桥……直到4人都通过小木桥.已知,小强单独过桥要1分钟;小明单独过桥要1.5分钟;小红单独过桥要2分钟;小蓉单独过桥要2.5分钟.那么,4个人都通过小木桥,最少要多少分钟?
【解析】 方法一:要想用最少的时间,4人都通过小木桥,可采用让过桥最快的小强往返走,将手电筒送
回,这样就能保证时间最短了.
第一步:小强与小明一起过桥,并由小强带手电筒返回,共用:1.512.5(分钟); 第二步:返回原地的小强与小红过桥后再返回,共用了213(分钟); 第三步:最后小强与小蓉一起过桥用了2.5分钟;
所以,4个人都通过小木桥,最少用2.532.58(分钟).
方法二:要想用最少的时间,4人都能过桥,保证时间最短还可以:
第一步:小强与小明一起过桥,并由小强带手电筒返回,共用:1.512.5(分钟); 第二步:返回原地的小红与小蓉过桥后再由小明带手电返回,共用了2.51.54(分钟); 第三步:最后小强与小小明一起过桥用了1.5分钟;
所以,4个人都通过小木桥,最少用2.541.58(分钟).
【例 6】 有甲、乙两个水龙头,6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.怎么安排这6个人打水,才能使他们等候的总时间最短,最短的时间是多少?
【解析】 一人打水时,其他人需等待,为使总的等待时间尽量短,应让打水所需时间少的人先打.安排需3分钟的,然后5分钟的,最后7分钟的在甲水龙头打;安排需4分钟的,然后6分钟的,最后10分钟的在乙水龙头打;在甲水龙头3分钟的人打时,有2人等待,占用三人的时间和为(33)分;然后,需 5分钟的人打水,有1人等待,占用两人的时间和为(52)分;最后,需7分钟的人打水,无人等待.甲水龙头打水的三个人,共用(33527)分,乙水龙头的三人,共用(436210)分.总的占用时间为(分).
【巩固】 6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?
【解析】 第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候;第6个人接水时,只有他1个人等候.可见,等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会最少,因此,应当把接水时间按从少到多顺序排列等候接水,这个最短时间是364554637210100(分).
【巩固】 理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10、12、15、20和24分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少?最少时间为多少?
【解析】 一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理.甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的,甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(103)分;然后,甲给需 15分钟的人理发,有1人等待,占用两人的时间和为(152)分;最后,甲给需 24分钟的人理发,无人等待.甲理发的三个人,共用(10315224)分,乙理发的两个人,共用(12220)
分.总的占用时间为(10315224)(12220)128(分).
【例 7】(101培训试题)车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元.现有两名工作效率相同的修理工,⑴ 怎样安排才能使得经济损失最少?⑵ 怎样安排才能使从开始维修到维修结束历时最短?
【解析】 ⑴ 一人修17、20、30,另一人修18、25 ;最少的经济损失为:5(1732023018225)910(元). ⑵ 因为(1830172520)255(分),经过组合,一人修需18,17和20分钟的三台,另一人修需30和25分钟的两台,修复时间最短,为55分钟.
【例 8】(三帆中学入学考试试题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,如何巧妙安排这十个人打水,使他们总的费时时间最少?最少的时间是多少?
【解析】 要想总的时间最少,应该安排打水时间少的人先来打水,下面给出排队方式:
显然计算总时间时,1、2计算了5次,3、4计算了4次,5、6计算了3次,7、8计算了2次,9、10计算了1次.所以有最短时间为(12)5(34)4(56)3(78)2(910)1125分钟.
【例 9】(小学数学报试题)右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从A到B最快要几分钟?
G65E4503F3H7646BDCA14
【解析】 我们采用分析排除法,将道路图逐步简化.从A到O有两条路,A→C→O用6分钟,A→F→O用7分钟,排除后者,可将FO抹去,但AF不能抹去,因为从A到B还有其它路线经过AF,简化为图⑴.从A到E还剩两条路,A→C→G→E用12分钟,A→C→O→E用10分钟,排除前者,可将CG,GE抹去,简化为图⑵.从A到D还剩两条路,A→C→O→D用12分钟,A→H→D用13分钟,排除后者,可将AH,HD抹去,简化为图⑶.从A到B还剩两条路,A→C→O→E→B用17分钟,A→C→O→D→B用16分钟,排除前者,可将OE,EB抹去,简化为图⑷. 小明按A→C→O→D→B走最快,用16分钟.
5E6CA1574O67F(1)46HBDCA1E74O67F46H(2)BDCA15E746O4GBDCA15O64BD(3)
⑴
⑵
⑶
⑷
【巩固】(十一学校考题)下图为某三岔路交通环岛的简化模型,在某高峰时段,单位时间进出路口A,(4)
B,C的机动车辆数如图所示,图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),问:x1,x2,x3的大小关系.
5055X3X12030X23035
【解析】 x1x35550x35,x2x12030x110,x3x23530x25,所以x2x3x1
【例 10】 某人从住地外出有两种方案,一种是骑自行车去,另一种是乘公共汽车去.显然公共汽车的速度比自行车速度快,但乘公共汽车有一个等候时间(候车时间可以看成是固定不变的),在任何情况下,他总是采用时间最少的最佳方案.下表表示他到达A、B、C三地采用最佳方案所需要的时间.为了到达离住地8千米的地方,他需要花多少时间?并简述理由.【解析】 显然A、B两地所需时间与路程不成比例,所以不可能为A、B两地均为骑自行车.
①.如果A、B两地均采用公共汽车,那么到达B地比A地多1千米,多用15.5-12=3.5分钟,即公共汽车行1千米需3.5分钟,则等候时间为12-2×3.5=5分钟.
当达到A、B两个较短的路程都采用公共汽车,那么到达C地采用的方式一定也是公共汽车,于是所需时间为4×3.5+5=19分钟,与题中条件不符,所以开始假设不成立;
②.所以只能是到达A采用自行车,到达B采用公共汽车,则C地采用的也是公共汽车.
由C地比B地多1千米,多18-15.5=2.5分钟,那么行3千米所需时间为3×2.5=7.5分钟,等候时间为15.5-7.5=8分钟.那么行至8千米的路程及等候时间为8×2.5+8=28分钟.
板块
二、合理安排地点
【例 11】 如图,在街道上有A、B、C、D、E、F六栋居民楼,现在设立一个公交站,要想使居民到达车站的距离之和最短,车站应该设在何处?
ABCDEF
【解析】 找最中间的那栋楼,可这时最中间的楼有两个,这该怎么办呢?其实经过研究发现,建在这两个楼都一样,路程和最短,所以可以建在C或D .如果我们只要求建在这条道路上的一点即可,那么CD之间及点C、D均可.
【巩固】 如图,在街道上有A、B、C、D、E五栋居民楼,为使五栋楼的居民到车站的距离之和最短,车站应立于何处?
ABCDE
【解析】 条件中只有五个楼的名字和排列顺序,楼与楼的距离也不确定.那么我们先来分析一下A、E两个点,不论这个车站放在AE之间的那一点,A到车站的距离加上E到车站的距离就是AE的长
度,也就是说车站放在哪儿不会影响这两个点到车站的距离之和;那么我们就使其他的3个点到车站的距离之和最短,再看为了使B、D两个到车站的距离之和小,应把车站放在BD之间.同理,只要是在BD之间,B、D到车站的距离之和也是不变的,等于BD.最后,只需要考虑C点到车站的距离最近就行了.那么当然也就是把车站放在C点了.这里就体现了一个“向中心靠拢的思想”.
【巩固】 有1993名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
【解析】 由于1993数目较大,不易解决.我们先从人数较小的情况入手.
当只有2个人时,设2人宣传岗位分别为A1和A2(如上图),显然集合地点选在A1点或A2点或者A1A2之间的任何一个地点都可以.因为由A1、A2出发的人走过的路程总和都等于A1A2.
当有3个人时,则集合地点应该选在A2点(如上图).因为若集合地点选在A1A2之间的B点,那时3个人所走的路程总和是A1B+A2B+A3B=(A1B+A3B)+A2B=A1A3+A2B;
若集合地点选在A2A3之间的C点,那时3个人所走的路程总和是:A1C+A2C+A3C=(A1C+A3C)+A2C=A1A3+A2C;而集合地点选在A2点时,3个人所走路程总和仅是A1A3.当然A1A3比A1A3+A2B及A1A3+A2C都小.
当有4个人时,由于集合地点无论选在A1A4之间的任何位置,对A1、A4岗位上的人来说,这2人走的路程和都是A1A4(如上图).因此,集合地点的选取只影响A2、A3岗位上的人所走的路程,这就是说,问题转化为“2个人站在A2和A3岗位的情形”.根据上面已讨论的结论可知,集合地点应选在A2或A3或者A2A3之间任何地点.
当有5个人时,类似地可把问题转化为“ 3个人站在A2、A3、A4岗位的情形”(如下图)根据已讨论的结论可知,集合地点应选在A3点.
依此递推下去,我们就得到一个规律: 当有偶数(2n)个人时,集合地点应选在中间一段 AnAn+1之间的任何地点(包括An和An+1点); 当有奇数(2n+1)个人时,集合地点应选在正中间岗位An+1点.
本题有1993=2×996+1(奇数)个人,因此集合地点应选在从某一端数起第997个岗位处.
【例 12】 如图,在街道上有A、B、C、D、E五栋居民楼,每栋楼里每天都有20个人要坐车,现在设立一个公交站,要想使居民到达车站的距离之和最短,应该设在何处?
【解析】 如果不考虑楼里坐车的人数,应该把车站放在C点.因为每栋楼的人数相同所以数量不影响选
择,所以答案不影响,应该把车站放在C点.
【例 13】 在一条公路上每隔100千米,有一个仓库(如图)共有5个仓库,一号仓库存有10吨货物,二号仓库有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在想把所以的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,那么最少要多少运费才行? ABCDE
一二三四五10吨40吨20吨
【解析】 做此类问题时我们都可以根据“小往大处靠”的原则进行判断,观察可知五号仓的最大,所以先把一号仓库的10吨货物往五号方向靠拢,先集中到二号仓库,那么现在二号仓库中就有30吨货物了.再根据“小往大处靠”的原则,那么这30吨货物应该集中到五号仓库中. 所以所需的费用是:共需要:100.5100500(元),300.53004500(元),50045005000(元).
【巩固】(人大附中分班考试题)在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少?
10吨A30吨B20吨C10吨D60吨E
【解析】 这道题可以用“小往大处靠”的原则来解决.E点60吨,存的货物最多,那么先处理小势力,A往E那个方向集中,集中到B,B变成40吨,判断仍是E的势力最大,所以继续向E方向集中,B点集中到C点,C点变成60吨.此时C点和E点都是60吨,那么C、E谁看成大势力都可以.例如把E点集中到D点,D点是70吨.所以C点也要集中到D点.确定了集中地点,运输费用也就容易求了.运费最少为:(1030302020106010)0.91530(元).
【例 14】 在一条公路上,每隔100千米有一座仓库,共有8座,图中数字表示各仓库库存货物的重量(单位:吨),其中C、G为空仓库.现在要把所有的货物集中存入一个仓库里,如果每吨货物运输1千米需要0.5元,那么集中到那个仓库中运费最少,需要多少元运费?
A10B30CD20E5F10GH60
【解析】 根据这道题可以用“小往大处靠”的原则来解决.H点60吨,存的货物最多,那么先处理小势力,A往H那个方向集中,集中到B,B变成40吨,判断仍是H的势力最大,所以继续向H方向集中,B点集中到D点,D点变成60吨.此时D点和H点都是60吨,那么D、H谁看成大势力都可以.例如把H点集中到F点,F点是70吨.把D点集中到E点,E点是65吨所以E点也要集中到F点.确定了集中地点为F点,运输费用也就容易求了.运费最少为:(105003040020200510060200)0.516750(元).
【巩固】(04年我爱数学夏令营试题)一条直街上有5栋楼,从左到右编号为1,2,3,4,5,相邻两楼的距离都是50米.第1号楼有1名职工在A厂上班,第2号楼有2名职工在A厂上班……,第5号楼有5名职工在A厂上班.A厂计划在直街上建一通勤车站接送这5栋楼的职工上下班,为使这些职工到通勤车站所走的路程之和最小,车站应建在距1号楼多少米处?
【解析】 如图所示,“小往大处靠”的原则来解决,故应建在4号楼的位置,距1号楼150米处.
12345
[小结]对于集中货物的问题,涉及到了重量,而集中到何处起决定作用的是货物的重量,而至于距离,仅仅只是为了计算所以对于这类问题老师要强调“小往大处靠”的原则.
【例 15】(奥数网习题库)右图是A,B,C,D,E五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米).现在要在五村之中选一个村建立一所小学.为使所有学生到学校的总距离最短,试确定最合理的方案.
A402B20320C435D550E
【解析】 “小往大处靠”的原则来解决,A点向C点集中,因为根据“小往大处靠”的原则,虽然A点40人比C点20人多,但是人最多的点是E点,所以大方向是向E点的方向靠拢.那么B点当然也要向C点靠拢.C点就有80人了.此时人数最多的点变成了C点了.D、E又变成小势力了,因此还是“小往大处靠”的原则,看大方向,E点要向D点靠拢.此时D点变成85人了.那么D点比此时C点的80人多了.C点又变成小势力了.所以最终要集中在D点.也就是学校要设在D点.
【巩固】(三帆中学分班考试题)有七个村庄A1,A2,,A7分布在公路两侧(见右图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?
A1CBA2A3A4A5DEA7A6F公路
【解析】 本题可简化为“B,C,D,E,F处分别站着1,1,2,2,1个人(见右图),求一点,使所有人走到这一点的距离和最小”.显然D、E最大,靠拢完的结果变成了D4,E3,所以车站设在D点.
【例 16】(奥数网习题库)某乡共有六块麦地,每块麦地的产量如右图.试问麦场设在何处最好?(运输总量的千克千米数越小越好.)
3000千克F2000千克EAG6000千克4000千克BD5000千克C1000千克
【解析】 依据“小往大靠”,“支往干靠”.我们不妨以F-E-C-D为干,显然麦场设在C点.当然你以其他路经为干,都会的到同样结果.譬如:若以F-E-C-A为干,那么依据“支往干靠”,D就靠到C,B移到G,当作“干”上一成员.
板块
三、合理布线和调运
【例 17】 新建的自来水厂要给沿公路的十个村庄供应自来水(如下图,距离单位为千米),要安装水管有粗细两种选择,粗管足够供应所有村庄使用,细管只能供一个村用水,粗管每千米要用8000元,细管每千米要2000元,如果粗细管适当搭配,互相连接,可以降低费用,怎样安排才能使这项工程费用最低?费用是多少元?
自来水厂30A5B2C4D2E3F2G2H2I5J
【解析】 由于细管相对于粗管来讲,价钱要少一些,因此先假设都用细管.那么从自来水厂到J村要铺设10根细管,自来水厂到I村要铺设9根细管,依次下去,我们用图表示铺细管的情况.因为粗管
是细管价格的4倍,如果用细管代替粗管重叠数超过4条费用更大,仅在3条或3条以下才会节约,而细管只能供应一村用水,所以粗管从水厂一直接到G村为止,再用三条细管连接H、I、J三个村,这样费用最低,总费用:8000(30524232)2000(23225)414000(元).
【例 18】(奥数网习题库)有十个村庄,座落在从县城出发的一条公路上,现要安装水管,从县城供各村自来水.可以用粗、细两种水管,粗管每千米7000元,细管每千米2000元.粗管足够供应所有各村用水,细管只能供应一个村用水,各村与县城间距离如右图所示(图中单位是千米),现要求按最节约的方法铺设,总费用是多少?
30县城A1524232225A10
A2A3A4A5A6A7AA89【解析】 由于细管相对于粗管来讲,价钱要少一些,因此先假设都用细管.那么从县城到A1村要铺设10根细管,A1村到A2村要铺设9根细管,依次下去,我们用图表示铺细管的情况.
因为粗管每千米7000元,细管每千米2000元,所以4根细管的价钱将大于1根粗管的价钱.这样一来,凡是超过3根细管的路段,都应改铺粗管. 因此,从县城到A7村铺1根粗管,A7村到A8村铺3根细管,A8村到A9村铺2根细管,A9村到A10村铺1根细管.总费用为: 7000(30524232)2000(232251)36600(元).
【例 19】 北京、洛阳分别有11台和5台完全相同的机器,准备给杭州7台、西安9台,每台机器的运费如右表,如何调运能使总运费最省?
运费/元到站发站北京洛阳杭州800700西安1000600
【解析】 方法一:由表中看出,北京到杭州的运费比到西安便宜,而洛阳正相反,到西安的运费比到杭州便宜.所以,北京的机器应尽量运往杭州,洛阳的机器应尽量运往西安.最佳的调运方案为:北京发往杭州7台,发往西安4台,洛阳发往西安5台.总运费为800710004600512600(元).
方法二:本题也可以采用下面的代数方法解决,设北京调运杭州x台,调运西安(11x)台,则洛阳应调运杭州(7x)台,调运西安9(11x)x2(台),总运费W800x1000(11x)700(7x)600(x2)800x110001000x4900
因为要使总运费14700300x最小,需要300x最大. 700x600x120014700300x,由于x是北京调运杭州的台数,且x≤7,所以当x7时,总运费W14700300712600(元)最小.由x7可知,北京调运杭州7台,调运西安4台,洛阳调运杭州0台,调运西安5台.
【巩固】 北京、上海分别有10台和6台完全相同的机器,准备给武汉11台,西安5台,每台机器的运费如右表,如何调运能使总运费最省?
运费/元到站发站北京上海武汉500700西安6001000
【解析】 与例题不同的是,北京、上海到西安的运费都比到武汉的高,没有出现一高一低的情况.此时,可以通过比较运输中的差价大小来决定最佳方案. ⑴ 上表中第一行的差价为600500100(元),第二行的差价为1000700300(元).说明从北京给西安多发1台机器要多付运费100元,而从上海给西安多发1台机器要多付运费300元.所
以应尽量把北京的产品运往西安,而西安只要5台,于是可知北京调往西安5台,其余5台调往武汉,上海6台全部调往武汉,总运费为:6005500570069700(元).
⑵ 如果改为看表中的列,那么由于第一列的差价为700500200(元),第二列差价为(元),所以武汉需要的机器应尽量从上海调运,而上海只有6台,不足的部1000600400分由北京调运.这个结论同前面得到的相同.
【例 20】 北京和上海同时制成了电子计算机若干台,除了供应本地外,北京可以支援外地10台,上海可以支持外地4台.现决定给重庆8台,汉口6台,若每台计算机的运费如右表,上海和北京制造的机器完全相同,应该怎样调运,才能使总的运费最省?最省的运费是多少?
运费/元到站发站北京上海汉口43重庆85
【解析】 方法一:本题中虽然上海到汉口的运费最少,只有3百元,但是上海到汉口比北京到汉口只节省
(43)1百元,相比之下,上海到重庆比北京到重庆要节省(85)3百元.所以重庆所需台数应由上海尽量满足,即上海的4台全部调运重庆,北京再补给重庆4台,汉口的6台从北京调运.总运费为:54844676(百元)
方法二:本题也可以采用下面的代数方法解决,设北京调运汉口x台,调运重庆(10x)台,则上海应调运汉口(6x)台,调运重庆4(6x)x2(台),总运费W4x(810x)(36x)(5x2)4x808x183x5x10882x,因为要使总运费882x最小,需要2x最大.由于x是北京调运汉口的台数,且x6,所以当x6时,总运费W882676(百元)最小.由x6可知,北京调运汉口6台,调运重庆4台,上海调运汉口0台,调运重庆4台.
【例 21】 北仓库有货物35吨,南仓库有货物25吨,需要运到甲、乙、丙三个工厂中去.其中甲工厂需要28吨,乙工厂需要12吨,丙工厂需要20吨.两个仓库与各工厂之间的距离如图所示(单位:公里).已知运输每吨货物1公里的费用是1元,那么将货物按要求运入各工厂的最小费用是多少元?
北仓库10甲86乙5南仓库1612丙
【解析】 通过分析将题目给的图形先转化为下图⑴,我们仍可以通过差价的大小来决定最佳方案.观察上表各列两数之差,最大的是第三列16124,因此北仓库的货物尽可能的供应丙工厂,即北仓库供应丙20吨.在剩下的两列中,第一列的差大于第二列的差,所以南仓库的货物尽可能的供应甲工厂,即南仓库供应甲25吨.因为南仓库货物分配完,其余的甲需要的28253(吨)由北仓库供应,即北仓库供给丙后剩下的15吨货物3吨给甲15312(吨)给乙,相应的运费为:3101262012258542(元).
运费/元到站发站北仓库南仓库甲108乙65丙1216运费/元到站发站北仓库35吨南仓库25吨甲325乙12丙20
⑴ ⑵
【例 22】 A、B两个粮店分别有70吨和60吨大米,甲、乙、丙三个居民点分别需要30吨、40吨和50吨大米.从A,B两粮店每运1吨大米到三个居民点的运费如右图所示:如何调运才能使运费最少?
运费/元到站发站AB甲030乙400丙3020运费/元到站发站AB甲23乙710丙35
【解析】 A,B粮店共有大米 7060130(吨),甲、乙、丙三个居民点需要大米304050120(吨),供应量与需求量不相等,但是我们仍可以通过差价的大小来决定最佳方案.观察上表各列两数之差,最大的是第二列1073,因此A粮店的大米应尽可能多地供应乙,即A供应乙40吨.在剩下的两列中,第三列的差大于第一列的差,所以A粮店剩下的30吨应全部供应丙.因为A粮店的的大米已分配完,其余的由B粮店供应,即B供应甲30吨,供应丙20吨,调运方案如右表,相应的运费为:303407303205560(元).
【例 23】 一支勘探队在五个山头A、B、C、D、E设立了基地,人数如右图所示.为调整使各基地人数相同,如何调动最方便?(调动时不考虑路程远近)
【解析】 在人员调运时不考虑路程远近的因素,就只需避免两个基地之间相互调整,即“避免对流现象”。
五个基地人员总数为17+4+16+14+9=60(人)依题意,调整后每个基地应各有60÷5=12(人)。
因此,需要从多于12人的基地A、C、D向不足12人的基地B、E调人.为了避免对流,经试验容易得到调整方案如下:先从D调2人到E,这样E尚缺1人;再由A调1人给E,则E达到要求.此时,A尚多余4人,C也多余4人,总共8人全部调到B,则B亦符合要求。调动示意图如右图所示.这样的图形叫做物资流向图.用流向 图代替调运方案,能直观地看出调运状况及有无对流现象,又可避免列表和计算的麻烦,图中箭头表示流向,箭杆上的数字表示流量。
【例 24】 下图是一个交通示意图,A、B、C是产地(用●表示,旁边的数字表示产量,单位:吨),D、E、F是销地(用○表示,旁边的数字表示销量,单位:吨),线段旁边有括号的数字表示两地每吨货物的运价,单位:百元(例如B与D两地,由B到D或由由D到B每吨货物运价100元).将产品由产地全部运往销地,怎样调运使运价最小?最小运价是多少?
E5(6)(4)C6(4)8(3)5FA(3)D(1)9B5第3题【解析】 为了运价最小,图中可以直接看出B地的5吨货物,必然要运往D,这个时候D还差954
(吨).一定需要从A运4吨.之后A剩下844吨.之后分两种情况.如果A的4吨全部运往F,之后把C中的1吨运往F,5吨运往E.总共需要运费为
514343145663(百元)6300(元);如果A的4吨全部运往E,之后C中的1吨运往E,5吨运往F,总共需要运费为514344165459(百元)5900(元).
E4A4D5B1FC5图1
板块
四、其他最优化问题
【例 25】 用10尺长的竹竿做原材料,来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎么截法最合算?
【解析】 分析 不难想到有三种截法省料:
截法1:截成3尺、3尺、4尺三段,无残料; 截法2:截成3尺、3尺、3尺三段,残料1尺; 截法3:截成4尺、4尺两段,残料2尺。由于截法1最理想(无残料),因此应该充分应用截法1.考虑用原材料50根,可以截成100根3尺长的短竹竿,而4尺长的仅有50根,还差50根.于是再应用截法3,截原材料25根,可以得到4尺长的短竹竿50根,留下残料2×25=50(尺)。
【例 26】 山区有一个工厂.它的十个车间分散在一条环行的铁道上.四列货车在铁道上转圈运送货物。货车到了某一车间,就要有装卸工人装上或卸下货物.各车间由于工作 量不同,所需装卸工人数也不同,各车间所需装卸工人数如图所示。当然,装卸工可以固定在车间等车;也可以坐在货车上跟车到各车间去干活;也可以一部分装卸 工固定在车间,另一部分跟车.问怎样安排跟车人数和各车间固定人数,才能使装卸工的总人数最少?最少需多少名工人?
【解析】 如跟车人数为57,则各车间都不用安排人,但这样在需要人数少的车间,浪费人力,不行;为此找出各车间人数的平均数,后再调整。各车间人数的平均数为.43.9.若跟车人数为43,则需人数多于43的车间需增加的人数分别为14,7,5,3,9,此时共需人数43×4+14+7+5+3+9=210。若 跟车人数为46,由于需人数多于46的有四个车间,货车上增多的人数与四个车间减少的人数一样。故跟车人数为46人,需人数多于46的四个车间人数各增加 所差数即可 46×4+4+2+6+11=207(人).
【例 27】 现有5段铁链,每段上有4个封闭的铁环.现在要打开一些铁环,把这20个铁环焊接成一个一环套一环的圆圈.如果每打开一个铁环要2分钟,焊接上一个铁环要3分钟.那么焊成这个圆圈,至少需要________分钟.
第8题),下面用每个铁环把剩下的4 段铁链之间的两个【解析】 把第一段的每个都打开之后用了428(分钟相连,只需要4312(分钟).所以至少需要20分钟.
【例 28】 国王准备了1000桶酒作庆祝他的生日,可惜在距离生日前十日,国王得知其中有一桶酒被人下毒,若毒服后则正好第10日发作.有人提议用死刑犯试毒,问至少需要多少个死刑犯才能保证检验出一桶有毒的酒桶?如何试毒?
【解析】 将酒桶编号1~1000全部改为二进制 应该是0000000001~1111101000,让一号犯人喝末位数字是1的毒酒,二号犯人喝倒数第二位数字是1的毒酒......十号犯人喝第一位编号是1的毒酒,这样的话如果某一号犯人死亡就说明相应的某一位数字是1,如果没有死亡那就说明相应位上的数字是零.比如一号犯人死亡,二号~九号犯人存活......十号犯人死亡,那么毒酒的编号就是0111111110也就是第510桶有毒.
【巩固】 欢欢、迎迎各有4张卡片,每张卡片上各写有一个自然数.两人各出一张卡片,计算两张卡片上所写数的和,结果发现一共能得到16个不同的和.那么,两人的卡片上所写的数中最大的数最小是 .
【解析】 为了让两人的卡片上所写的数中最大的数最小,首先应该让它们这16个不同的和最小,因为他们都是自然数,所以最小的十六个数应该是0~15,这恰好是二进制0000~1111,每人手里有四张牌,可以有四种不同的数字,那么可以这样,让每个人手中的牌控制二进制当中的两位,比如欢欢手里的牌是0000、1000、0100、1100这样的话他可以控制二进制的前两位,相应的迎迎手里的卡片应该是0000、0001、0010、0011,这样的话它们就能组成0000~1111所有的数,但是这样的话欢欢手里的牌控制的是最高的两位,这样的话他手里的牌就有点太大了,为了让最大的数最小应该让控制最高位的人同时控制最低位,这样的话,对欢欢手里的牌做调整,可以得到0000、1000、0001、1001,迎迎手里的牌是0000、0010、0100、0110,这样的话同样可以得到0000~1111,16各不同的数字,而且8张牌中最大的数字也只是1001也就是9.
【例 29】 一个物流港有6个货站,用4辆同样的载重汽车经过这6个货站组织循环运输.每个货站所需要的装卸工人数如下图.为了节省人力,可安排流动的装卸工随车到任何一个货站装卸.在最优的安排下使物流港装卸工总人数最少,则是 人.
【解析】 如果每辆车配4人,此时共有装卸工4420410023人,如果每辆车配5人,此时共有装卸工4510300024人,如果每辆车配6人,此时共有装卸工4600200026人,如上我们发现人数是越来越多的,23小于24小于26,故最少23人.
【巩固】 一个工厂有7个车间,分散在一条环形铁路上,三列火车循环运输产品.每个车间装卸货物所需工人数为25、18、27、10、20、15、30.若改为部分工人跟车,部分工人固定在车间,那么安排多少名装卸工,所用总人数最合理?
【解析】 一个工厂有7个车间,分散在一条环形铁路上,三列火车循环运输产品.每个车间装卸货物所需工人数为25、18、27、10、20、15、30,.若改为部分工人跟车,部分工人固定在车间,那么安排多少名装卸工,所用总人数最合理.
如果车上不跟人,各车间所需人数和为:10151820252730147(人),如果每列车上跟1人,共多3人;每个车间可少1人,共少7人,多3少7,可减少4人.
每列车上跟10人,总人数可减少40人.
从11至15,列车上每增加1人,总人数可减少3人. 从16至18,列车上每增加1人,总人数可减少2人. 从19至20,列车上每增加1人,总人数可减少1人. 21增3减3无意义.
总人数为 203571082(人)最少.
【例 30】 一次,齐王与大将赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序一次为一等,二等,三等,四等,而且还知道这八匹马跑得最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等自己的四等.田忌有 种方法安排自己的马出场顺序,保证自己至少能赢得两场比赛.
【解析】 第一场不管怎么样田忌都必输,田忌只可能在接下来的三场里赢得比赛,若三场全胜,则只有一种出场方法;
若胜两场,则又分为三种情况:
二,三两场胜,此时只能是田忌的一等马赢得齐王的二等马,田忌的二等马赢齐王的三等马,只有这一种情况;
二,四两场胜,此时有三种情况; 三,四两场胜,此时有七种情况; 所以一共有113712种方法.
小学奥数统筹规划题库教师版 篇2
教学目标
循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.
知识点拨
1.的“秘密”,,…,2.推导以下算式
⑴;;;;
⑵;;;
⑶;
以为例,推导.
设,将等式两边都乘以100,得:;
再将原等式两边都乘以10000,得:,两式相减得:,所以.
3.循环小数化分数结论
纯循环小数
混循环小数
分子
循环节中的数字所组成的数
循环小数去掉小数点后的数字所组成的数与
不循环部分数字所组成的数的差
分母
n个9,其中n等于循环节所含的数字个数
按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧;
;;,……
例题精讲
模块一、循环小数的认识
【例
1】
在小数上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。)
【考点】循环小数的认识
【难度】2星
【题型】填空
【关键词】希望杯,1试
【解析】
因为要得到最小的循环小数,首先找出小数部分最小的数为0,再看0后面一位上的数字,有05、02、00、07,00最小,所以得到的最小循环小数为
【答案】
【巩固】
给下列不等式中的循环小数添加循环点:0.19980.19980.19980.1998
【考点】循环小数的认识
【难度】3星
【题型】计算
【解析】
根据循环小数的性质考虑,最小的循环小数应该是在小数点后第五位出现最小数字1的小数,因此一定是,次小的小数在小数点后第五位出现次小数字8,因此一定是.其后添加的循环点必定使得小数点后第五位出现9,因此需要考虑第六位上的数字,所以最大的小数其循环节中在9后一定还是9,所以最大的循环小数是,而次大数为,于是得到不等式:
【答案】
【例
2】
真分数化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么是多少?
【考点】循环小数的认识
【难度】3星
【题型】计算
【解析】,,,.因此,真分数化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以,即.
【答案】
【巩固】
真分数化成循环小数之后,从小数点后第1位起若干位数字之和是,则是多少?
【考点】循环小数的认识
【难度】3星
【题型】计算
【解析】
我们知道形如的真分数转化成循环小数后,循环节都是由1、2、4、5、7、8这6个数字组
成,只是各个数字的位置不同而已,那么就应该由若干个完整的和一个不完整组成。,而,所以最后一个循环节中所缺的数字之和为6,经检验只有最后两位为4,2时才符合要求,显然,这种情况下完整的循环节为“”,因此这个分数应该为,所以。
【答案】
【巩固】
真分数化成循环小数之后,小数点后第2009位数字为7,则是多少?
【考点】循环小数的认识
【难度】3星
【题型】计算
【解析】
我们知道形如的真分数转化成循环小数后,循环节都是由6位数字组成,因此只需判断当为几时满足循环节第5位数是7,经逐一检验得。
【答案】
【巩固】
(2009年学而思杯4年级第6题)所得的小数,小数点后的第位数字是
.
【考点】循环小数的认识
【难度】3星
【题型】计算
【解析】
……个数一循环,……5,是4
【答案】4
【例
3】
写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+……=2002÷______。
【考点】循环小数的认识
【难度】3星
【题型】计算
【关键词】小希望杯,4年级
【解析】
0.6+0.06+0.006+……===2002÷3003
【答案】
【例
4】
下面有四个算式:
①0.6+0.②0.625=;
③+===;
④3×4=14;
其中正确的算式是().(A)①和②
(B)
②和④
(C)
②和③
(D)
①和④
【考点】循环小数的认识
【难度】3星
【题型】选择
【关键词】华杯赛,初赛
【解析】
对题中的四个算式依次进行检验:
①
0.6+0.133=0.6+0.133133=0.733133,所以①不正确;
②
0.625=是正确的;
③
两个分数相加应该先进行通分,而非分子、分母分别相加,本算式通过﹥即可判断出其不正确;
④
×=×==,所以④不正确。
那么其中正确的算式是②和④,正确答案为B。
【答案】
【例
5】
在混合循环小数的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大,请写出新的循环小数。
【考点】循环小数的认识
【难度】3星
【题型】计算
【关键词】华杯赛,初赛
【解析】
小数点后第7位应尽可能大,因此应将圈点点在8上,新的循环小数是。
【答案】
【例
6】
将化成小数等于0.5,是个有限小数;将化成小数等于0.090…,简记为,是纯循环小数;将化成小数等于0.1666……,简记为,是混循环小数。现在将2004个分数,,…,化成小数,问:其中纯循环小数有多少个?
【考点】循环小数的认识
【难度】3星
【题型】计算
【关键词】华杯赛,总决赛,二试
【解析】
凡是分母的质因数仅含2和5的,化成小数后为有限小数,凡是分母的质因数不含2和5的,化成小数后为有限小数后为纯循环小数,所以本题实际上是问从2到2005的2004个数中,不含质因数2或5的共有多少个.这2004个数中,含质因数2的有2004÷2=1002个,含质因数5的有2005÷5=401个,既含2又含5的有2000÷10=200个,所以可以化成纯循环小数的有2004-1002-401+200=801个.【答案】
模块二、循环小数计算
【例
7】
计算:(结果写成分数形式)
【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】希望杯,五年级,一试
【解析】
原式。
【答案】
【巩固】
计算:0.3+0.=_____(结果写成分数)。
【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】希望杯,五年级,一试
【解析】
原式=
【答案】
【巩固】
请将算式的结果写成最简分数.
【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】华杯赛,初赛
【解析】
原式.【答案】
【例
8】
计算:
(结果用最简分数表示)
【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】华杯赛,总决赛,一试
【解析】
原式=
【答案】
【例
9】
将的积写成小数形式是____.【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】华杯赛,初赛
【解析】
【答案】
【例
10】
计算:
【考点】循环小数计算
【难度】2星
【题型】计算
【解析】
方法一:
=
方法二:
【答案】
【巩固】
计算
(1)
(2)
【考点】循环小数计算
【难度】2星
【题型】计算
【解析】
(1)原式
(2)原式
【答案】(1)
(2)
【例
11】
⑴
⑵
【考点】循环小数计算
【难度】2星
【题型】计算
【解析】
⑴
法一:原式.
法二:将算式变为竖式:
可判断出结果应该是,化为分数即是.
⑵
原式
【答案】⑴
⑵
【巩固】
⑴计算:
⑵________.
【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】香港圣公会,希望杯,六年级,1试
【解析】
⑴
原式;
⑵
原式.
【答案】⑴
⑵
【巩固】
⑴;
⑵
(结果表示成循环小数)
【考点】循环小数计算
【难度】2星
【题型】计算
【解析】
⑴原式
⑵,所以,【答案】⑴
⑵
【例
12】
()。
【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】中环杯,五年级,决赛
【解析】,所以括号中填
【答案】
【例
13】
计算
(结果表示为循环小数)
【考点】循环小数计算
【难度】4星
【题型】计算
【解析】
由于,所以,而,所以,【答案】
【例
14】
某学生将乘以一个数时,把误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?
【考点】循环小数计算
【难度】3星
【题型】计算
【解析】
由题意得:,即:,所以有:.解得,所以
【答案】
【例
15】
计算:,结果保留三位小数.
【考点】循环小数计算
【难度】2星
【题型】计算
【解析】
方法一:
方法二:
【答案】
【例
16】
将循环小数与相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?
【考点】循环小数计算
【难度】3星
【题型】计算
【解析】
×
循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l位是5.这样四舍五入后第100位为9.
【答案】9
【例
17】
有8个数,,,是其中6个,如果按从小到大的顺序排列时,第4个数是,那么按从大到小排列时,第4个数是哪一个数?
【考点】循环小数计算
【难度】3星
【题型】计算
【解析】,,显然有即,8个数从小到大排列第4个是,所以有.(“□”,表示未知的那2个数).所以,这8个数从大到小排列第4个数是.
【答案】
【例
18】
和化成循环小数后第100位上的数字之和是_____________.【考点】循环小数计算
【难度】2星
【题型】计算
【关键词】走美杯,初赛,六年级,第14题
【解析】
如果将和转化成循环小数后再去计算第100位上的数字和比较麻烦,通过观察计算我们发现,而,则第100位上的数字和为9.【答案】9
【例
19】
将循环小数与相乘,小数点后第位是。
【考点】循环小数计算
【难度】3星
【题型】计算
【关键词】走美杯,6年级,决赛
【解析】,所以乘积为,所以第位是。
【小学奥数统筹规划题库教师版】推荐阅读:
小学奥数教学10-21
小学奥数简单推理06-10
小学奥数组合图形面积08-29
小学生学习奥数11-19
小学奥数题工程问题05-23
小学奥数五年级讲解06-05
我和奥数小学作文08-22
小学五年级奥数题目10-16
小学五年级奥数题10-21
小学奥数流水行船问题11-22