全等三角形定义与证明(精选9篇)
全等三角形定义与证明 篇1
全等三角形的证明
1.翻折
如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;
旋转
如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;
平移
如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。
2.判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理
(2)推论:角角边定理
3.注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
一、全等三角形知识的应用
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等
例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.
.
例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。
N
M
FE
C
A B
全等三角形定义与证明 篇2
情形一简单组合“SAS”条件进行判定
例1已知:如图1,E是BC的中点, ∠1=∠2,AE=DE.
求证:AB=DC.
【分析】就本题图形与已知条件来看, 要证得AB=DC,只要证得两个三角形全等即可. 从所给的条件来看,已知中直接给定了一组角与一组边对应相等,好像少一组边对应相等,实际上∠1=∠2的另一组夹边以“E是BC的中点”的形式给出了,这三个条件基本上是以比较直接的形式给出的,具体证明只要简单组合一下这三个条件就可以了.
证明:∵E是BC的中点,
∴BE=CE.
在△ABE 和△DCE 中,
∵BE=CE,∠1=∠2,AE=DE,
∴△ABE≌△DCE.
∴AB=DC.
【反思】这种只要直接组合已知条件证明三角形全等的题主要考查基础知识,给出证明时注意几何语句的书写规范.
情形二探寻“夹角”相等实现“SAS” 判定
例2已知:如图2,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.
求证:AB=CD.
【分析】由题意,我们只要证得△AOB≌ △COD即可得到结论.这两个三角形全等的条件已直接给出了两组边对应相等,是不是能找到它们的夹角呢?显然,题目已知条件给了“OP是∠AOC和∠BOD的平分线”,能给我们以帮助,可以得到∠AOP= ∠COP,∠BOP=∠DOP,进而由角的差可以得到两个三角形的∠AOB=∠COD,从而获得三角形全等的必要条件.
证明:∵OP是∠AOC和∠BOD的平分线,
∴ ∠AOP=∠COP,∠BOP=∠DOP.
∴∠AOB=∠COD.
在△AOB 和△COD 中,
∴△AOB≌△COD. ∴AB=CD.
【反思】本题也是比较典型的考查全等三角形的基础问题,只要经过简单的探究就能得到一个间接给出的有效条件从而实现问题的解决,解题时注意题目中一些间接信息的转译,一些间接信息是发现有效条件的来源.
情形三探寻一组“有效的边”相等应用“SAS”判定
例3如图,点C,E,B,F在同一直线上,∠C=∠F,AC=DF,EC=BF.求证:△ABC≌ △DEF.
【分析】由题意,题中直接给出一组对应角、一组对应边相等,还差一组对应边 (BC=EF)就可以应用“SAS”判定两个三角形全等了.观察所给的条件EC=BF,我们可以利用线段的和得到有效的一组对应边BC=EF,于是问题获得解决.
证明:∵EC=BF,
∴EC+BE=BF+BE,即 BC=EF.
在△ABC 与△DEF 中,
∴△ABC≌△DEF(SAS).
【反思】本题寻找另一组“有效的对应边”也是通过题目中间接信息得出的,这种给出一组非对应边的线段相等,从而根据线段的和及等式性质得到对应边相等的解题思路(或意识)是非常重要的,同学们要注意积累.
最后链接一道新考题,帮助同学们巩固本文所讲内容.
小试牛刀
试析证明三角形全等的技巧 篇3
【关键词】三角形全等 证明 两大关键 三类图形 两种方法
一般来说,证明三角形全等就是证明三角形的角和线段相等,这也是初中平面几何的基础理论。所以说,以多角度学习证明三角形全等的方法就是学好初中平面几何的关键,对后续更复杂的几何知识学习也很有帮助。
一、证明三角形全等的两大关键
三角形全等的基本理念就是找准角与角、边与边之间的对应关系,所以本文针对三角形全等证明归纳两大关键要点:
第一,全等三角形的公共边一定要是对应边,而其公共角即对顶角也必须全是对应角。
第二,在全等三角形中,相等的边边关系所对应的角也必须为对应角;反之,相等的角其所对应的边也一定是对应边,如此才能成立三角形全等这一结论[1]。
二、证明三角形全等的三类图形
在初中平面几何教学中,通常认为的全等三角形图形形态应该包括三种:
(一)平移型全等三角形
图1 平移型全等三角形
如图1中所示的即为平移型全等三角形,两个三角形在平移后依然是保持全等关系不变的,以下举例来说。
例1:如图2,在两个三角形△DEF与△ABC中,如果边EF∥BC,且有 ∠EDF=∠BAC,已知边DE=AB=8,AC=12,BC=10,那么边EF的长度为多少?
图2 平移三角形DEF和ABC
因为△DEF与△ABC符合ASA判定定理,∠EDF=∠BAC且AB=DE=8,那么BC=10,所以就有EF=BC=10.
(二)对称型全等三角形
图3 对称型全等三角形
例2:如图4,已知∠DBA=∠CAB,边DB=CA,DA与CB的相交点为O,而E为AB边的中点,试证明OE与AB的位置关系.
图4 对称三角形CAB和DBA
首先,根据ASA判定定理可以得知,因为∠DAB=∠DBA,所以△DBA与△CAB应该为全等三角形,E为AB边的中点,所以OB=OA,∠OBA=∠OAB,所以边OE与边AB应该呈垂直关系,即OE⊥AB.
(三)旋转型全等三角形
图5 旋转型全等三角形
例3:如图6,在平行四边形ABCD中,E、F两点位于对角边AC之上,如果AF=CE,求问DF与BE边的关系.
图6 旋转三角形ADF与CBE
该题求解的是DF与BE两边的关系,从经验来看,两边应该属于平行关系,若想证明DF∥BE,就必须先证明△ADF与△CBE为全等三角形。因为AD∥BF,且AD=BC,∠DAC=∠BCA,AF=CE,所以根据SAS判定定理,可以证明△ADF与△CBE为全等三角形。在证明两三角形全等后,就可以得出结论,边DF=BE,且两边也是平行关系,DF∥BE.
以上三种图形就是在对称、平移和旋转状态下的三种全等三角形,对它们的判定还是要基于四大判定定理,并通过变换图形的角度、位置、垂直平行关系来证明它们可能存在的全等关系。对于初中生来说,它的难点就在于要用角度变换的思维来看待对三角形全等的证明,并学会灵活运用三角形全等的四个判定定理进行证明[2]。
三、证明三角形全等的两种方法
在初中平面几何学习中,对三角形全等的证明存在顺推和逆推两种方法,本文将做出一一解析。
(一)顺推分析法
所谓顺推分析自然是从已知条件出发,利用上述提到的四种判定定理或其他平面几何知识进行推导,再联系结合题目中的已知条件来发展推理过程,最后得出结论。
例4:如图7,线段AB中点为C,其中DC边平分∠ACE,有∠1=∠2,EC边平分∠BCD,有∠2=∠3,且EC=DC,证明△DAC与△EBC为全等三角形.
图7
该题目中所给出的已知条件十分充分,因为C点为线段AB的中点,所以CA=CB。因为DC、EC边平分∠ACE与∠BCD,所以∠1=∠2=∠3。又因为DC=EC,根据SAS判定定理,至此可以说明△DAC≌△EBC.
(二)逆推分析法
逆推分析法是从结论入手的解题方法,它所分析的是到达结论的可行性路径,并且根据结合所给出的已知条件和结论来寻找到正确的证明方法。在三角形全等的求解过程中,逆推分析法是十分常见的。
例5:如图8,已知BA=CA,DA=EA,请求证BD=CE.
∵DA=EA,BA=CA
∴∠C=∠B,∠1=∠2
根据SAS,∵∠B+∠3=∠1,∠C+∠4=∠2
∴∠3=∠4
DA=EA,BA=CA,∴可得△BAD≌△CAE,∴BD=CE.
以上为顺推分析和逆推分析的例题求证,如果能够娴熟掌握上述两种方法技巧,学生还可以结合顺推与逆推,用两种技巧共同解决习题,求证三角形的全等关系[3]。
四、总结
除上述解题方法外,利用公共边、公共角、对顶角等方法也能证明三角形的全等关系。因此可以说,初中平面几何中三角形全等的求解方法是丰富多样的,教师在教学过程中应该在扎实掌握四大判定定理、边角关系的基础理论的基础上,充分打开学生的思路,开阔学生的视野,从不同角度、不同层面来启迪和开发学生的解题能力。而三角形全等证明问题作为初中平面几何的基础知识,也应该被学生所熟悉运用,这对他们未来面对和解决更复杂的几何题型很有帮助。
【参考文献】
[1]娄菊红.浅谈证明三角形全等的一些技巧[J].中学生数理化(八年级数学人教版),2012(07):6-7.
[2]钱燕群.三角形全等的证明及应用举例[J].读写算(教育教学研究),2011(08):118-119.
全等三角形证明题01 篇4
A D
B E C F
2.如图,已知D是△ABC的AC边上的一点,DF交AB于E点,DE=EF,FB∥AC.求证:AE=BE.
A E D F
B C
3.如图,已知点A、E、F,C在一条直线上,BF=DE,AB=CD,AE=CF,求证:DE∥BF.
D C
E F A B
4.如图,已知AB=AC,AD=AE,BD=CE,求证:312.
A 1E
3D2 BC
5.如图,已知若AB=CD,AB∥CD,F、E分别在AB、CD上,且FC∥BE,AD分别交FC、BE于G、H.求证:AG=DH.
C E D H G A F B
6.如图,已知已知A、C、B三点在同一直线上,△ABD和△BCE都是等边三角形.求证:AE=DC.
D
A C B
E
7.如图,已知AB=AE,∠B=∠E,BC=ED,F是CD的中点.求证:AF⊥CD.
A
B E
C F D
全等三角形证明题01 8.如图,已知DC∥AB,FC∥AE,且DF=BE.求证:AD=BC.
D C
F E A B
9.如图,已知AB=AC,AE=AD,BD和CE于O.求证:⑴ ∠OBE=∠OCD; ⑵ ∠OAE=∠OAD. A
E D
O
C B
10.如图,已知点A、B、C在同一直线上;分别以 AB、BC为边在直线同旁作等边△ABD和等边△BCE,AE、CD分交BD、BE于P、Q.求证:BP=BQ.
D E
P Q
A C B
11.如图,已知在△ABC中,分别以AC、BC为一边作等边△ACD与△BEC,连结AE、BD相交于O点.求证:AE=BD.
D C E O
B A
12.如图所示,△ABC、△ADE均为等边三角形,连结CD、BE,M、N分别为CD、BE的中点.求证;△AMN为等边三角形.
B
A N
D
全等三角形的证明练习题 篇5
1、如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不可能是()
A、∠B=∠CB、AD=AEC、∠ADC=∠AEBD、DC=BE
AC
A
D
BCEAODBCEF
第1题图第2题图第3题图
2、如图所示,给出下列四组条件:①AB=DE,BC=EF,AC=DF; ②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,AC=DF,∠C=∠F; ④AB=DE,AC=DF,∠B=∠E; 其中,能使△ABC≌△DEF的条件共有()
A、1组B、2组C、3组D、4组
3、如图所示,AC=AD,BC=BD,那么全等三角形由()
A、1对B、2对C、3对D、4对
4、如图,△ABC≌△ADE,∠B=28°,∠E=95°,∠EAB=20°,则∠°
BA
C
C
AEDBDCDFABE
第4题图第5题图第6题图
5、如图,△AOC≌△BOD,那么下列结论错误的有
① ∠C=∠D② ∠2=∠1③ AO=DO④ AC=BD6、已知△ABC≌△EBF,AB⊥CE,ED⊥AC;
(1)对应相等的边有,;
(2)对应相等的角由,;
(3)若AB=5,BC=3,在7、如图,AB=AE,AC=AD,∠BAD=∠EAC,求证ED=BC;
ADCBE8、如图,已知点C在AB上,∠1=∠2,∠3=∠4,求证∠5=∠6;
D
3AE
A9、如图,已知AB∥CD,AD∥BC,求证AB=CD;
B10、如图,∠ACB=90°,AM⊥MN,BN⊥MN,AC=BC,求证MN=AM+BN;
A
八年级数学全等三角形证明题 篇6
第十三章全等三角形测试卷
(测试时间:90分钟总分:100分)
班级姓名得分
一、选择题(本大题共10题;每小题2分,共20分)
1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC=DF;
③BC=DF;④AB=EF中,能判定它们全等的有()
A.①②B.①③C.②③D.③④
2. 下列说法正确的是()
A.面积相等的两个三角形全等
B.周长相等的两个三角形全等
C.三个角对应相等的两个三角形全等
D.能够完全重合的两个三角形全等
3. 下列数据能确定形状和大小的是()
A.AB=4,BC=5,∠C=60°B.AB=6,∠C=60°,∠B=70°
C.AB=4,BC=5,CA=10D.∠C=60°,∠B=70°,∠A=50°
4. 在△ABC和△DEF中,∠A=∠D,AB = DE,添加下列哪一个条件,依然不能证明△
ABC≌△DEF()
A.AC = DFB.BC = EFC.∠B=∠ED.∠C=∠F
5. OP是∠AOB的平分线,则下列说法正确的是()
A.射线OP上的点与OA,OB上任意一点的距离相等
B.射线OP上的点与边OA,OB的距离相等
C.射线OP上的点与OA上各点的距离相等
D.射线OP上的点与OB上各点的距离相等 D 6. 如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC
时,运用的判定定理是()A.SSS
C B.ASA B C.AAS
(第6题)D.SAS
7. 如图,若线段AB,CD交于点O,且AB、CD互相平分,则下列结论错误的是()D A.AD=BC
B.∠C=∠D
C.AD∥BC
D.OB=OC
8. 如图,AE⊥BD于E,CF⊥BD于F,AB = CD,AE = CF,则图中全等三角形共有()
A.1对
B.2对
C.3对
D.4对 B(第7题)(第8题)D中考网
9. 如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△
ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的()
A.只有①
B.只有②
C.只有③
D.有①和②和③
B 10.如图,DE⊥BC,BE=EC,且AB=5,AC=8,(第9题)则△ABD的周长为()
A.
21B.18C.1
3C E D.9
(第10题)
二、填空题(本大题共6小题;每小题2分,共12分)
11.如图,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC与△ABD全等:
(1),(ASA);(2),∠3=∠4(AAS). 12.如图,AD是△ABC的中线,延长AD到E,使DE=AD,连结BE,则有
△ACD≌△。
13.如图,△ABC≌△ADE,此时∠.
A CBC B ED A(第11题)
(第13题)(第12题)
14.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm. 15.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.B
C C A C E(第15题)(第14题)(第16题)
16.如图,在△ABD和△ACE中,有下列论断:①AB=AC;②AD=AE;③∠B=∠C;④
BD=CE.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题:。
三、解答题(本大题5小题;共68分)17.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB.∠MON=50°,∠OPC=30°.
求∠PCA的度数.
A
B
18.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分
线,请你先作△ODB的角平分线DF(保留痕迹)再证明CE=DF.
19.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证BM=CN.
MB
D
N
20.已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.(1)求证BG=CF;
(2)试猜想BE+CF与EF的大小关系,并加以证明.
21.如图,图(1)中等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE,AD,若BC=AC,EC=DC.求证BE=AD;若将等腰△EDC绕点C旋转至图(2)(3)(4)情况时,其余条件不变,BE与AD还相等吗?为什么?
A
DB
A
A
E
E
B
(1)
D
DC
B
D
(2)(3)
(4)
八年级(上)《全等三角形》试卷讲评课教案
九华初级中学李海燕
教学目标:
1.通过讲评,进一步巩固全等三角形的相关知识点。
2.通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。教学重点:
第16,19,20题的错因剖析与矫正。教学过程:
一、考试情况分析:
班级均分:82.1 分最高分:100 分 100分的同学,全班公示,鼓掌祝贺。分发试卷。
二、学生小组总结试卷填空和选择两块解题中错误原因和解题感受,看看哪些小组总结得比较好。
学生用投影展示自己的所思所想。
三、重点评讲解答题的19、20题
1、学生小组交流
2、学生据黑板图形讲解
3、教师点评
四、学生自我完善考卷
五、总结课堂,教师质疑
六、学生课堂训练
教案说明:
本张试卷学生考试情况较好,典型错误不多,且书写态度端正,思维过程表达清晰,可以看出学生对全等三角形的性质、判定掌握到位,如17、19有的学生能灵活运用角平分线性质及垂直平分线性质进行解答,方法比较简便。针对考试情况,我在进行教学设计时让学生发现自己在解题中的失误或错误,重点评讲了试题中的3、19、20等题。本课主要采用由学生说题的方法进行评讲,心理学研究表明,人在学习活动过程中,听懂不一定做的出,语
言表述则是思维活动的最高境界,语言更能训练思维的逻辑性和严密性。学生对解题过程或者思维过程口头能表达清楚才是真的理解这道题。总之,“学生说题”能转变学生的学习方式,建设开放而有活力的课堂,符合有效课堂的特征,是高参与的课堂、高认知的课堂、高情意的课堂。课堂练习是针对学生在考卷中表现出的薄弱之处设计的,在学生对考卷进行评讲后进行练习,能有效帮助学生进一步掌握解题方法。
课堂针对性练习
班级姓名组别
1、如图,在△AEB和△AFC中,有下列论断:①∠EAC=∠FAB;②AB=AC;③BE=CF;④AE=AF.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题.2、(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于
D,CE⊥AF于E.求证:DE=BD-EC
全等三角形定义与证明 篇7
1.已知:D是AB中点,∠ACB=90°,求证:CD
1AB
2延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
14.已知:AB=CD,∠A=∠D,求证:∠B=∠C
证明:设线段AB,CD所在的直线交于E,(当AD
△AED是等腰三角形。
∴AE=DE
而
AB=CD
∴BE=CE(等量加等量,或等量减等量)
∴△BEC是等腰三角形
∴∠B=∠C.15.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:
AC-AB=2BE
证明:
在AC上取一点D,使得角DBC=角C
∵∠ABC=3∠C
∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;
∵∠ADB=∠C+∠DBC=2∠C;
∴AB=AD
∴AC – AB =AC-AD=CD=BD
在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD
∵BE⊥AE
∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD
∴点E也是BD的中点
∴BD=2BE
∵BD=CD=AC-AB
∴AC-AB=2BE
16.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC
∵作AG∥BD交DE延长线于G
∴AGE全等BDE
∴AG=BD=
5∴AGF∽CDFAF=AG=5
∴DC=CF=2
20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
P E
D
做BE的延长线,与AP相交于F点,∵PA//BC BA∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线
∴三角形FAB为等腰三角形,AB=AF,BE=EF
在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC
∴AB=AF=AD+DF=AD+BC
F
证明:
CEB=∠CAB=90°
∴ABCE四点共元
∵∠AB E=∠CB E
∴AE=CE
∴∠ECA=∠EAC
取线段BD的中点G,连接AG,则:AG=BG=DG
∴∠GAB=∠ABG
而:∠ECA=∠GBA(同弧上的圆周角相等)
∴∠ECA=∠EAC=∠GBA=∠GAB
而:AC=AB BA∵ED∠C
∴△AEC≌△AGB
∴EC=BG=DG
∴BE=2CE25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。
DEFC
AB
证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC,∠D=∠C,DE=CF
∴△AED≌△BFC(SAS)
40.在△ABC中,ACB90,ACBC,直线MN经过点C,且ADMN于D,BEMN于E.(1)当直线MN绕点C旋转到
图1的位置时,求证: ①ADC≌CEB;②DEADBE;
(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立
吗?若成立,请给出证明;若不成立,说明理由
.(1)
①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,∴△ADC≌△CEB.
②∵△ADC≌△CEB,∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.
又∵AC=BC,∴△ACD≌△CBE.
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE
41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF
EC
(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;
(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.
44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由
在AB上取点N ,使得AN=AC
∵∠CAE=∠EAN
∴AE为公共,∴△CAE≌△EAN
∴∠ANE=∠ACE
又∵AC平行BD
∴∠ACE+∠BDE=180
而∠ANE+∠ENB=180
∴∠ENB=∠BDE
∠NBE=∠EBN
∵BE为公共边
∴△EBN≌△EBD
∴BD=BN
全等三角形定义与证明 篇8
全等三角形的证明专题训练 三角形全等的条件
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
专题训练
一、选择题:
1.能使两个直角三角形全等的条件是()
A.两直角边对应相等C.两锐角对应相等B.一锐角对应相等 D.斜边相等 B.AB4,BC3,A30 D.C90,AB6 2.根据下列条件,能画出唯一ABC的是()A.AB3,BC4,CA8 C.C60,B45,AB
43.如图,已知12,ACAD,增加下列条件:①ABAE;②BCED;③CD;④BE。其中能使ABCAED的条件有()
A.4个B.3个C.2个D.1个
4.如图,12,CD,AC,BD交于E点,下列不正确的是()
A.DAECBEB.CEDE D.EAB是等腰三角形 C.DEA不全等于CBE
乐学堡辅导中心内部资料 注意保存
5.如图,已知ABCD,BCAD,B23,则D等于()
A.67 C.23B.46D.无法确定
二、填空题:
6.如图,在ABC中,C90,ABC的平分线BD交AC于点D,且
CD:AD2:3,AC10cm,则点D到AB的距离等于__________cm;
7.如图,已知ABDC,ADBC,E,F是BD上的两点,且BEDF,若
AEB100,ADB30,则BCF____________;
8.将一张正方形纸片按如图的方式折叠,BC,BD为折痕,则CBD的大小为_________;
9.如图,在等腰RtABC中,C90,ACBC,AD平分BAC交BC于D,
DEAB于E,若AB10,则BDE的周长等于____________;
10.如图,点D,E,F,B在同一条直线上,AB//CD,AE//CF,且AECF,若
BD10,BF2,则EF___________;
三、解答题:
11.如图,在ABC中,ABBC,ABC90。F为AB延长线上一点,点E在BC上,BEBF,连接AE,EF和CF。求证:AECF。
12.如图,D是ABC的边BC上的点,且CDAB,ADBBAD,AE是ABD的中线。求证:AC2AE。
13.如图,在ABC中,ABAC,12,P为AD上任意一点。求证:ABACPBPC。
ABC为等边三角形,14.如图,点M,N分别在BC,AC上,且BMCN,AM与BN
交于Q点。求AQN的度数。
15.如图,ACB90,ACBC,D为AB上一点,AECD,BFCD,交CD
全等三角形定义与证明 篇9
学习目标:
1.掌握两个三角形全等的条件与性质;2.能用三角形的全等性质解决实际问题.重点:掌握全等三角形的性质与判定方法.难点:对全等三角形性质的运用
学习过程:
一、梳理知识,形成体系
1、_________的两个三角形全等;
2、全等三角形的对应边_____;对应角______;
3、证明全等三角形的基本思路
找第三边(______________)(1)已知两边 找夹角(___________)看是否是直角三角形(______________)(______)找这边的另一邻角(_____)找这个角的另一边已知一边与邻角找这边的对角(_____) 找一角(_______)(2)已知一边一角 已知一边与对角 已知是直角,找一边(_____)
找夹边(______________)
(3)已知两角 找夹边外任意一边(______________)
二、实践演练,拓展提高
㈠、三边对应相等的两个三角形全等(SSS)演练1.如图,在ABC中,C90,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC.求证:DE⊥AB。
㈡.两边和夹角对应相等的两个三角形全等(SAS)
演练2.如图,AD与BC相交于O,OC=OD,OA=OB,求证:CABDBA
㈢、两角和夹边对应相等的两个三角形全等(ASA)演练3.如图,梯形ABCD中,AB//CD,E是BC的中点,直线AE交DC的延长线于F 求证:ABE≌FCE
㈣、两角和夹边对应相等的两个三角形全等(AAS)演练4.如图,在ABC中,AB=AC,D、E分别在BC、AC边上。且ADEB,AD=DE 求证:ADB≌DEC.㈤、一条直角边和斜边对应相等的两个直角三角形全等(H L)演练5.如图,在ABC中,C90,沿过点B的一条直线BE 折叠ABC,使点C恰好落在AB变的中点D处,求∠A的度数
演练6。在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD—BE(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明
【全等三角形定义与证明】推荐阅读:
全等三角形的证明07-19
全等三角形证明习题11-25
初一全等三角形证明08-19
全等三角形证明题sss07-26
初二数学全等三角形证明01-19
八年级数学全等三角形证明题12-26
全等三角形09-20
全等三角形判定方法08-23
全等三角形专题老师09-08
全等三角形复习课件01-17