不等式的性质

2024-09-17

不等式的性质(通用10篇)

不等式的性质 篇1

《不等式的性质》的教学设计与反思

庆阳市西峰区彭原乡彭原初级中学

[教材分析]

《不等式的性质》的内容属于初中数学“数与代数”部分。数量之间除有相等关系外,还有大小不等的关系。正如方程和方程组是讨论等量关系的有利数学工具一样,不等式与不等式组是讨论不等关系的有利数学工具。不等式是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习,有着重要的实际意义。研究不等式在整个初中数学学习中有着承上启下的作用。解决不等式问题对不等关系的研究起着画龙点睛的作用。掌握不等式的性质是顺利解决不等式的重要依据。不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容作理论基础,起到重要的奠基作用。

[学情分析]

1.授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学;充分调动学生的积极性,注重课堂教学的有效性,在练习设计上要针对学生差异采取分层设计的方法。

2.本节课主要研究不等式的性质和简单应用。他与前面学过的等式的性质有联系也有区别,为渗透类比、分类讨论的数学思想提供了很好的素材。由于学生的认知结构是建立在等式的知识基础上对不等式进行学习,所以,在学习的过程中学生容易延续的等式性质的理解,产生惯性的思维定势,尤其体现在对不等式性质3的理解与应用。

[教学目标]

1.经历不等式基本性质的探索过程,掌握不等式的基本性质。

2.经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同。

3.通过创设问题情境和实验探究活动,积极引导学生参与解决数学问题,提高学生学习数学的兴趣,增强学习数学的信心,发展学生的符号表达能力、代数变形能力,在自主探索、合作交流中让学生感受学习的乐趣。[教学重难点]

重点:理解并掌握不等式的性质。

难点:不等式性质的理解应用(特别是性质3的理解应用)。[教学过程]

一、回顾旧知,类比新知

[问题1]我们学习过等式的相关性质,你能说出等式的性质吗?(性质1„„,性质2„„。)

学生回答问题,教师演示天平实验。(等式)

[问题2]我们学习了不等式,它是否也有类似的性质呢? 教师继续演示天平实验。学生观察老师的操作后思考:①.天平被调整到什么状况;②.给不平衡的天平两边同时加入(拿掉)相 同质量的砝码,天平会有什么变化?③.如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?

本环节中,教师应重点关注:

(1).学生能否准确表达等式的性质;(2).学生是否积极参与类比的思考之中。

(通过回顾等式的性质,演示等式性质的产生过程,为不等式性质的研究以及不等式的性质的归纳作好铺垫。培养学生善于运用类比、迁移学习方法的良好习惯。)

二、探索新知,归纳结论

[问题3] 用“>”或“<”填空,并总结其中的规律: ①

5>3, 5+2——3+2,5-2——3-2; ②

-1<3,-1+2____3+2,-1-3——3-3;

6<2,6*5——2*5,6*(-5)——2*(-5);④

-2<3,(-2)*6___3*6,(-2)*(-6)____3*(-6).学生填空,师生展示正确结果。

(通过对一组练习的延伸探究,培养学生发现、归纳问题的能力)

[问题4]从以上一组练习种你发现了什么?请你把你的发现与合作小组的同学交流。

通过学生小组合作交流,学生把自己的“发现”进行充分讨论,探究不等式的性质。

[问题5]请用你发现的规律填空: 当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向——。当不等式两边乘同一个数正数时,不等号的方向——;而乘同一个数负数时,不等号的方向——。

[问题6]请大家换一些其他数,验证这个发现。

教师掌握各小组情况,适当引导,尤其(3)(4)是不等式两边同乘以正数、负数,所得结果截然不同,因此要有针对的区别开。

(通过类比等式性质,引导学生探究不等式的性质,培养学生用类比的方法学习知识。)

[问题7]你能用自己的语言概括不等式有哪些性质吗?请小组讨论。

性质1::不等式两边加上或减去同一个数(式子)时,不等号的方向不变;性质2:不等式两边乘(或除以)同一个正数时,不等号的方向不变;性质3:: 不等式两边乘(或除以)同一个负数时,不等号的方向改变;(学生观察对比、探索发现,清晰地掌握性质2和性质3的区别,有利于正确理解和应用;培养学生的概括能力和数学语言表达能力。)

[问题8]你能用字母表示不等式的性质吗?请小组讨论交流。(1).若a>b, 则 : a±c>b±c;

(2).若a>b,c>0 则 : ac>bc或a/c>b/c;(3).若a>b,c<0 则 : ac

等式的性质有2条,进行加减乘除运算时相等关系不变;不等式的性质有3条,加减不等关系不变,乘除要分正、负分别讨论,两个结果不同。

学生合作交流,教师深入指导。本环节中,教师应重点关注:

(1).交流合作中,学生是否积极参与类比的思考;(2).学生能否全面地考虑不等式性质2和性质3的区别;(3).学生能否准确表达不等式的性质;

(4).学生能否用数学符号语言表达不等式的性质。(培养学生使用符号语言表达数学现象,培养数学文字与符号语言的相互转化能力,提升数学表达能力。)

三、基础训练,巩固应用

1.如果a>b,判断下列不等式是否正确:

-4+a>-4+b;()a-3b.b ;()-5a>-5b()2.如果a>b,用用“>”或“<”填空:

a+2__b+2; 3a__3b;-2a__-2b; a-3__b-3; a/2__b/2; a-8__b-8; 2a-5__2b-5;-3.5a__-3.5b;-8.5a+2__-8.5b+2; 若a>0,b<0,c<0 则(a-b)c___0; 若a 0 则ac+c___bc+c.3.① a>0 x>y则:ax____ay; ② a<0 x

ax___ay.(加深学生对新知识的理解,建立对不等式性质的正确的认识)

四、应用拓展,解决问题

例1:利用不等式的性质解下列不等式:

① x-7>26;② 3x<2x+1;

③ 2/3x>50;

④-4x>3.(学生分组讨论,研究上述不等式的解法,并总结其中的规律,要求学生类比解方程,用准确的数学语言表达。特别是移项表述,类比解方程,用准确的数学语言表达。)

教师深入小组,适当点拨指导,帮助学生总结不等式结构特点,有针对性的总结规律。

师生共同展示讨论结果。

教师板书其中一题,统一要求对不等式解题过程的规范书写,解集在数轴上的正确表示,展示数形结合的整体美感。

本环节中,教师应重点关注:

(1).学生能否抓住不等式的结构特点,合理使用不等式性质解不等式;

(2).学生能否准确地在数轴上表示不等式的解集;(强调“<”与“≤”在意义上和数轴表示上的区别。)

(3).学生能否认真参与小组讨论;是否通过讨论掌握不等式解法;

(4).学生能否通过对比解方程的方法,发现解方程与解不等式的方法的区别与联系。练习:教材第119页练习第1题。

(培养学生积极思考,参与交流合作的习惯,建立良好的合作意识,提高学生运用所学知识解决问题的能力。类比解方程的方法解不等式注意性质3,并类比解法的异同,帮助严谨规范的书写习惯。)

五、归纳小结,收获感悟 谈一谈本节课你有什么收获?

学生归纳总结(1)不等式性质1、2、3;(2)简单不等式的解法 本环节中,教师应重点关注:

(1).学生是否积极参与总结归纳,是否养成对知识进行及时归纳整理的习惯;

(2).学生对本节课所研究的问题的理解程度。(积累数学经验,加强记忆和应用能力。)

六、作业

习题9.1第4、5题。[教学反思]

为创设宽松民主的学习氛围,激发学生思维的主动性,顺利完成教学目标,本节课坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,给学生充分的自主探索时间,引导学生联系已有知识学习新知识,减少学生获取新知识的难度,通过教师的引导,调动学生的积极性,组织学生参与“探究—讨论—交流—总结”的学习过程,让学生在课堂上多活动、多观察,主动参与到了整个教学活动中来,从本节课的设计上看,我自认为知识全面,讲解透彻,条例清晰,系统性强,讲练结合,训练到位,但一节课下来后没有为学生“减负”,忽略了实效性。在今后的教学中我要多问多听、多思多想,真正为学生减轻课业负担,增强教学的实效性。

另外,在今后的教学中要注重学生学习习惯的培养。

者:马

甘肃省庆阳市西峰区彭原乡彭原初级中学教师 通讯地址:甘肃省庆阳市西峰区彭原乡彭原初级中学 邮

编:745000

不等式的性质 篇2

一般, 对定积分不等式的性质是叙述为:若函数f (x) 和g (x) 为[a, b]上的两个可积函数, 且f (x) ≥g (x) , 则有∫b a f (x) dx≥∫b a g (x) dx。对上述不等式中的“≥”在什么情况下“>”成立, 什么情况下“=”成立, 并没有进一步讨论。本文将给出上述不等号严格成立的条件, 进而得到判断积分不等式性质中不等号严格成立的方法。

1 主要结果

引理1[1] 设函数f (x) 在[a, b]上非负可积, 则∫baf (x) dx≥0。

引理2 设函数f (x) 在[a, b]上可积, 则f (x) 在[a, b]上有无数多个连续点。

证明 因为f (x) 在[a, b]上可积, 所以对于ε1=1, 存在[a, b]的分割T1, 使得

由此可知, 在T1的某个小区间Δk=[xk-1, xk], f (x) 的振幅wk=wf[xk-1, xk]<ε1=1。若不然, 将导致Τ1wiΔxi1×Τ1Δxi=1× (b-a) , 这就与式 (1) 矛盾.取[a1, b1]⊂ (xk-1, xk) , 满足

以[a1, b1]代替[a, b], 对于ε2=12, 同样存在T2及属于T2的某个小区间的子区间[a2, b2], 满足

依次做下去, 得一区间套{[an, bn]}, 由闭区间套定理, 存在x0∈ (an, bn) ⊂ (a, b) , n=1, 2, …。

下证x0为f (x) 的一个连续点。 对于任给的正数ε>0, 存在正整数n, 使1n<ε。令

δ=min{x0-an, bn-x0},

则∪ (x0, δ) ⊂[an, bn].故当x∈∪ (x0, δ) 时,

|f (x) -f (x0) |wf[an, bn]<1n<ε

现在任给 (α, β) ⊂[a, b], 由于f (x) 在[α, β]上可积, 从而由上面已证的结果, f (x) 在[α, β]内有连续点, 故f (x) 在[α, β]有无限多个连续点。

定理1 若函数f (x) 为区间[a, b]上的非负可积函数, 则存在f (x) 的连续点x0∈[a, b], 使得f (x0) >0的充要条件是∫baf (x) dx>0。

证明 [必要性] 不妨设x0∈ (a, b) , 由于函数f (x) 在x0点连续, 则根据连续函数的保号性, ∃δ>0, 对∀x∈[x0-δ, x0+δ]有f (x) f (x0) 2>0。从而abf (x) dx=ax0+δf (x) dx+x0-δx0+δf (x) dx+x0+δbf (x) dxx0-δx0+δf (x) dxx0-δx0+δf (x0) 2dx=f (x0) δ>0

[充分性] 先证明当∫baf (x) dx>0时, 一定存在区间 (α, β) ⊂[a, b], 在[α, β]上有f (x) >0。若不然, 有ξ∈[α, β], 使得f (ξ) =0, 则对[a, b]的任一分割T, 在每个Δi上都可以找到ξi使f (ξi) =0, 从而

abf (x) dx=limΤ0i=1nf (ξi) Δxi=0

这与∫baf (x) dx>0矛盾。

其次, 由于函数f (x) 在[α, β]上可积;因此由引理2有f (x) 在[α, β]上一定存在连续点x0, 故f (x0) >0。

注1 文献[2]给出了定理1中条件的必要性, 而本文指出了条件的充要性。

由定理1容易得到定理1的如下等价命题。

定理2 若函数f (x) 为[a, b]上的非负可积函数, 则函数f (x) 连续点上恒为零的充分必要条件是∫baf (x) dx=0。

由定理1和引理2可得如下的定理3和定理4。

定理3 若函数f (x) 为[a, b]上可积函数, 且f (x) >0, 则∫baf (x) dx>0。

定理4[3] 设函数f (x) 在[a, b]上非负连续, 且f (x) 不恒等于0, 则∫baf (x) dx>0。

2 推论

推论1 设f (x) , g (x) 为[a, b]上的两个可积函数, 满足f (x) ≥g (x) , x∈[a, b], 且存在f (x) , g (x) 的连续点x0, 使得f (x0) >g (x0) , 则

baf (x) dx>∫bag (x) dx

证明 令F (x) =f (x) -g (x) , x∈[a, b], 由题知, F (x) 在[a, b]上非负可积, 存在连续点x0使得

F (x0) =f (x0) -g (x0) >0,

则由定理2知

baF (x) dx=∫baf (x) dx-∫bag (x) dx>0,

即有∫baf (x) dx>∫bag (x) dx

推论2 设f (x) , g (x) 为[a, b]上的两个可积函数, 满足f (x) >g (x) , x∈[a, b], 则

baf (x) dx>∫bag (x) dx

证明 令F (x) =f (x) -g (x) , x∈[a, b], 则函数F (x) 在[a, b]上可积且F (x) >0, 则由定理3

baF (x) dx=∫baf (x) dx-∫bag (x) dx>0, 即有∫baf (x) dx>∫bag (x) dx

推论3 设f (x) , g (x) 为[a, b]上的连续函数满足f (x) ≥g (x) , 且f (x) 不恒等于g (x) , 则

baf (x) dx>∫bag (x) dx

证明 令F (x) =f (x) -g (x) , x∈[a, b], 则F (x) 在[a, b]上非负连续, 且F (x) 不恒等于零, 由推论2有

baF (x) dx=∫baf (x) dx-∫bag (x) dx>0, 即有∫baf (x) dx>∫bag (x) dx

推论4 设f (x) , g (x) 为[a, b]上的连续函数, 满足f (x) ≥g (x) , 且存在一点x0∈[a, b]使得f (x0) >g (x0) , 则

baf (x) dx>∫bag (x) dx

证明 令F (x) =f (x) -g (x) , x∈[a, b], 则

函数F (x) 在[a, b]上非负连续函数, 且存在x0∈[a, b], 使得F (x0) >0, 则由推论4有

baF (x) dx=∫baf (x) dx-∫bag (x) dx>0, 即有∫baf (x) dx>∫bag (x) dx

3 举例

例1 证明e>∫01ex2dx。

证明 令f (x) =e, g (x) =ex2。

[方法一] 显然, f (x) 和g (x) 在[0, 1]上连续, 且有f (x) ≥g (x) , 又对任一f (x) , g (x) 的连续点x0∈ (0, 1) , 都有f (x0) >g (x0) 。由推论1得

01f (x) dx>∫01g (x) dx, 即e>∫01ex2dx。

[方法二] 因为函数f (x) 和g (x) 在[0, 1]上连续, 且有f (x) >g (x) , x∈ (0, 1) , 由推论2得

01f (x) dx>∫01g (x) dx, 即e>∫01ex2dx。

[方法三] 因为函数f (x) 及函数g (x) 在[0, 1]上连续, 且满足f (x) ≥g (x) , 而且函数f (x) 不恒等于函数g (x) , 由推论3证得

01f (x) dx>∫01g (x) dx, 即e>∫01ex2dx

注2 若应用引理1, 对于例1只能得到e≥∫01ex2dx, 但是现在应用本文的结论, 就可以得到e>∫01ex2dx。

例2[4] 设m, M分别是连续函数f (x) 在[a, b]上的最小值和最大值, 且f (x) 非常值函数, 则

m (b-a) <∫baf (x) dx<M (b-a) 。

证明 由题知 mf (x) , x∈[a, b], 且f (x) 不恒等于m, 则由推论3知

m (b-a) =∫bamdx<∫baf (x) dx,

同理可证

baf (x) dx>∫baMdx=M (b-a) ,

于是,

m (b-a) <∫baf (x) dx<M (b-a) 。

例3 证明:若函数f (x) 为[a, b]上可积函数, 则∫baf2 (x) dx=0的充要条件是对f (x) 在[a, b]上的一切连续点有f (x) =0。

证明 令F (x) =f2 (x) , x∈[a, b], 由于f (x) 为[a, b]上可积函数, 则F (x) 也为[a, b]上的可积函数.由定理2有, 函数F (x) 连续点上恒为零的充分必要条件是∫baF (x) dx=0, 于是∫baf2 (x) dx=0的充要条件是对f (x) 在[a, b]上的一切连续点有f (x) =0。

4 结语

由非严格不等式变为严格不等式, 看似细节, 但由此而增加了解题的有用信息, 对解题有很大帮助。本文正是出于这个目的, 对积分不等式进行了推广, 得到了积分不等式中不等号严格成立的一些条件, 而且本文的结果和方法可以进一步向多重积分推广。

参考文献

[1]华东师范大学数学系.数学分析.北京:高等教育出版社, 2004

[2]魏国强.关于定积分若干性质的讨论.高等数学研究, 2005;8 (1) :42—43

[3]李长青, 刘亚梅.定积分保号性质的推广和应用.商丘职业技术学院报, 2005;4 (5) :14—15

点击不等式的基本性质 篇3

一、正确理解基本性质的含义

1. 不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.这里的整式包含单独的一个数、字母以及由字母和数组成的单项式或多项式.例如:若a>b,那么有a+5>b+5,a-c>b-c,a+m>b+m,a->b-等.

2. 不等式的基本性质2:在不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.例如:若a>b,且c>0,那么有ac>bc或

3. 不等式的基本性质3:在不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.对此性质中加黑点的词的含义要认真领会,重点理解.例如:若a>b,且c<0,那么有ac<bc或

4. 由于0既不是正数也不是负数,因此,在运用性质2和性质3时,不等式两边所乘以(或除以)的同一个数(或式子)不能为0.否则,不等式的性质不成立.

二、灵活运用基本性质解题

1. 直接运用

例1 利用不等式的性质,用“>”或“<”填空.

(1) 若a>b,则a-2 007b-2 007.

(2) 已知x>y,且k≠0,那么k2x k2y.

(3) 已知m>n,那么-m-n.

解析:(1)因a>b,运用基本性质1,两边同减去2 007,得a-2 007>b-2 007.所以应该填“>”.

(2)因k≠0,故k2>0.又x>y,运用基本性质2,两边同乘以k2,得k2x>k2y.所以应该填“>”.

(3)因m>n,运用基本性质3,两边同乘以-,得-m < -n.所以应该填“<”.

例2已知a<0<b,则下列式子中错误的是().

A. a+c<b+cB. ac<bcC. <D. -99a>-99b

解析:因为a<0<b,由基本性质1,得a+c<b+c.由基本性质3,得-99a>-99b.所以A、D都正确.

又c2≥0,所以c2+1>0.由基本性质2,得< .故C也正确.

由于c为任意实数,因此,当c=0时,ac<bc不成立.所以B是错误的.应选B.

2. 逆向应用

例3 已知关于x的不等式(k-2 008)x>k-2 008可以化为x<1的形式,求k的取值范围.

解析:由题设条件,原不等式(k-2 008)x>k-2 008可以化为x<1,知此时不等号的方向改变了.根据基本性质3,说明不等式的两边同除以的k-2 008必为负数.故k-2 008<0,所以k<2 008.

点评:在运用不等式的性质时,一定要记住“一变两不变”:性质1和性质2中不等号的方向不变,性质3中不等号的方向改变.

<\192.168.0.129本地磁盘 (d)王玲霞数据八年级数学北师大08年1-2期版式+图jjgg.TIF>[想一想,练一练]

1. 用“>”或“<”填空.

(1) 若a>b,则9a+19b+1.

(2) 若a<b,且c>0,则ac+cbc+c.

(3) 已知a>0,b<0,c<0,那么(a-b)c 0.

2. 如果a<b,那么下列不等式中,正确的个数是().

①-8+a<-8+b;

②-7a-9<-7b-9;

③-a+2 008<-b+2 008;

④2 007-a>2 007-b.

A. 1个B. 2个 C. 3个D. 4个

3. 若关于y的不等式(m+7)y<2(m+7)可以化为y>2的形式,求m的取值范围.

参考答案

1.(1) > (2) < (3) <2.B3. m<-7.

不等式的性质说课 篇4

大家好!

我今天说课的课题是《不等式的基本性质》,它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。2.掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。教学重难点:

重点:不等式概念及其基本性质 难点:不等式基本性质3 ►教法与学法:

1.教学理念: “ 人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法. 3.教学手段:多媒体应用教学

4.学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式〉

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课

引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;(2)a是非负数;(3)a与b的和小于5;(4)x与2的差大于-1;(5)x的4倍不大于7;(6)y的一半不小于3 关键词:非负数,非正数,不大于,不小于,不超过,至少

回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。►反馈练习:用一个小练习巩固三条性质。

如果a>b,那么

(1)a-3 b-3(2)2a 2b(3)-3a-3b 提出疑问,我们讨论性质2,3是好象遗忘了一个数0。►引出让学生归纳,等式与不等式的区别与联系

三、拓展训练:

根据不等式基本性质,将下列不等式化为“<”或“>”的形式(1)x-1<3(2)6x<5x-2(3)x/3<5(4)-4x>3 再次回到开头的门票问题,让学生解出相应的x的取值范围 .小结 1.新知识

一个数学概念;两种数学思想;三条基本性质 2.与旧知识的联系

等式性质与不等式性质的异同

五、作业的布置

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

不等式的性质教学方案 篇5

一、明确复习目标

掌握不等式的性质及其证明,能正确使用这些性质解决一些简单问题

二.建构知识网络

1.比较原理:

两实数之间有且只有以下三个大小关系之一:aa

; ; .

以此可以比较两个数(式)的大小,作差比较法.

或作商比较:aa0时, .

2.不等式的性质:

(1)对称性: ,

证明:(比较法)

(2)传递性: ,

(3)可加性: .

移项法则:

推论:同向不等式可加.

(4)可乘性: ,

推论1:同向(正)可乘:

证明:(综合法)

推论2:可乘方(正):

(5) 可开方(正):

证明:(反证法)

不等式的性质有五个定理,三个推论,一个比较原理,是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强

三、双基题目练练手

1.(春上海) 若 ,则下列不等式成立的是( )

A. . B. . C. . D. .

2.(北京)已知a、b、c满足 ,且 ,那么下列选项中不一定成立的是 ( )

A. B. C. D.

3. 对于实数,下命题正确的是 ( )

A.若a

C.若 ,则 . D.若a0,d0,则

4.(2004春北京)已知三个不等式:ab0,bc-ad0, - 0(其中a、b、c、d均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的.正确命题的个数是

A.0 B.1 C.2 D.3

5.(2004辽宁)对于 ,给出下列四个不等式

① ②

③ ④

其中成立的是_________

6.a0,m0,n0,则 , , , 的由大到小的顺序是____________.

练习简答:1-4.CCCD; 5. ②与④; 6.特殊值法,答案:

四、经典例题做一做

【例1】已知a2,

求c的取值范围.?

解:∵b2a

c=b-2a0,

b-4 -2a= .

c的取值范围是:

【例2】设f(x)=ax2+bx,且1f(-1) f(1) 4 ,求f(-2)的取值范围

解:由已知12, ①, 24 ②

若将f(-2)=4a-2b用a-b与a+b,表示,则问题得解

设4a-2b=m(a-b)+n(a+b), (m,n为待定系数)

即4a-2b=(m+n)a-(m-n)b,

于是得 得:m=3, n=1

由①3+②1得54a-2b10

即5f(-2)10,

另法:由 得

f(-2)=4a-2b=3 f(-1)+ f(1)

特别提醒:常见错解:由①②解出a和b的范围,再凑出4a-2b的范围.错误的原因是a和b不同时接近端点值,可借且于线性规划知识解释.

【例3】(1)设A=xn+x-n,B=xn-1+x1-n,当xR+,nN时, 比较A与B的大小.

(2)设00且a ,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.

解: (1)A-B=(xn+x-n)-(xn-1+x1-n)

=x-n(x2n+1-x2n-1-x)

=x-n[x(x2n-1-1)-(x2n-1-1)]

=x-n(x-1)(x2n-1-1).

由xR+,x-n0,得

当x1时,x-10,x2n-1-1

当x1时,x-10,x2n-10,即

x-1与x2n-1-1同号.A-B0.AB.

(2)∵0

①当3a1,即a 时,

|log3a(1-x)3|-|log3a(1+x)3|

=|3log3a(1-x)|-|3log3a(1+x)|

=3[-log3a(1-x)-log3a(1+x)]

=-3log3a(1-x2).

∵01,-3log3a(1-x2)0.

②当01,即0

|log3a(1-x)3|-|log3a(1+x)3|

=3[log3a(1-x)+log3a(1+x)]

=3log3a(1-x2)0.

综上所述,|log3a(1-x)3||log3a(1+x)3|.

不等式的性质说课稿 篇6

1、教材的地位和作用

本课位于人民教育出版社义务教育课程标准实验教科书七年级下册。主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的”基石“.同时,本节学习将为加深”不等式“的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

2、教学重难点

重 点 不等式的性质;

难 点 ”不等式“意义理解及应用。

二、教学目标

知识目标 在了解不等式的意义基础上,掌握不等式的性质,并能计算不等式,了解不等式在实际中的应用。

能力目标

①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。

情感目标

①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

②通过”转化“数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

三、教学方法

1、采用指导探究法进行教学,主要通过学生拔河活动,师生互动,共同探不等式的性质。②导――知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕”情景问题――学生体验――合作交流“模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程:

我的教学流程设计是:从创设情境,孕育新知开始,经历探索新知,构建模式;解释新知,落实新知;总结新知,布置作业等过程来完成教学。

创设情境,孕育新知:

①师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。

②从学生经历过的事入手,让学生比较两个数的大小,并说明理由,让学生留心实际生活,欣赏不等式的意义和性质。

③落实到学生是否会解不等式?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中不等式的性质的广泛应用。

设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。从学生经历过的事入手。让学生知道数学知识无处不在,应用数学无时不有。符合”数学教学应从生活经验出发“的新课程标准要求。

利用凸函数性质巧证积分不等式 篇7

1.预备知识

定义对x1, x2∈[a, b], λ∈ (0, 1) , 函数f (x) 都有

则称f (x) 为凸函数, 并且仅当x1=x2时等号成立.

若 (1) 式的不等号反向时, 则称为凹函数.

引理1设f (x) 在[a, b]上的二阶可导函数, 如果有f″ (x) ≥0, 那么f (x) 是[a, b]上的凸函数.

引理2 (泰勒公式) 设f (x) 在含有x0的某个区间 (a, b) 内具有直到 (n+1) 阶导数, 则对x∈ (a, b) , 都有

其中, , ξ是介于x0和x之间的某个值.

2.主要结果和应用

定理[a, b]上的二阶可导函数, 如果有f″ (x) ≥0, 那么

其中λk是正数, k=1, 2, 3, …, n, 且.

证明记, 那么由引理2 (泰勒公式) ,

可得.

其中ξk是在xk和x0之间的一个常数.由题设f″ (x) ≥0, 于是

证毕.

特别地, 可以得到以下推论.

推论设函数f (x) 在[a, b]上连续, 在 (a, b) 内二阶可导, 如果有f″ (x) ≥0, g (x) 是区间[c, d]上的可积函数, a≤g (x) ≤b, 那么有

例1设g (x) 是区间[0, 1]上的可积函数, 0≤g (x) ≤1, 求证:

证明设, 那么, 这里区间[a, b]=[c, d]=[0, 1], 于是利用前面的 (3) 式可以得到, 将代入表达式中, 即得 (4) 式.证毕.

例2设g″ (x) <0, 证明:

证明由g″ (x) <0, 知-g (x) 是一个凸函数.而xn是一个正值函数且满足0≤xn≤1, 于是由 (4) 式的结果可知

证毕.

通过以上例题可以看出, 利用凸函数的性质证明有关积分不等式, 可以使难度较大且证明过程复杂的问题转化成证明比较容易, 证明过程简单的问题, 关键是寻找合适的凸函数.

摘要:凸函数的应用领域非常广泛, 特别是在不等式的证明中, 运用它解题显得巧妙、简练.

关键词:凸函数,不等式,积分

参考文献

[1]M.A.克拉斯诺西尔斯基, R.B.鲁季斯基.凸函数和奥尔里奇空间[M].北京:科学出版社, 1962.

[2]同济大学应用数学系.高等数学:第三版 (上册) [M].北京:高等教育出版社, 2006.

利用函数性质求解不等式问 篇8

例1[2014年嘉兴市第一中学高三阶段测试(文科)第17题] 已知实数x,y满足y≥1,

x+y≤2,

y≤2x+m,且z=x+2y,若z的最小值的取值范围为[0,2],则z的最大值的取值范围是.

解析: 由不等式组作出实数x,y满足的可行域,如图1 阴影部分所示.

根据可行域的图象,可以将目标函数z=x+2y看成是直线方程y=-x+,z取到最小值亦即直线在y轴上的截距取到最小值.由图1可知,当直线y=-x+过直线y=2x+m与y=1的交点A时,在y轴上的截距最小,即z取到最小值. A点坐标为

,1,即当x=,y=1时,zmin=x+2y=.又zmin∈[0,2],即∈[0,2],所以m∈[1,5].

同理,当直线y=-x+过直线y=2x+m与x+y=2的交点B时,在y轴上的截距最大,即z取到最大值. B点坐标为

,即当x=,y=时,zmax=x+2y=.又m∈[1,5],所以∈

,5,即z的最大值的取值范围是

,5.

点评: 线性规划问题常和不等式、最值问题相联系,利用函数图象的位置关系求解是最常用的方法.在例1中,我们将目标函数看成是一组斜率为-的直线,利用z取到最值与该组直线在y轴上的截距取到最值相对应这一点,找到z取最小、最大值时直线所过的特殊点A,B,利用m的取值范围来求出z的最大值的取值范围.

利用函数的单调性求解不等式问题

例2[2012年高考数学浙江卷(文科)第10题]设a>0,b>0,e是自然对数的底数.

(A) 若ea+2a=eb+3b,则a>b

(B) 若ea+2a=eb+3b,则a

(C) 若ea-2a=eb-3b,则a>b

(D) 若ea-2a=eb-3b,则a

解析: 若ea+2a=eb+3b,则必有ea+2a>eb+2b.

构造函数f(x)=ex+2x,则f′(x)=ex+2>0恒成立,所以函数f(x)在x>0上单调递增.因为ea+2a>eb+2b,即f(a)>f(b),所以a>b,选A.其余选项可用同种方法排除.

点评: 利用函数单调性求解不等式问题的关键,是要将函数值的不等关系与自变量的不等关系进行合理的转化.例2解法的巧妙之处,就在于通过判断函数f(x)的单调性,将函数值f(a)与f(b)的大小关系转化为自变量a,b间的大小关系.

利用函数的奇偶性求解不等式问题

例3[2013年高考数学四川卷(理科)第14题] 已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么不等式f(x+2)<5的解集是.

解析: 由题意可知,当x≥0时f(x)=x2-4x,所以当x+2≥0时,f(x+2)=(x+2)2-4(x+2)=x2-4.由f(x+2)<5可得x2-4<5,解得-3

因为f(x)为偶函数,则由函数f(x+2)的图象关于直线x=-2对称可得-7

点评: 奇偶函数的图象具有对称性,通过数形结合法能帮助我们快速解题.在例3中,我们先求出x+2≥0时x的解集,然后通过偶函数图象的对称性得到x+2<0时x的解集,简化了不等式运算,达到事半功倍的效果.

利用函数单调性求解不等式问题的关键,是要将函数值的不等关系与自变量的不等关系进行合理的转化.

利用函数的图象求解不等式问题

例1[2014年嘉兴市第一中学高三阶段测试(文科)第17题] 已知实数x,y满足y≥1,

x+y≤2,

y≤2x+m,且z=x+2y,若z的最小值的取值范围为[0,2],则z的最大值的取值范围是.

解析: 由不等式组作出实数x,y满足的可行域,如图1 阴影部分所示.

根据可行域的图象,可以将目标函数z=x+2y看成是直线方程y=-x+,z取到最小值亦即直线在y轴上的截距取到最小值.由图1可知,当直线y=-x+过直线y=2x+m与y=1的交点A时,在y轴上的截距最小,即z取到最小值. A点坐标为

,1,即当x=,y=1时,zmin=x+2y=.又zmin∈[0,2],即∈[0,2],所以m∈[1,5].

同理,当直线y=-x+过直线y=2x+m与x+y=2的交点B时,在y轴上的截距最大,即z取到最大值. B点坐标为

,即当x=,y=时,zmax=x+2y=.又m∈[1,5],所以∈

,5,即z的最大值的取值范围是

,5.

点评: 线性规划问题常和不等式、最值问题相联系,利用函数图象的位置关系求解是最常用的方法.在例1中,我们将目标函数看成是一组斜率为-的直线,利用z取到最值与该组直线在y轴上的截距取到最值相对应这一点,找到z取最小、最大值时直线所过的特殊点A,B,利用m的取值范围来求出z的最大值的取值范围.

利用函数的单调性求解不等式问题

例2[2012年高考数学浙江卷(文科)第10题]设a>0,b>0,e是自然对数的底数.

(A) 若ea+2a=eb+3b,则a>b

(B) 若ea+2a=eb+3b,则a

(C) 若ea-2a=eb-3b,则a>b

(D) 若ea-2a=eb-3b,则a

解析: 若ea+2a=eb+3b,则必有ea+2a>eb+2b.

构造函数f(x)=ex+2x,则f′(x)=ex+2>0恒成立,所以函数f(x)在x>0上单调递增.因为ea+2a>eb+2b,即f(a)>f(b),所以a>b,选A.其余选项可用同种方法排除.

点评: 利用函数单调性求解不等式问题的关键,是要将函数值的不等关系与自变量的不等关系进行合理的转化.例2解法的巧妙之处,就在于通过判断函数f(x)的单调性,将函数值f(a)与f(b)的大小关系转化为自变量a,b间的大小关系.

利用函数的奇偶性求解不等式问题

例3[2013年高考数学四川卷(理科)第14题] 已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么不等式f(x+2)<5的解集是.

解析: 由题意可知,当x≥0时f(x)=x2-4x,所以当x+2≥0时,f(x+2)=(x+2)2-4(x+2)=x2-4.由f(x+2)<5可得x2-4<5,解得-3

因为f(x)为偶函数,则由函数f(x+2)的图象关于直线x=-2对称可得-7

点评: 奇偶函数的图象具有对称性,通过数形结合法能帮助我们快速解题.在例3中,我们先求出x+2≥0时x的解集,然后通过偶函数图象的对称性得到x+2<0时x的解集,简化了不等式运算,达到事半功倍的效果.

利用函数单调性求解不等式问题的关键,是要将函数值的不等关系与自变量的不等关系进行合理的转化.

利用函数的图象求解不等式问题

例1[2014年嘉兴市第一中学高三阶段测试(文科)第17题] 已知实数x,y满足y≥1,

x+y≤2,

y≤2x+m,且z=x+2y,若z的最小值的取值范围为[0,2],则z的最大值的取值范围是.

解析: 由不等式组作出实数x,y满足的可行域,如图1 阴影部分所示.

根据可行域的图象,可以将目标函数z=x+2y看成是直线方程y=-x+,z取到最小值亦即直线在y轴上的截距取到最小值.由图1可知,当直线y=-x+过直线y=2x+m与y=1的交点A时,在y轴上的截距最小,即z取到最小值. A点坐标为

,1,即当x=,y=1时,zmin=x+2y=.又zmin∈[0,2],即∈[0,2],所以m∈[1,5].

同理,当直线y=-x+过直线y=2x+m与x+y=2的交点B时,在y轴上的截距最大,即z取到最大值. B点坐标为

,即当x=,y=时,zmax=x+2y=.又m∈[1,5],所以∈

,5,即z的最大值的取值范围是

,5.

点评: 线性规划问题常和不等式、最值问题相联系,利用函数图象的位置关系求解是最常用的方法.在例1中,我们将目标函数看成是一组斜率为-的直线,利用z取到最值与该组直线在y轴上的截距取到最值相对应这一点,找到z取最小、最大值时直线所过的特殊点A,B,利用m的取值范围来求出z的最大值的取值范围.

利用函数的单调性求解不等式问题

例2[2012年高考数学浙江卷(文科)第10题]设a>0,b>0,e是自然对数的底数.

(A) 若ea+2a=eb+3b,则a>b

(B) 若ea+2a=eb+3b,则a

(C) 若ea-2a=eb-3b,则a>b

(D) 若ea-2a=eb-3b,则a

解析: 若ea+2a=eb+3b,则必有ea+2a>eb+2b.

构造函数f(x)=ex+2x,则f′(x)=ex+2>0恒成立,所以函数f(x)在x>0上单调递增.因为ea+2a>eb+2b,即f(a)>f(b),所以a>b,选A.其余选项可用同种方法排除.

点评: 利用函数单调性求解不等式问题的关键,是要将函数值的不等关系与自变量的不等关系进行合理的转化.例2解法的巧妙之处,就在于通过判断函数f(x)的单调性,将函数值f(a)与f(b)的大小关系转化为自变量a,b间的大小关系.

利用函数的奇偶性求解不等式问题

例3[2013年高考数学四川卷(理科)第14题] 已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么不等式f(x+2)<5的解集是.

解析: 由题意可知,当x≥0时f(x)=x2-4x,所以当x+2≥0时,f(x+2)=(x+2)2-4(x+2)=x2-4.由f(x+2)<5可得x2-4<5,解得-3

因为f(x)为偶函数,则由函数f(x+2)的图象关于直线x=-2对称可得-7

点评: 奇偶函数的图象具有对称性,通过数形结合法能帮助我们快速解题.在例3中,我们先求出x+2≥0时x的解集,然后通过偶函数图象的对称性得到x+2<0时x的解集,简化了不等式运算,达到事半功倍的效果.

利用函数单调性求解不等式问题的关键,是要将函数值的不等关系与自变量的不等关系进行合理的转化.

不等式的基本性质说课稿 篇9

各位老师,你们好:

我今天说课的内容是职中教材人教版基础模块上册第二章第二节不等式的基本性质

一、分析教材(说教材)

(一)教材地位和作用:

不等式是刻画现实世界中不等关系的一种数学形式,而本节课所要学的《不等式的基本性质》,是在学生学习了有理数大小比较、等式及其性质、不等式概念以及用不等式表简单问题的基础上开始学习的,也是学生后续学习不等式及不等组的解集,用不等式及及不等式组解应用题的理论依据和基础;因此不本课的内容起到了承上启下的作用.。

(二)学习目标

1掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题。

2进一步掌握作差比较法比较实数的大小。

3通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质。

(三)教学重点难点

不等式的三条基本性质及其应用是重点,不等式基本性质3的探索与运用是难点

二、学情分析(说学法)我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。我们大家现在所教的学生是职中学生,底子薄,学习积极性不高。所以我们必须从现实生活入手,首先来提高学生的学习兴趣;其次要一步一个脚印,通过师生互动、通过小组研究来降低学习难度,最后达到学习要求。

三、教法分析(说教法)

本节课主要采用讲练结合与分组探究的教学方法。坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,通过引导回顾玩跷跷板的经验,师生共同探究天平两侧物体质量的大小,引导学生感性地认识不等式的三条基本性质,并运用分析法、综合法、作差比较法来证明,通过题组训练,使学生逐步掌握不等式的基本性质,为后面学习一元一次不等式和解一元一次不等式组打下理论基础。

四、教学程序和设想(说教学程序)

(一)展示课件创设情景,引入新课<用时8分钟左右>

因为数学来源于生活,所以我以学生的实际生活背景为素材创设情景,易于被学生接受、感知。有助于调动学生的学习积极性。所以我创设了天平情境问题(如图1),让学生观察课件,说出物体a和c哪个质量更大一些,由此判断:如果a>b,b>c,那么a和c的大小关系如何?这是感性认识。

接下来运用分析法从理论上证明了性质1的正确性,也就是证明了不等式的传递性,即如果 a>b,b>c,则 a>c.在证明这一点上不能拖泥带水,主要由老师为主,学生为辅的方式来进行,这是由我们职中学生底子薄的现状来决定的。根据教育部最新颁布的《中等职业学校数学教学大纲》中对不等式的基本性质的要求是理解,也说明了这一点。(也就是只懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。)后面的不等式其它性质及其推论的证明都是这样处理的

图1

(二)创设情景说明性质2<用时10分钟左右> 为了说明性质2,我设置了这样的情景(如图2),然后提出问题: 如果 a>b,那么 a+c与b+c.大小关系如何:

图2

很明显,学生能够得答案,即:如果 a>b,则 a+c>b+c。同上面一样,我和学生运用了做差比较法对该性质从理论上做了证明。然后让学生联想思考:如果把c换成–c是否也成立呢。给学生的回答应该是肯定的。同理运用作差比较法来证明,只不过是说说而已。这样就得到了不等式的性质2,即加法法则:不等式的两边都加上(或减去)同一个数,不等号的方向不变。

接下来为了说明性质2的推论,我设置了这样一个问题,如果 a+b>c,那么 a>c-b吗?我想很多同学回答是肯定的,因为这就是初中所说的移项嘛,这个问题对大部分同学相对简单,由此可以大大提高他们的学习积极性。然后我运用综合法和性质2对推论1即:如果 a+b>c,那么 a>c-b 做了证明

理论要和实践相结合,接着我采用学生口答,我点评的方式出了五道题,以此对不等式的性质及其推论进行练习巩固。

(三)小组合作探究性质3<用时12分钟左右> 这时我把学生分成4人一组的形式,然后提出问题:把不等式5>2的两边同时乘以任意一个不为0的数,观察不等号的方向是否变化?多试几次,你能发现什么规律吗?

学生猜想结果后,在小组内交流、讨论,我巡回指导。把猜想作为教学的出发点,启发学生积极思维,探索规律,有助于提高学生学习兴趣,活跃课堂气氛。

接着运用作差比较法在理论上证明了性质3,即:如果 a>b,c>0,那么 a c>b c;如果 a>b,c<0,那么 a c<b c。即得到了不等式的乘法法则:如果不等式两边都乘同一个正数,则不等号的方向不变;如果都乘同一个负数,则不等号的方向改变.

然后用练习2和练习3来进行巩固所学知识,练习2由学生思考后回答;练习3同桌之间讨论、回答。因为性质3学生容易出错,用练习及时巩固,通过相互评价学习效果,及时发现问题、解决知识盲点.

(四)小结收尾总结要点<用时5分钟左右> 最后回顾、总结、矫正、提高,帮助学生形成本节课的知识网络,特别要总结强调性质3的第二点:给不等式两边同时乘以一个负数时,不等号的的方向必须改变。这也是学生最容易犯的地方,这也是为何性质3是本节课难点的所在

(五)作业布置以此巩固所学知识<用时1分钟左右> 本着“面向全体学生,并发展他们的个性和特长,促进每一个学生的发展。”的原则,我制定了有面向全体学生的课本习题,同时布置了一个课外阅读任务,供学有余力的学生完成。即布置了必做作业教材37页4、5题和选做作业教材35页知识延伸的阅读

9。1.2不等式的性质教学反思 篇10

彭元锋

本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质。不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的很多章节,在实际问题中被广泛应用,可以说它是解决其它数学问题的一种有利工具。因此不等式的性质的学习对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用。在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的兴趣,培养自觉运用数学的意识。

现就今天在初一级1班上的《不等式的性质》这节课,进行反思如下:

一、课前准备应该对该知识点进行深刻的认识和理解

不等式的三个基本性质是本章解一元一次不等的基础,也是证明不等式主要依据。解不等式就是用不等式的性质来施行一系列的等价变换。因此,在课前准备工作上要正确认识和理解不等式的性质。在教学过程中,要灵活的应用不等式的性质解一元一次不等式。由于一元一次不等式的解法与一元一次方程的解法十分相似,所以在学习本节时,与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。在学生已经理解一元一次不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合解一元一次不等式。

二、教学过程中知识点的落实

在本节课中,要求学生学习的主要内容是不等式的三条性质,及运用这三条性质对不等式进行正确变形来解不等式。如果直接就给同学们讲不等式有这样的三条性质,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我在上这一节课时就想到了运用类比的思想来学习这节课的内容,这样学生既学会了新知识又复习了旧知识,还把他们联系到了一起,而且学生还觉得这节课学的知识其实好象是旧知识,只是进行了一点改动,接受起来比较的容易,掌握起来也比较的容易。这个方法可以说是贯穿了整堂新课的学习。

在课前复习的这个教学环节上,我首先是用解两个方程引出了等式的基本性质,然后把这两个方程的等号变成不等号,让学生们观察,进行猜测、判断。在学生的猜测与判断中,我不做任何肯定与否定,设置了一个悬念,由此来引入我们将要学习的新内容,给学生增加了一种新奇感。

教学中关注不等式的实际背景,从对天平,跷跷板等学生熟悉的场景中数量关系的分析,引入不等式,不等式的解集,不等式的性质。全课着重知识的动态生成,渗透数学的建模,类比,分类等思想方法,促使学生从学会向会学转化。同时要注意不等式性质3是难点,也是重点,在学生理解的同时,应多加训练。

在进行三条性质的探索的过程中,我还是运用了类比的思想。我是分两步进行性质的推导的。首先是性质一,我是让同学们运用天平像做游戏一样做实验,既可以提高学生的学习兴趣,又能发展学生的团结协作能力,而且大家一起做实验,也提供了讨论的空间和机会。再对照等式的性质一,所以同学们很容易就推断出不等式的性质一。性质二和性质三是一起推导出来的。这里我是让同学们独立地通过数字来探寻答案,主要考虑到给他们独立思考的空间,一方面我想让他们举的例子多一点、全面一点,另一方面是因为我观察到同学在讨论的时候有的同学是只听不讲,所以我想给他们一些空间,一边做一边就可以想一想,特别是有了前面性质一的推导,他们应该还是比较能够摸到方向的。但是出来的答案可能不完善,这个我在上课之前就考虑到了,因为这两条性质与等式的性质二有了一定的区别,但是我想有那么多的同学举例子,每人举5个,总是可以互相补全的,即使讲不全也没关系,我可以补充,甚至对他们的结论进行反驳,营造一个互相辩论的机会,由此最终达到教学目的。

上一篇:校园低碳生活实践调查报告下一篇:杜甫诗鉴赏:赠李白