教案:直线与平面垂直(通用11篇)
教案:直线与平面垂直 篇1
2013年江西省高中数学优质课评比教案王文彬(抚州一中)
直线与平面垂直(第1课时)
执教:王文彬(抚州一中)
【教材】高中数学教材必修2(北师大版),第一章“立体几何初步”,第6节“垂直关
系的判定”(第1课时).【教学目标】
●知识与技能
理解直线与平面垂直的定义与判定定理,并能运用直线与平面垂直的定义与判定定理解决一些简单的问题.●过程与方法
体验直线与平面垂直概念的形成过程,培养观察与抽象概括能力;体验直线与平面垂直判定定理产生的过程,体会知识产生的必要性与合理性,培养空间观念,发展合情推理能力;在知识的运用过程中体会转化的思想方法.●情感、态度与价值观
通过不断地提出问题、解决问题,培养学习热情,体验探索乐趣,培育“数学源于实践又服务于实践”的辩证观.【教学重点与难点】
重点:直线与平面垂直的概念与判定.难点:直线与平面垂直的定义与判定定理的形成过程.【教学手段】
几何画板辅助.【教学过程】
一、直观感受,形成直线与平面垂直的印象
二、抽象概括,给出直线与平面垂直的定义
三、实践操作,确认直线与平面垂直的判定定理
四、尝试应用,初识转化的思想方法
五、总结升华,完善认知结构
六、布置作业
【媒显10】课本p41习题1-6A组1-5.板书设计:
直线与平面垂直的定义及其判定
定义:如果一条直线和一个平面内
判定定理:如果直线垂直于平面内两所有直线都垂直,称这条直线与这个平条相交直线,则这条直线垂直于这个面垂直.平面.ìl^müï1.当直线l与平面a内所有直ï
ïïï线都垂直时,则l^a.ïíï2.当l^a时,直线l与平面ïïïïîa内所有直线都垂直.教学后记:
线线垂直,则线面垂直«
«线面垂直,则线线垂直
ïïïl^nïý轣m,nØaïïïm?nOïïþ
教案:直线与平面垂直 篇2
(一) 知识与技能目标
1. 借助对图片、实例的观察, 抽象概括出平面垂直的定义;
2. 通过直观感知, 操作确认, 归纳概括出直线与平面垂直的判定;
3. 会判断一条直线与一个平面是否垂直;
4. 培养学生的空间想象能力和对新知识的探索能力。
(二) 过程与方法目标
1. 让学生感悟体验, 形成空间问题转化为平面问题的转化意识, 注重从“无限”到“有限”的转化, “线线垂直转化为线面垂直”等转化的数学思想;
2. 通过生活实例让学生体验线面垂直问题“源于生活”并服务于生活。
(三) 情感态度与价值观目标
1. 培养学生的探索精神;
2. 培养学生的观察归纳、动手操作能力。
(四) 教学重点、难点
1. 重点:直线与平面垂直的定义和直线与平面垂直的判定定理的探究。
2. 难点:操作确认并概括出直线与平面垂直的判定定理及初步应用。
二、教学过程
(一) 创设情境———旧知回顾
问题1:空间一条直线与一个平面有哪几种位置关系?
思考:如何判断直线与平面垂直?
(二) 创设情境———生活实例
日常生活中, 我们对直线与平面垂直有很多感性的认识, 如旗杆与地面垂直、桥柱与桥面垂直等, 你能举出更多的例子吗?
思考:通过这些生活实例, 我们如何定义一条直线与平面垂直?
(三) 合理抽象———归纳定义
问题2:如果一条直线垂直于平面内无数条直线, 那么这条直线与这个平面是否垂直?
定义:如果直线l与平面α内任意一条直线都垂直, 我们就说直线l与平面α互相垂直, 记作l⊥α, 如图5所示。
问题3:我们发现用定义判断直线与平面垂直的情况很多时候不方便操作, 那除了定义外, 我们如何判断一条直线与一个平面垂直呢?
(四) 师生互动———折纸实验
找一块三角形纸片, 我们一起来做一个实验, 如图6、图7所示。AA
以△ABC的定点A翻折纸片, 得到折痕AD, 将翻折后的纸片竖起放置在桌面上 (BD、DC与桌面接触) 。
问题:1.折痕AD与桌面垂直吗?
2. 如何验证折痕AD与桌面垂直呢?
思考: (1) 有人说, 折痕AD所在直线与原桌面所在平面α上的一条直线垂直, 就可以判断AD垂直平面α, 你同意他的说法吗?
(2) 如图8所示:由折痕AD⊥BC, 翻折之后垂直关系不变, 即AD⊥CD, AD⊥BD, 由此你能得到什么结论?
(五) 探究学习———概括定理
判定定理:一条直线与一个平面内的两条相交直线都垂直, 则该直线与此平面垂直, 如图9、图10所示。
作用:判定直线与平面垂直
思想:线线垂直—线面垂直
(六) 定义定理应用
例1:如图11所示, 在正方体ABCD-A1B1C1D1中,
(1) 哪些棱与平面垂直?
(2) 哪些面与棱AB垂直?
(3) 与底面矩形ABCD垂直的直线有怎样的位置关系?
例2如图12所示, 已知a∥b, a⊥α, 求证b⊥α.
(七) 知识小结
1. 直线与平面垂直的概念。
2. 直线与平面垂直的判定。
(1) 利用定义:垂直于平面内任意一条直线。
(2) 利用判定定理:线线垂直 (与两条相交直线垂直) →线面垂直。
(3) 如果两条平行直线中的一条垂直于一个平面, 那么另一条也垂直于同一个平面。
3. 数学思想方法:转化思想
空间问题—平面问题
无限—有限
生活实际—数学模型—生活实际
(八) 设计意图
这节课是一节探究课, 无论是从教学编排, 还是教学要求上较之以往都有很大变化, 教材省略了直线与平面垂直的判定定理的证明, 强调通过直观感知, 操作确认, 思辨论证来认识和理解。笔者遵循直观感知—操作确认—归纳总结的认识规律来设计教学过程, 注重知识产生的过程性, 降低几何证明的难度。
(九) 教学反思
直线与平面垂直说课稿 篇3
1.1 教材内容解析
本节课是《普通高中课程标准实验教科书数学》苏教版必修2中1232《直线与平面垂直》内容,属于新授概念原理课.
图1
如图1,这是直线与平面垂直在本章中的位置.直线与平面垂直是在学生掌握了直线在平面内,直线与平面平行之后紧接着研究的一种位置关系.线面垂直与线线平行、面面平行联系密切,线面平行研究了定义、判定定理以及性质定理,这就为我们本节课的研究勾勒出了一条主线.直线与平面垂直又是立体几何中最重要的一种位置关系,向下可以得到线线垂直,向上可以得到面面垂直,且后面空间的角和距离等都涉及到线面垂直,从而就显得尤为重要.
本节课的学习不仅起着承上启下的作用,还是学生体验由特殊到一般、类比、归纳、猜想、化归等数学思想方法与应用的过程.因此,学习这部分知识有着非常重要的意义.
1.2 学生学情分析
1.21 学生已有认知基础
学生已经学习了直线与直线垂直、直线与平面平行的相关认识.学生已有通过直观感知、操作确认的方法研究直线与平面平行的直接经验,对空间概念、原理的建立有一定的基础.学生初步养成了独立思考、合作交流、反思质疑等学习习惯.
1.22 达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,初步具备类比、猜想、抽象概括、空间想象能力.
1.23 教学重难点及突破策略
依据教材内容解析和学生学情分析,我确定本节课的教学重点难点及突破策略如下:
教学重点 直线与平面垂直定义的生成过程,判定定理的发现过程,以及性质定理的证明过程.
教学难点 直线与平面垂直的定义和判定的生成过程,性质定理的证明方法的发现过程.
突破策略 教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段;组织学生汇报交流,展现思维过程,相互评价,相互启发,促进反思;让学生经历直观感知、猜想、抽象概括、适当证明或说明的过程.
1.3 教学目标设置
基于教材、学情分析,充分关注学生的发展,在此基础确立了本节课的教学目标如下:
(1)通过对现实生活中的实例、模型的观察、类比、抽象、概括出直线与平面垂直的定义,发现、推测、归纳直线与平面垂直的判定定理,探究直线与平面垂直的性质定理及证明方法.
(2)感悟特殊到一般、化归等数学思想;了解反证法,发展类比、归纳等合情推理能力、逻辑推理能力和空间想象能力.
(3)体会数学的严谨、自然、简洁之美,体验数学探究与发现的乐趣,培养质疑、思辨、发现问题的意识和自主探究、思考的习惯和能力.
2 教法学法
根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用启发探究式.通过教师引导,激发学生自主探究,动手操作,体验感悟,总结提炼.引领学生达到定性研究线面垂直的目标与方法,经历研究线面垂直的定义、判定定理和性质定理的过程,并在研究的过程中逐渐完善研究手段,提高研究能力.学生的自主探究,具体表现为:
(1)建构直线与平面垂直的概念时,学生自主举例,观察猜想,抽象概括,并用自然语言、图形语言、符号语言表示.
(2)探究直线与平面垂直的判定定理与性质定理时,学生通过实验探究、观察探究、操作确认的方式猜想归纳并表述.
(3)性质证明时,学生自主探究证法,相互交流提升,最终解决问题.
3 教学过程
为了达成教学目标,具体教学可以分为以下五个过程:
建构定义→形成判定→产生性质→课堂小结→布置作业
图2
下面对每一过程中要解决的问题和主要做法以及步骤作出说明.
3.1 建构定义
根据学生已有的知识基础,建构定义部分,我设计了以下8个问题:
问题1 直线和平面有哪几种位置关系?
问题2 研究了直线和平面平行哪些内容?
设计意图 以问题串的形式复习线面关系,勾勒出本节课的研究线路.
问题3 直线和平面相交中最特殊的一种情况是什么?
活动31:你能利用手中的工具,摆出一些直线与平面相交的情形吗?
活动32:大家摆出了这么多种“相交”,你想先从哪一种情形开始研究呢?把它摆出来.
活动33:那你能给“这种情形”(教师比划”直线与平面垂直”的形象)起个名字吗?
追问331:为什么命名为“垂直”呢?
设计意图 先让学生动手操作——发现线面垂直是相交最特殊的情形;紧接着让学生自主命名——使学生体验成功快乐;进而追问为什么命名为“垂直”?——学生联想“直线与直线垂直”,用已知的概念来表示未知概念,为定义建构埋下伏笔.
问题4 为什么先研究线面垂直?
设计意图 让学生认识到研究新问题的途径为:由特殊到一般,由简单到复杂.
问题5 为什么要研究线面垂直?
设计意图 通过让学生举出生活中的实例和几何体中的实例,感受到线面垂直普遍存在,有研究的必要性.
问题6 你认为应该研究直线与平面垂直的哪些内容?
设计意图 培养学生模仿类比能力,根据直线与平面平行的研究内容,确立直线与平面垂直的研究目标.
问题7 圆锥的轴与底面内的任意一条线是什么关系?
问题71:圆锥的底面是如何形成的?
问题72:圆锥的轴与底面半径是什么关系?为什么?
问题73:圆锥的轴与底面不过圆心O的直线m是什么位置关系?为什么?
问题8 你能给“直线与平面垂直”下个定义吗?
活动81:分别用文字语言、图形语言和符号语言表示定义.
活动82:“任意”等价于“所有”吗?等价于“无数”吗?
活动83:如图3,圆锥的母线PC与底面垂直吗?为什么?
图3
例1 求证:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.
设计意图 通过几何画板动态展示圆锥的定义,让学生观察思考,探究发现,由于前面问题串的铺垫,问题8就水到渠成地解决了.活动81培养了学生总结概括、语言转换能力.活动82,83旨在通过词语辨析、反例辨析,固化对定义的认识.例1是概念的应用,它的证明既可以使用定义,也可以使用判定定理,但教材中把例1的位置放在定义建构以后,而非在判定定理形成之后.从而没有必要在教学时将位置后置,人为的将问题的证明复杂化.
3.2 形成判定
探究活动 请同学们动手操作并思考系列问题:
(1)怎样将一本书立在桌面上,使得书脊能与桌面垂直?这样的书至少需要几页呢?
(2)将手中的练习纸折叠,折痕满足什么条件,折痕与桌面垂直?
(3)观察下列的实例,给你什么启发?(PPT上展出两幅图.图1为立在跑道上的跨栏架,图2为一个长方体)
设计意图 此环节,先问学生“根据定义如何判断旗杆所在直线是否与地面所在平面垂直?”由实际操作的困难,认识到研究判定定理的必要性.关于判定定理的产生途径,设计时准备了四种探究方式:
(1)观察生活中的实例,提炼结果;
(2)设计操作过程,让学生自己动手;
(3)自然分类:垂直于平面内一条直线行吗?两条平行直线呢?两条相交直线呢?
(4)数学本质的探究,由无限到有限的思想.
这四种方式对学生能力的要求各不相同,(1)是“直观性教学”,目标指向明显,思维难度较小,(4)对学生的逻辑思维能力、抽象概括能力有较高的要求.赛课时由于对学情的不了解,最后在课堂上选择采用了操作与观察相结合的方式,这样的设计也满足了不同层次的学生的能力需求,体现了分层教学.
3.3 产生性质
探究活动 (1)教师与某学生都站立在教室里,把站立的俩人抽象成两条直线,都与地面所在的平面垂直,两人所在直线的位置关系是什么?你能发现什么结论吗?
(2)用数学语言描述这个发现,并用图形语言和符号语言表示出来.
(3)尝试从理论上给予证明呢?
让学生明确任务后,在练习纸上尝试证明,随后教师用展台展出学生的证明方法.接着让学生交流点评,教师总结.
设计意图 设计发现性质定理的时候,有两条思路:其一,将性质定理与例1进行对比,通过命题变换;另一种是通过感知,让学生发现性质.由于本节课内容较多,课堂上选了第二种方式.性质定理的证明是本节课的难点,而非重点.采用学生先行尝试,再展示交流,调动了学生的学习主动性,提高合作交流的意识和能力.通过展示学生中的错误,让学生学会反思,从错误中学习,充分暴露学生思维过程中的闪光点.(学生的错误主要在于平面内构造的直线与直线a,b不在同一平面内,而又错误地用了平面中的结论.)在这里,直接证明的难点成为间接证明的思维起点,从而顺利地将学生的思维从直接证明的思路顺利引向间接证明的方向.
3.4 课堂小结
为了进一步培养学生的概括和表达能力,系统掌握所学的知识,引导学生从三个层次进行总结:学习了哪些知识?掌握了哪些方法?体会了哪些思想?
3.5 布置作业
通过作业对学生的学习情况进行反馈,对教师的教学进行有效矫正,布置如下作业:
(1)阅读课本第33页性质定理的证明,思考与本节课堂上给出的证明有什么共性?
(2)画出本节课的知识图,罗列证明线面垂直有哪些方法?
(3)课本第34页练习题1,3.
4 教后思考
4.1 对教材的认识
对照不同版本的教材,“直线与平面垂直”这一节内容出现的顺序是有差异的.人教版和北师大版教材,均将其置于“空间平行关系”之后.而苏教版教材,“直线与平面垂直”是紧随“直线与平面平行”,并与“直线与平面斜交”三者隶属于“直线与平面的位置关系”一节.苏教版教材编写意图在于:其一,研究空间位置关系的方法不外乎定性研究和定量研究两种,“线面平行(垂直)”均为定性研究,而“线面斜交”则为定量研究.其二,研究一个新的数学问题,一般遵循从特殊到一般的规律,故而先研究“线面垂直”.其三,“线面平行”的研究思路为“线面垂直”指明了方向,提供了研究方法.从定义到判定定理再到性质定理的研究顺序学生了然于胸.其四,空间问题平面化,将未知转化为已知的思想,前面的学习中已经有了铺垫.因此,课堂上要能将编者意图巧妙地体现,并渗透数学思想.
4.2 一点感悟
本节课的成功之处在于通过设置有效的问题串让学生体验探究问题的过程,使得学生的主体地位得到确立,让学生体验成功的快乐.此外,不单纯为完成教学任务而忽视学生的课堂反馈,也是学生主体地位的体现.在课堂时间较紧、评优课又要求课堂流程完整的情况下,能充分暴露学生的思维过程.(如:学生使用反证法进行性质定理的证明时,自然地由假设不平行,想到两直线相交或异面的情况.教师顺着学生的思路加以引导,而不是生拉硬拽地把学生的思路拉到课本上.但证法的本质是相通的,同样可以达成教学目标.)本节课同时还注重师生间交流和学生思维发展,利用展台对比学生的书写,互相评价,规范书写,效果较好.
不足之处在于:由于教学容量大,定义的产生,判定定理的形成又是重难点,再加上有些结论不能使用,导致出现了前松后紧的现象.另外在定义的建构部分,如果能避免牵着学生走的嫌疑,充分放手让学生探究,对学生数学思维能力的发展将更加有利.教学效益也将更好.
直线与平面垂直的判定的教学反思 篇4
一、复习引入部分
在复习回顾过程中,我首先提出了一个问题:问直线和平面有几种位置关系。我们研究了直线和平面平行,直线在平面内是平面几何的内容,今天我们来研究直线和平面相交的一种特殊情况,同学们都一起回答是:垂直。这样激发了学习的兴趣。
新课标提倡数学教学应当注意创设生活情境,使数学学习更贴近学生,在数学课堂学习中,精心创设问题情景,诱发学生思维的积极性,用卓有成效的启发引导,促使学生的思维活动持续发展。学生对学习有无兴趣和求知欲,是能否积极思维的重要的动机因素。要引起学生对数学学习的兴趣和求知欲望,行之有效的方法是创设合适的问题情景,引起学生对数学知识本身的兴趣。在数学问题情景中,新的需要和学生原有的数学水平之间产生了认知冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情景,成为诱发和促进学生思维发展的动力因素。在本节课的设计中,我引入了生活中的场景,如教室的门与地面、立在桌上的课本和桌面的关系、旗杆和地面等等,来激发学生学习数学的兴趣。
二、判定定理讲解过程
在直线与平面垂直的性质定理讲解设计中,我让学生先观察实例,再从实际情境中抽象出数学模型,通过两个数学小实验,让学生动一动手,学生自主探究得出判定定理。在这里,我仍然要求学生会用三种语言来表达这个判定定理,并和学生一起去分析定理中的三个条件。讲解后,我设计了几道判断题,主要目的是希望学生自己去发现判定定理中的三个条件都是不能少的,缺少一个结论均不成立。这个设计得到了老师们的肯定,课后也给我提出了更好的处理意见。比如说,可以充分利用多媒体技术,不妨直接将三个条件投影出来,然后依次擦去一个或者两个条件,让学生自己去证明结论是否仍然成立。我觉得在以后的教学中,我可以尝试采用这样的处理方式,在此过程中,让学生通过实践体验知识形成的过程,自主完成知识的建构,让学生体会知识获得的喜悦,自己做出来的才是印象最深刻的。
三、反思例题讲解与随堂练习部分
在例题讲解中,我选取的是教材中的例1,先给学生分析了题意,再板书了证明过程。但是,在分析过程中,但板书不够详细。这是一个不足,虽然有紧张的原因,但是作为一名老师,应该给学生做好榜样,起到示范的作用。最后,由于时间不够,例2讲解非常详细,如果平面中没有现成的直线,那么需要我们自己去做两条辅助线。例3不仅充分应用判定定理去证明线面垂直,而且还应用例2的结果,过度自然。
教案:直线与平面垂直 篇5
教材分析
直线与平面垂直是在研究了直线与直线垂直、直线与平面平行、平面与平面平行的基础上进行的.它是直线与直线垂直的延伸,是学习习近平面与平面垂直以及有关距离、空间角、多面体、旋转体的基础.这节内容的学习可完善知识结构,并对进一步培养学生观察、发现问题的能力和空间想象能力,起着十分重要的作用.
直线与平面垂直的定义、判定定理、性质定理是这节课的重点.
学习直线与平面垂直的性质定理时,应该注意引导学生把直线和直线的关系问题有目的地转化为直线与平面的关系问题,这是这节课的难点.
教学目标
1.掌握直线与直线垂直,直线与平面垂直的定义,以及直线与平面垂直的判定与性质. 2.通过探索线面垂直的定义、判定定理和性质定理及其证明,进一步培养学生观察问题、发现问题的能力和空间想象、计算能力,并且加强对思维能力的训练.
3.激发学生的学习兴趣,培养学生不断发现、探索新知的精神,渗透事物间相互转化和理论联系实际的辩证唯物主义观点,并通过图形的立体美,对称美,培养教学审美意识.
任务分析
因为判定定理的证明有一定的难度,所以教材作为探索与研究来处理.又因为定理的论证层次多,构图复杂,辅助线多,运用平面几何的知识多,所以这节课的难点是判定定理的证明.突破难点的方法是充分运用实物模型演示,以具体形象思维支持逻辑思维.
教学设计
一、问题情境
上海的标志性建筑———东方明珠电视塔的中轴线垂直于地面,在这一点上,它与比萨斜塔完全不同.那么,直线与平面垂直如何定义和判定,又有什么性质呢?这将是本节课要研究的问题.
二、建立模型
我们先来研究空间中两条直线的垂直问题. 在平面内,如果两条直线互相垂直,则它们一定相交.在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线不会相交,也不会在同一平面内(为什么),我们同样称它们相互垂直.下面我们给出空间任意两条直线互相垂直的一般定义.
如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.
有了直线与直线垂直的概念,我们就可以利用直线与直线垂直来定义直线与平面垂直了.
[问 题]
1.什么叫直线与平面垂直?
教师演示:如图,直线l是线段AB的中垂线.固定线段AB,让l保持与AB垂直并绕直线AB在空间旋转.
教师让学生讨论:(1)直线l的轨迹是怎样的图形?(2)如何定义直线与平面垂直?
教师明晰:(1)线段AB所有垂直平分线构成的集合是一个平面.
(2)如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,这条直线叫作平面的垂线,这个平面叫作直线的垂面.交点叫作垂足.垂线上任一点到垂足间的线段,叫作这点到这个平面的垂线段.垂线段的长度叫作这个点到平面的距离.
2.如图18-2,直线l⊥平面α,直线m
α,问l与m的关系怎样.
学生讨论后,得出结论:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.
3.怎么画直线与平面垂直?
学生讨论后,教师总结:画直线和平面垂直时,通常要把直线画成和表示平面的平行四边形的一边垂直,如图18-2.
4.如何判断直线与平面垂直?
教师引导:根据定义判定直线与平面垂直是困难的,如何用尽可能少的线线垂直来判定线面垂直呢?
学生讨论后,教师总结.
(1)因为两条相交直线确定一平面,所以只要直线和平面内的两条相交直线垂直,就可以判定直线和平面垂直.
(2)两条平行直线也确定一平面,直线和这两条平行直线垂直,不能判定直线就和平面垂直(教师作演示说明).于是,归纳出直线和平面垂直的判定定理.
定理 如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直. 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. 如图18-3,如果直线l∥m,l⊥平面α,则l垂直于平面α内任意两条相交直线,如a,b.根据空间两直线垂直的定义,易知m⊥a,m⊥b,所以m⊥α.
让学生总结:判定直线与平面垂直的方法.
(1)定 义.(2)判定定理.(3)推 论.
4.在平面几何中,同垂直于一条直线的两条直线平行,那么,在空间几何中,又有什么类似的结论呢? 学生讨论后,得出结论:同垂直于一个平面的两条直线平行.于是有直线和平面垂直的性质.
定理 如果两条直线垂直于同一个平面,那么这两条直线平行. 已知:如图18-4,直线l⊥平面α,直线m⊥平面α,垂足分别为A,B.
求证:l∥m.
证明:假设直线m不与直线l平行.过直线m与平面α的交点B,作直线m′∥l,由直线与平面垂直的判定定理的推论可知,m′⊥α.设m和m′确定的平面为β,α与β的交线为a,因为直线m和m′都垂直于平面α,所以直线m和m′都垂直于交线a.因为在同一平面内,通过直线上一点并与已知直线垂直的直线有且仅有一条,所以直线m和m′必重合,即l∥m.
三、解释应用 [例 题]
1.过一点和已知平面垂直的直线只有一条.已知:平面α和一点P(如图18-5).求证:过点P与α垂直的直线只有一条.
证明:不论点P在α外或内,设PA⊥α,垂足为A(或P).如果过点P,除直线PA⊥α外,还有一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于交线a,这是不可能的.所以过点P与α垂直的直线只有一条. 2.如图18-6,有一根旗杆AB高8m,它的顶端A挂着两条长10m的绳子.拉紧绳子,并把它的下端放在地面上的两点C,D(和旗杆脚不在同一条直线上).如果这两点都和旗杆脚B的距离是6m,那么旗杆就和地面垂直,为什么?
解:在△ABC和△ABD中,因为AB=8m,BC=BD=6m,AC=AD=10m,所以AB2+BC2=82+62=102=AC2,AB2+BD2=62+82=102=AD2.
所以∠ABC=∠ABD=90°,即AB⊥BC,AB⊥BD. 又知B,C,D三点不共线,所以AB⊥平面BCD,即旗杆和地面垂直.
3.已知:直线l⊥平面α,垂足为A,直线AP⊥l(如图18-7). 求证:AP在α内.
证明:设AP与l确定的平面为β.如果AP不在α内,则可设α与β相交于直线AM,因为l⊥α,AMα,所以l⊥AM.又已知AP⊥l,于是在平面β内,过点A有两条直线垂直于l.这是不可能的,所以AP一定在α内.
[练习] 1.已知:如图18-8,在平面α内有PA=PC,PB=PD.求证:PO⊥α.
ABCD,O是它对角线的交点,点P在α外,且
2.已知:空间四边形ABCD中,AB=AC,DB=DC,求证:BC⊥AD.
3.已知两个平行平面中,有一个平面与一条已知直线垂直,问:另一平面与已知直线的位置关系怎样?
四、拓展延伸
1.如图18-9所示,在空间,如果直线m,n都是线段AA′的垂直平分线,设m,n确定的平面为α,证明:
(1)在平面α内,通过线段AA′中点B的所有直线都是线段AA′的垂直平分线.(2)线段AA′的任一条垂直平分线都在α内.
2.如图18-10(1),如果平面α通过线段AA′的中点O,且垂直于直线AA′,那么平面α叫作线段AA′的垂直平分面(或中垂面),并称点A,A′关于平面α成镜面对称,平面α叫作A,A′的对称平面.
如图18-10(2),如果一个图形F内的所有点关于平面α的对称点构成几何图形F′,则称F,F′关于平面α成镜面对称.F到F′的图形变换称为镜面对称变换.
如果一个图形F通过镜面对称变换后的图形仍是它自身,则这个图形被称为镜面对称图形. 根据以上定义,探索与研究以下问题:(1)线段的中垂面有哪些性质?
(2)你学过的空间图形,有哪些是镜面对称图形?
(3)写一篇研究镜面对称的小论文,探索镜面对称的性质和应用.
点 评
教案:直线与平面垂直 篇6
整体设计
教学分析
上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.三维目标
1.探究直线与平面平行的性质定理.2.体会直线与平面平行的性质定理的应用.3.通过线线平行与线面平行转化,培养学生的学习兴趣.重点难点
教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.课时安排 1课时
教学过程
复习
回忆直线与平面平行的判定定理:
(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1 导入新课 思路1.(情境导入)
教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行? 思路2.(事例导入)
观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?
图2 推进新课 新知探究 提出问题
①回忆空间两直线的位置关系.②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.③用三种语言描述直线与平面平行的性质定理.④试证明直线与平面平行的性质定理.⑤应用线面平行的性质定理的关键是什么? ⑥总结应用线面平行性质定理的要诀.活动:问题①引导学生回忆两直线的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用排除法.问题⑤引导学生找出应用的难点.问题⑥鼓励学生总结,教师归纳.讨论结果:①空间两条直线的位置关系:相交、平行、异面.②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.③直线与平面平行的性质定理用文字语言表示为:
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.这个定理用符号语言可表示为:
这个定理用图形语言可表示为:如图3.图3 ④已知a∥α,aβ,α∩β=b.求证:a∥b.证明:
⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.应用示例
思路1
例1 如图4所示的一块木料中,棱BC平行于面A′C′.图4(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?
活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理
4、公理2作出.解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,图5 并分别交棱A′B′、C′D′于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.由(1)知,EF∥B′C′,所以EF∥BC.因此
BE、CF显然都与平面AC相交.变式训练
如图6,a∥α,A是α另一侧的点,B、C、D∈a,线段AB、AC、AD交α于E、F、G点,若BD=4,CF=4,AF=5,求EG.图6
解:Aa,∴A、a确定一个平面,设为β.∵B∈a,∴B∈β.又A∈β,∴ABβ.同理ACβ,ADβ.∵点A与直线a在α的异侧, ∴β与α相交.∴面ABD与面α相交,交线为EG.∵BD∥α,BD面BAD,面BAD∩α=EG, ∴BD∥EG.∴△AEG∽△ABD.EGAF.(相似三角形对应线段成比例)BDACAF520BD4∴EG=.AC99∴点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7 已知直线a,b,平面α,且a∥b,a∥α,a,b都在平面α外.求证:b∥α.证明:过a作平面β,使它与平面α相交,交线为c.∵a∥α,aβ,α∩β=c,∴a∥c.∵a∥b,∴b∥c.∵cα,bα,∴b∥α.变式训练
如图8,E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、G.求证:EH∥FG.图8 证明:连接EH.∵E、H分别是AB、AD的中点, ∴EH∥BD.又BD面BCD,EH面BCD, ∴EH∥面BCD.又EHα、α∩面BCD=FG, ∴EH∥FG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.思路2
例1 求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.图9 已知a∥b,aα,bβ,α∩β=c.求证:c∥a∥b.证明:变式训练
求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.图10 已知:如图10,a∥α,a∥β,α∩β=b,求证:a∥b.证明:如图10,过a作平面γ、δ,使得γ∩α=c,δ∩β=d,那么有
点评:本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.例2 如图11,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH,AC∥面EFGH.图11
证明:∵EFGH是平行四边形
变式训练
如图12,平面EFGH分别平行于CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.图12(1)求证:EFGH是矩形;
(2)设DE=m,EB=n,求矩形EFGH的面积.(1)证明:∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF, ∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形.由CD∥EF,HE∥AB,∴∠HEF为CD和AB所成的角.又∵CD⊥AB,∴HE⊥EF.∴四边形EFGH为矩形.(2)解:由(1)可知在△BCD中EF∥CD,DE=m,EB=n, EFBEna..又CD=a,∴EF=CDDBmnHEDE由HE∥AB,∴.ABDBmb.又∵AB=b,∴HE=mn∴又∵四边形EFGH为矩形, ∴S矩形EFGH=HE·EF=mnmnbaab.2mnmn(mn)点评:线面平行问题是平行问题的重点,有着广泛应用.知能训练
教案:直线与平面垂直 篇7
1.教学目标
1、知识与技能
(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;(2)让学生利用已有的知识与经验归纳整理本节所学知识。
2.教学重点/难点
重点:空间直线与平面、平面与平面之间的位置关系。难点:用图形表达直线与平面、平面与平面的位置关系。
3.教学用具
投影仪等.4.标签
数学,立体几何
教学过程
(一)创设情景、导入课题
教师以生活中的实例以及课本P49的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点(3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 表示
α来
例4(投影)师生共同完成例4 例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:
(1)两个平面平行 —— 没有公共点
(2)两个平面相交 —— 有且只有一条公共直线
用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为
教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。教材P51 探究
让学生独立思考,稍后教师作指导,加深学生对这两种位置关系的理解 教材P51 练习
学生独立完成后教师检查、指导
(三)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P51习题2.1 A组第3题、第5题,B组第1题
课堂小结
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
课后习题 作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P51习题2.1 A组第3题、第5题,B组第1题
教案:直线与平面垂直 篇8
巩义二中闫长辉
课题:§ 3.1.2 两条直线平行与垂直的判定
教材:普通高中课程标准实验教科书(人教A版)必修
(二)第三章第一节第二部分内容课时:1课时
下面,我从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析:
1、学习任务分析:
直线与方程是平面解析几何初步的第一章,主要内容是用坐标法研究平面上最基本、最简单的几何图形——直线。学习本章,既能为进一步学习解析几何的圆、圆锥曲线、线性规划、以及导数、微分等做好知识上的必要准备,又能为今后灵活运用解析几何的基本思想和方法打好坚实的基础。
本节课是在学生学习了直线的倾斜角、斜率概念和斜率公式等知识的基础上,进一步探究如何用直线的斜率判定两条直线平行与垂直的位置关系。核心内容是两条直线平行与垂直的判定。它既是直线斜率概念的深化和简单应用,也是后续内容学习的重要基础。因此,我认为本节课的教学重点为:根据两条直线斜率判定两条直线平行与垂直。
用斜率判定两条直线的位置关系,体现了用代数方法研究几何问题的思想,这是贯穿于本节乃至本章内容始终的一种思想方法,它是解析几何研究问题的基本思想,本质还是数形结合。因此体会数形结合的数学思想也是本节课的教学任务之一。
2、学情分析:
在初中数学中,学生已学习过两条直线平行与垂直的判定。对两条直线平行与垂直的几何判断方法并不陌生,并且具备了一些初步推理能力。但用两条直线的斜率判定两条直线平行与垂直,是用代数方法研究几何问题,学生面对的是一种全新的思维方法,首次接触会感到不习惯。按说要学好本节内容,学生还需具备三角函数的有关知识,但此前学生并没有这方面的知识储备。尤其是对诱导公式的认识是有一定困难的。因而要导出两条直线垂直的斜率条件,学生会感到困难。因此,我以为本节课的教学难点为:探究两条直线斜率与两条直线垂直的关系。
二、教学目标设计:
《课程标准》指出本节课的学习目标是:能根据斜率判定两条直线平行或垂直。根据《课标》要求和本节教学内容,并考虑学生的接受能力,我把本节课的教学目标确定为:
1、能根据斜率判定两条直线平行或垂直。
2、体验、经历用斜率研究两条直线的位置关系的过程与方法,通过两条直线斜率之间的关系解释几何含义即初步体会数形结合思想。
3、感受坐标法对沟通代数与几何、数与形之间联系的重要作用。
三、课堂结构设计:
本节课从总体上讲是一节原理及简单的应用教学,诱思探究教学理论认为高中的数学课堂应该是学生在自主探究、动手实践、合作交流、阅读自学等学习方式下,师生之间、学生之间进行愉快而有效的多边互动。结合本节课知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先让学生回顾上节课学习的内容创设问题情景,通过学生自主探究,归纳和抽象得出两条直线平行与垂直的判定条件。然后通过例题和练习使学生巩固判定条件,接着通过拓展提升,使学生进一步加深对判定条件的理解,最后通过课堂小结提高学生的认识,形成知识体系。
四、教学媒体设计:
根据本节课的教学任务以及学生学习的需要,教学媒体的设计如下:
1、多媒体辅助教学:
制作高效实用的多媒体课件。其一,在探索两条直线垂直的判定条件时,利用几何画板展示探究的过程,让学生直观感知、操作确认自己的猜想是正确的,加深学生对判定条件的理解。其二,改变相关内容的呈现方式,节约课时,增加课堂容量。
2、设计科学合理的板书:为使学生对本节课所学习的内容有一个整体的认识,教学时将重要内容进行板书,如:
§3.1.2两条直线平行与垂直的判定
结论1:结论
2、例
1、例
2、变式训练1:变式训练2:
五、教学过程设计:
下面我就课堂教学的各个环节的设计做简单的说明。
(一)创设情景,引入新课:
活动一:
1、什么叫倾斜角?它的范围是什么?
2、什么叫斜率?如何计算呢?
3、已知直线经过A(1,3)、B(-1,-1),直线经过C(2,2)、D(1,0)①计算直线的斜率; ②在直角坐标系中画出直线。
给学生约30秒的时间思考问题1、2,请学生口述答案,老师强调注意的条件。通过解决问题3,学生发现k1= k2,并观察出是平行的,学生很自然发现两条直线的斜率与位置有着
某种联系,从而引出本节课的课题。
设计意图:一方面通过回顾,巩固上节课的教学内容,并为本节课做好知识方面的准备。另一方面也为引出本节课的课题。同时也是为了培养学生发现问题,提出问题的能力,激发学生运用旧知探求新知的欲望。也是为了体现由特殊到一般的认知规律。
(二)新知的探究与应用:
1、两条直线平行的判定:
说明:为了降低难度,设定两条直线不重合且有斜率存在。
(1)设置问题,归纳结论 设两条直线与的斜率分别为活动二: 与。
1、当时,与满足怎样的关系?
给学生约30秒的时间思考、整理,请学生表述推导过程,教师板演。归纳:
2、反之,当。时,两条直线与有怎样的位置关系?,但要明确其中的原理势必受到三角函数基础知识的限制,学生通过思考,很快得出直线
教师可给予适当的讲解。归纳:
结论:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
设计意图:(1)培养学生运用已有知识解决新问题的能力;(2)培养学生自主探究问题的习惯;(3)让学生体验探究两条直线斜率与直线的位置关系的过程,更好的理解两直线平行的条件。
(2)应用举例:
例
1、已知A(2,3),B(-4,0)P(-3,2),Q(-1,3),试判断直线AB与直线PQ的位置关系,并证明你的结论.给学生约1分钟的时间思考,然后老师进行简要的分析,最后由师生共同
完成证明过程。
设计意图:直接应用新知解决数学问题,同时也为学生规范表达数学过程
做出示范。体会用代数方法解决几何问题的思想方法。
变式训练1:已知四边形ABCD的四个顶点分别为A(-7,0)、B(2,-3)、C(5,6)、D(-4,9),试判断四边形ABCD的形状,并给出证明。
由学生独立完成,其中一人上黑板板演,教师巡视并给予必要的指导.在做完此题时,细心的学生会发现它可能还是一个正方形,如何判断呢?引出下一个探究的问题:斜率之间有何关系时两条直线垂直?
设计意图:(1)培养学生应用新知独立解决数学问题的能力。(2)为了发现问题,提出问题。也为下一环节做好铺垫。
2、两条直线垂直的判定:
说明:为了降低难度,设定两条直线的斜率是存在。
(1)设置问题,归纳结论
活动三:
1、当时,它们的斜率k1与k2有何关系?
探究:(1)直线(2)直线且的倾斜角为300,的倾斜角为1200,k1与k2的关系.且的倾斜角为600,的倾斜角为1500,k1与k2的关系
。由学生自主探究,得出
猜想:任意两条直线垂直时,此时老师利用几何画板直观演示任意两条相互垂直时直线斜率之积为-1.,验证猜想的可靠性。
提出问题:我们能否证明上述结论呢?
该结论的证明过程涉及到三角函数的相关知识,学生无法完成。教师通过分析、讲解,完成证明过程。归纳:
2、反之,当 时,直线与有怎样的位置关系? 学生思考后得出与是垂直的。由于结论的证明涉及三角函数的相关知识,完成证明很困难,老师利用几何画板直观演示,验证两条直线的斜率之积为-1,它们是相互垂直的即可。归纳:
结论:如果两条直线有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即
设计意图:(1)为了更容易突破本节课的教学难点,更好的理解两直线垂直的条件。(2)为了使学生的认识符合从具体到抽象,从特殊到一般的认知规律。(3)充分渗透了数形结合的数学思想。
(2)应用举例:
例2:已知A(-6,0)、B(3,6)、P(0,3)、Q(6,-6),试判断直线AB与直线PQ的位置关系。
给学生约30秒的时间思考,然后老师进行简要的分析,最后由师生共同完成证明过程。接着与学生一同解决变式训练1提出的判断平行四边形ABCD是否是正方形,前后呼应,给学生留下一个完整的影响。
设计意图:直接应用新知解决数学问题,同时也为学生规范表达数学过程做出示范。体会用代数方法解决几何问题的思想方法。
变式训练2: 判断下面两条直线的位置关系: 直线经过两点A(3,1),B(-2,0),直线经过点P(1,-4),且斜率为-5,则
__。(学生思考,口答即可)。
变式训练3:已知A(5,-1)、B(1,1)、C(2,3)三点,试判断△ABC的形状。由学生独立完成,其中一人上黑板板演,教师巡视并给予必要的指导.设计意图:(1)培养学生应用新知独立解决数学问题的能力。(2)体会用代数方法解决几何问题的思想方法。
(三)拓展提升:
1、若直线的斜率不存在,则直线的斜率为多少时?直线和:
(1)平行;(2)垂直。
给学生约30秒的时间思考,请一位学生口述答案,教师在黑板上画出相应结论的图像。归纳(一般情况):
2.若直线与的斜率相等,则与一定平行吗?
给学生约30秒的时间思考,请一位学生口述答案,教师出示结果。
(此结论是利用斜率证明三点共线的)
变式训练3:
已知A(1,-1)、B(2,1)、C(0,-3),这三点是否在同一条直线上,为什么?
设计意图:对特殊情况做出补充:即直线的斜率不存在时,两条直线平行与垂直的判定方法。使得学生对平行与垂直的判定有更全面的认识。拓宽学生的知识面,使所学的知识系统化。
(四)课堂小结:
1、本节课我们学习了哪些新知识?新方法?
2、在应用这些新知识时应注意哪些问题?
3、在本节课的学习中运用了哪些数学思想?
学生发言,相互补充,教师点评,然后师生共同概括总结:
知识:
1.两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
2.如果两条直线有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即
方法:代数方法研究几何问题。
思想:数行结合思想。
设计意图:通过对所学内容进行小结,使学生既学习了知识又培养了能力,并对所学内容有一个更全面的认识。
(五)、布置作业:
1、课本p89习题3.1 a组 6、72、思考题:
已知三个点A(2,2),B(-5,1),C(3,-5),试求第四个点d的坐标,使这四个点构成平行四边形。
设计意图:(1)作业1是直接应用,模仿练习。
(2)作业2是供学有余力的学生选做。旨在培养学生创造性的能力。
六、教学评价设计:
评价方式的转变是课程改革的一大亮点。课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、通过学生的自主探究、合作交流、以及与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。
2、在学生讨论、交流、合作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、通过应用来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
直线与平面平行说课 篇9
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法
通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。
学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。
教案:直线与平面垂直 篇10
一、教学目标
1.会找出平行的直线和平面
2.会应用判定定理证明线面平行
3.逐步学会逆向思维
4.归纳证明线线平行的方法:中位线,相似,平行四边形
二、教学重点:应用判定定理证明线面平行(给学生足够时间练习板书)
教学难点:利用中位线作辅助线(详细分析板书)
三、教学方法:讨论式,讲练结合
四、教学过程
(一)引入:课前提醒大家不要翻书。老师拿一本书一支笔(笔稍微斜一点点)问:笔所在直线与书本所在平面什么关系? 老师:有人说平行,有人说相交。其实都有道理,因为平行向下偏一点点肉眼分辨不出来的,那么怎么判断线面平行更可靠呢?这就是这节课咱们要探寻的奥秘。
(二)新课:
1.实例感受:请大家观察门框的一边和门板什么关系?书本封面边缘和书本面什么关系?长方体下底边与上底面什么关系?这三个实例有个共同点,有同学发现了吗?
(10秒后提示:门框对边平行)
所以,可以怎么判断线面平行呢?同桌之间互相讨论一下。
2.定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(给大家1分钟时间,尝试用符号表示此定理)
画图表示
请大家齐声朗读定理3遍,尝试背诵
练习1:判断正误:
(1)若直线a与平面α内无数条直线平行,则a∥α
(2)若平面外的直线a与平面α内无数条直线平行,则a∥α
练习2:如图,长方体中
(1)与AB平行的平面是?
(2)与平面ABCD平行的直线是?
通过这个练习咱们应该初步感受逆向思维。
练习3:在长方体中,,可得哪条直线平行哪个平面?(同样体现了逆向思维)
3.用定理证明线面平行
例:如图,空间四边形ABCD中,E,F分别是AB,AD的中点。求证:EF∥平面BCD
思考:为什么想到连接BD?
答:因为E是AB中点,故A,B是三角形的顶点;F是AD中点,故A,D是三角形的顶点,所以EF是△ABD的中位线。故连接BD
练习:如图所示,在正方体中,S,E,G分别是,BC,SC的中点,求证:
思考:书本56页练习2如何做辅助线?
备用练习1:大本61页基础小测(只说思路,不用写过程)
备用练习2:如图,长方体中,已知E,F分别为AB,CD的中点,求证(只说思路,不用写过程)
思考:由以上练习总结,证明线线平行的方法有哪些:中位线,平行线分线段成比例,平行四边形
小结:本节课学习了线面平行的判定。还学习了逆向思维,是做立体几何综合问题的利剑。最后学习了证明线面平行,注意板书,做辅助线。如果满分为5颗星,你给自己打几颗星呢?
作业布置:书本56页练习2
五、板书设计:
三个实例 学生板书 | 标题 1.定理: 2.逆向思维 | 3.证明线面平行 例题: | 学生板书 |
教案:直线与平面垂直 篇11
2.2.1直线与平面平行的判定
【学习目标】
1.通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;
2.理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.【重点难点】
重点:直线与平面平行的判定
难点:应用判定定理证明线面平行
【学法指导】
1. 结合问题自学教材54-55页,画出重点和疑惑点。
2. 独立完成探究题
一、问题导学
1. 直线与平面平行的判定定理的内容是什么?
2. 用数学符号语言如何来表述定理?
3. 定理体现了什么数学思想?
4. 如何证明这个定理?
二、探究、合作、展示
例1 有一块木料如图5-4所示,P为平面BCEF内一点,要求过点P在平面BCEF内作一条直线与平面ABCD平行,应该如何画线?
图5-
4例2 如图5-5,空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.图5-
5长春市实验中学高一◆数学◆导学案
练1.正方形ABCD与正方形ABEF交于AB,M和N分别为AC和BF上的点,且
MN∥平面BEC.,AB的中点,沿DE将ADE折起,使A到A的位置,设M是AB的中点,求证:ME∥平面ACD.三、学习小结
1.直线与平面平行判定定理及其应用,其核心是线线平行线面平行;
2.转化思想的运用:空间问题转化为平面问题.※ 知识拓展
判定直线与平面平行通常有三种方法:
⑴利用定义:证明直线与平面没有公共点。但直接证明是困难的,往往借助于反证法。⑵利用判定定理,其关键是证明线线平行。证明线线平行可利用平行公理、中位线、比例线段等等。
⑶利用平面与平面平行的性质。(后面将会学习到)
【课堂小测】(时量:5分钟 满分:10分)计分:
1.若直线与平面平行,则这条直线与这个平面内的().A.一条直线不相交B.两条直线不相交
C.任意一条直线都不相交D.无数条直线不相交
2.下列结论正确的是().A.平行于同一平面的两直线平行
B.直线l与平面不相交,则l∥平面
C.A,B是平面外两点,C,D是平面内两点,若ACBD,则AB∥平面
D.同时与两条异面直线平行的平面有无数个
3.如果AB、BC、CD是不在同一平面内的三条线段,则经过它们中点的平面和直线AC的位置关系是().A.平行 B.相交 C.AC在此平面内 D.平行或相交
4.在正方体ABCDA1B1C1D1的六个面和六个对角面中,与棱AB平行的面有________个.5.若直线a,b相交,且a∥,则b与平面的位置关系是_____________.【课后作业】
【教案:直线与平面垂直】推荐阅读:
直线与平面垂直的判定教案说明10-03
两直线平行与垂直的判定06-04
直线与平面平行说课06-12
直线与圆的方程教案08-24
直线、平行线、垂直线11-30
第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《直线方程的概念与直线的斜率》(山东周07-09
光沿直线传播教案05-21
初二物理直线运动教案06-03
点到直线的距离教案06-10