数学九年级上册圆周率知识点(通用7篇)
数学九年级上册圆周率知识点 篇1
数学九年级上册圆周率知识点
1.圆周率公式
(1)圆周率一般定义为一个圆形的周长(C)与直径(d)之比。
(2)以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积的比例订为圆周率 ,即圆形之面积与半径平方之比。
(3)定义圆周率不一定要用到几何概念,比如,我们可以定义圆周率为满足sin(X)=0的最小正实数X。
2.圆周率π等于3.14 又等于180度
π是一个无理数,名字叫做圆周率,约等于3.14159,圆周率与180度角的关系出于角的弧度制,1弧度的角的定义是弧长等于1个半径的圆心角。半圆的弧(长为πR)所对的圆心角是平角,因此180度角就是弧度数是π的角,在说话的时候常常简单的说:π=180度,完整的说法是π弧度角等于180度角。
圆周率π的应用程度相当广泛,无论是函数还是圆周长、圆面积、球体积等几何形状都会出现圆周率π的身影。
3圆中各部分名称
(1)圆心:圆内中心的点叫做圆心,用$O$表示。
(2)半径和直径:连接圆心和圆上任意一点的线段,叫做圆的半径,用$r$表示;过圆心并且两端都在圆上的线段,叫做圆的直径,用$d$表示。
4、圆的性质
(1)在同一个圆里,半径有无数条,所有的半径都相等;直径是半径的2倍,半径等于直径的$frac{1}{2}$。
(2)圆心决定圆的位置,半径决定圆的大小。
(3)圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴,一个圆有无数条对称轴。
(4)圆也是中心对称图形,其对称中心是圆心。
5圆周率的相关例题
大圆的直径是1米,小圆的直径是1厘米。那么下列说法正确的是___
A.大圆的圆周率大于小圆的圆周率
B.大圆的圆周率小于小圆的圆周率
C.大圆的圆周率等于小圆的圆周率
D.大圆的圆周长等于小圆的圆周长
答案:C
解析:根据分析可知,大圆的圆周率等于小圆的圆周率,AB错误,C正确。D.大圆周长:3.14×1=3.14(平方米),小圆周长:3.14×1=3.14(平方厘米),所以大圆周长大于小圆周长。故答案为C。
数学的发展历史
已知最古老的数学工具是发现于斯威士兰列朋波山的列朋波骨,大约是公元前35,0的遗物。它是一支狒狒的腓骨,上面被刻意切割出29个不同的缺口,使用计数妇女及跟踪妇女的月经周期。相似的史前遗物也在非洲和法国出土,大约有35,000至20,000年之久,都与量化时间有关。
早期中国数学和世界其它地方的数学有很大不同,因此可以合理认为是独立发展的。现存最古老的中国数学文献是《周髀算经》,成书年代有很多说法,从公元前1200年到公元前100年都有,但认为是在公元前300年左右似乎是合理的。
近似数运算口诀
四舍五入方法好,近似数来有法找;
取到哪位看下位,再同5字作比较;
是5大5前进1,小于5的全舍掉;
等号换成约等号,使人一看就明白。
数学九年级上册圆周率知识点 篇2
一、经历构建概念过程, 渗透分类思想
当学生学习了平角、周角的概念后, 为了让学生对角有更深入的理解, 必须对角进行分类, 理清锐角、直角、钝角、平角、周角之间的关系。因此, 学生根据角估认角的类型, 从而加深对角概念的理解。学生通过对角的测量来修正角的类型, 形成根据角的度数区分直角、平角、锐角、钝角和周角的策略。学生对下列角自主估认、测量、分类后, 进行交流并汇报。
生1:∠1和∠6是锐角, 因为这两个角比直角小。经过我的测量, ∠1的度数是45°, ∠6的度数是50°, 我的估认与我的测量结果相同。
生2:∠3是平角, 因为平角的两条边在同一直线上, 与量角器经过中心点的0刻度线完全重合, 度数是180°。∠5是周角, 因为周角是射线绕它的端点旋转一周所成的角。当周角的一条边绕它的端点旋转到同一直线上时形成平角, 这时正好是180°;再旋转到两条边重合在一起时, 等于2个平角, 所以∠5的度数是360°。
生3:∠2和∠7是钝角, 因为这两个角比直角大。经过测量, ∠2的度数是120°, ∠7的度数是130°。∠4是我的估认与实际测量不相同的, 我估认∠4是锐角, 经过测量发现∠4是直角。
生4:我想补充∠7不需要测量也能知道度数, 因为∠6和∠7形成一个平角, 已测得∠6=50°, 所以∠7=180°-∠6=180°-50°=130°。因此, ∠1和∠6是锐角, ∠4是直角, ∠2和∠7是钝角, ∠3是平角, ∠5是周角。
生5:我和同桌通过填表的方式来研究角的分类。
生6:我还知道各角之间的关系, 因为锐角<90°, 直角 =90°, 90°< 钝角 <180°, 平角 =180°, 周角 =360°, 所以, 锐角 < 直角 < 钝角 < 平角 < 周角。
生7:我想补充生6的各角之间的关系, 1平角 =2直角, 1周角 =2平角 =4直角。
要对角进行有效分类, 确定分类标准是至关重要的。学生经历估认角的类型、测量角的大小后再根据角的度数对角进行分类, 逐步概括并形成角的概念。正如, 《义务教育数学课程标准 (2011年版) 》中所指出的那样:“通过多次反复的思考和长时间的积累, 使学生逐步感悟分类是一种重要的思想”。
二、经历估量、测量过程, 渗透数形结合思想
根据给定的角来估计角的度数, 根据角的度数来想象角的大小, 是学生学习角的度量的难点。如何让角的图形与角的度数有效结合?学生一组组地进行观察和比较, 判断每组中两个角的大小 (如图2) 。根据学生的原有认知, 绝大多数学生认为每组中上面的角比下面的角大一些, 理由是下面的角的边比上面的角的边长。
基于学生空间观念发展的特点, 学生用一幅三角板拼一拼图2中的每一组角, 判断上面的角与下面的角的大小, 并分别比较∠1, ∠3, ∠5和∠7及∠2, ∠4, ∠6和∠8的大小。学生用三角板拼后进行交流。
生1:我用三角板中的一个小角 (指30°角) 去拼∠1和∠2, 发现∠1和∠2是一样大的。
生2:我也用三角板上的小角去拼第二组中的∠3和∠4, 发现∠3和∠4都含有2个小角。
生3:我是用三角板上的大角 (指60°角) 去拼∠3和∠4, 发现∠3和∠4都是一个大角。
生4:我是用三角板上的小角去拼第三组的∠5和∠6, 发现∠5和∠6都含有4个小角。我的同桌用大角去拼, 发现∠5和∠6都含有2个大角。
生5:我用三角板上的大角和小角都无法拼出第四组中的角, 第四组中的角无法判断。
生6: (边展示边说) 我用两块三角板能拼出∠7和∠8, 先用含有小角的三角板拼直角, 再用另一块三角板的角 (指45°角) 就拼出了∠7和∠8。虽然我知道∠7和∠8一样大, 但我不知道∠7和∠8的度数。
师:角的大小与什么因素有关?
生1:经过比较, 角的大小与角两边的长短没有关系。
生2:角是从一点引出两条射线所组成的图形, 因为射线的一端可以无限延伸, 所以, 角的大小与角两边的长短无关。
生3:我发现∠1含有一个小角, ∠3含有两个小角, ∠5含有四个小角。角的大小与两条边张开的大小有关, 张开得越大, 角越大。
师:经过同学们的观察与比较, 得出角的大小要看两条边叉开的大小, 叉开得越大, 角越大。请同学们再比较∠1, ∠3, ∠5和∠7四个角的大小, 有多大, 大多少?
生1:∠3的度数是∠1的2倍;∠5的度数是∠3的2倍, 是∠1的4倍;∠7的度数是∠1的4倍多一些。因此, 这四个角的大小是∠1<∠3<∠5<∠7。
生2:用我的三角尺无法判断四个角的度数和大多少, 而我同桌三角尺上的度数能判断这四个角的度数。
生3:用三角板来判断角的大小, 要比对要计算, 不仅麻烦, 而且有的角无法用三角板来判断。比较角的大小, 要用量角器。
学生先估计一幅三角板上各个角的度数, 并量一量各是多少度, 再用量角器测量∠2, ∠4, ∠6和∠8中四个角的度数。学生估计与测量后, 进行交流并展示。
生1:长度标注在直角边的三角尺, 我的估测与测量的结果是相同的, 分别是90°、60°、30°。
生2:长度标注在底边的三角尺, 我的估测与测量的结果有不同的地方, 在估测时, 下面的两个角分别是40°、50°, 实际测量时发现这两个角的度数都是一样的:45°。
生3:经过对一幅三角尺的测量, 我发现开口向右的角一般要看内圈刻度, 开口向左的角一般要看外圈刻度。
生4:经过对∠2, ∠4, ∠6和∠8四个角的测量, 我测量的结果是∠2=30°、∠4=60°、∠6=120°、∠8=135°。我发现∠4比∠2大30°, ∠6比∠4大60°, ∠8比∠6大15°。
生5:四个角测量的结果与我们拼的结果一样, 而且, 我从四个角的比较中发现角可以看作一条射线绕其端点旋转一定度数后形成的图形。
学生6:经过测量, 我现在能比划出30°、45°、60°、90°、120°、135°的角。我能想象出30°、45°、60°、90°、120°、135°角的大小。
三、经历多元作图过程, 渗透类比思想
学生在学习画角知识时, 可以充分利用原有量角的知识和经验。学生不仅经历了画角的过程, 更重要的是引导学生充分经历类比的过程。如何让学生经历画角的过程, 从而培养学生的类比推理能力?学生选择合适的方法画出下列各角 (10°、45°、60°、90°、105°、120°、165°) , 并说说它们分别是哪一种角。学生先自主画角, 再分组讨论, 然后进行展示。
生1:我每个角都是用量角器画的, 因为我们已经学过量角的方法, 所以用量角器画角比较简单。在用量角器量角的时候, 先把量角器放在角的上面, 使量角器的中心和角的顶点重合, 零刻度线和角的一条边重合。因此, 我在画一个60°的角时, 先画一条射线, 使量角器的中心和射线的端点重合, 零刻度线和射线重合。在用量角器量角的时候, 接着要看角的另一条边所对的量角器上的刻度, 就是这个角的度数。因此, 画角时, 在量角器60°刻度线的地方点一个点。然后, 以画出的射线的端点为端点, 通过刚画的点, 再画一条射线。最后, 标好角的符号及度数。
生2:我觉得有的角用三角尺画比较简便, 用三角尺可以直接画出45°、60°、90°的角, 而10°、105°、120°、165°的角用量角器画比较简便。
生3:我除了10°的角要用量角器外, 其他的角用三角板都可以完成, 其中105°、120°、165°的角需要一幅三角板才能画出来。
师:谁来介绍一下用一幅三角板画出105°和120°、165°的角?
生4:画105°角的方法是:利用45°+60°=105°, 可以先用三角板画出一个45°的角, 然后与45°的角共一条边再画出一个60°的角, 这两个角的和就是105°。画120°角的方法与画105°角的方法是相同的, 可以利用60°+60°=120°或者90°+30° =120°来画。
生5:画165°角的方法是:利用30°+45° +90°=165°, 可以用三角板画一个30°的角, 再接画一个45°的角, 然后再接画一个90°的角, 这三个角的和就是165° (如图3) 。
生6:我补充画165°角的方法, 利用45°+60° +60°=165° (如图4) , 我的同桌利用180°—15° =165°也能画165°的角 (如图5) 。
九年级《数学》上册的五个缺陷 篇3
笔者在使用人教版义务教育课程标准实验教科书,九年级《数学》上册(2009年3月第2版,2011年6月第三次印刷)的过程中,发现该书有五个缺陷,简介如下,与同行商榷,供使用该册教科书的老师们教学过程中参考。一、第二十二章《一元二次方程》要引导学生理解此题大约需要25分钟左右,很难完成新课的学习任务,且有牵强附会之嫌,只为体现数学知识来源于生活而已,应该为学生易于理解的生活问题引入更好。二、第二十二章《一元二次方程》中,缺少解决实际问题的解题过程列一元二次方程解实际问题是初中数学教学的难点,也是对初中阶段列方程(组)解实际问题的概括和总结。该册课本的第二十二章《一元二次方程》中,先后以问题和探究的形式,展示了五个典型实际问题的分析过程,在分析过程中浓墨重彩,每个题目几乎用了一个版面,边分析边填空,探究结束;在解题过程中惜墨如金,没有给出完整的解题过程。虽然老师在黑板上板书,补充了解题过程,强调了必要的解题格式和步骤,随着时间的推移,学生会遗忘的,想复习一下解题过程,到哪里去找? 由于初中生的文化知识水平的限制,初中数学课本不光是引导学生探索“新”知识、启迪智慧的引路者,而且是初中學生学习巩固“旧”知识的备忘录和解决实际问题的经典范例。建议该书再版时在《22.3实际问题与一元二次方程》中的探究1、探究2、探究3的分析结束之后,给出规范的解题过程,为学生提供完整的列一元二次方程分析和解决实际问题经典范例,便于学生构建列方程(组)解方程的知识和技能体系,为初中阶段的构建方程(组)模型,解决实际问题画上圆满的句号。 类似的缺陷,也存在于九年级《数学》下册《26.3实际问题与二次函数》中,只有占一个多版面的分析过程可供参考,缺少经典的解题过程范例。三、学生易犯的错误出现在教科书中该书第86页推导证明“圆内接四边形的对角互补”的过程中,角的记法有错,对照“同理”分析,以点B和点D为顶点的角各有三个”。类似的错误使粗心大意的学生易犯的,出现在教科书中,实在是不应该。四、与课本配套的教师教学用书提供的习题答案出错该书第114页练习中的2题的正确答案是62.8㎡,而该教科书配套的教师教学用书中给的答案是628㎡,出错原因有多种可能,教师要是按照这个答案批改,肯定会错杀一大片,教师的脸面何在?五、习题中的关键词用错,为学生正确理解题意制造了麻烦。无误。习题的匹配应该以大多数学生能够用已经学过的知识技能,来独立完成为佳。以上是笔者在教学实践中的一点浅见,与人教社的编辑和同行进行商榷,愿我们的初中数学教科书,在不断修改中完美无瑕。
数学九年级上册圆周率知识点 篇4
一、选择题(共8小题,每小题4分,满分32分)
1.方程x2﹣3x﹣5=0的根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 无法确定是否有实数根
2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为( )
A. B. C. D.
3.若如图是某个几何体的三视图,则这个几何体是( )
A. 长方体 B. 正方体 C. 圆柱 D. 圆锥
4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是( )
A. B. C. D.
5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为( )
A. 1 B. 2 C. 4 D. 8
6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,若x1<0
A. y1<0
7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为( )
A. B. C. 1 D. 2
8.如图,在矩形ABCD中,AB
A. 线段EF B. 线段DE C. 线段CE D. 线段BE
二、填空题(共4小题,每小题4分,满分16分)
9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为cm2.(结果保留π)
10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.
11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.
12.对于正整数n,定义F(n)= ,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.
(1)求:F2(4)=,F(4)=;
(2)若F3m(4)=89,则正整数m的最小值是.
三、解答题(共13小题,满分72分)
13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+( )﹣1.
14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.
15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式 的值.
16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.
17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y= 的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.
(1)求反比例函数的解析式;
(2)若点P是反比例函数y= 图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.
18.如图,△ABC中,∠ACB=90°,sinA= ,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值.
19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.
(1)求m的取值范围;
(2)若x2<0,且 >﹣1,求整数m的值.
20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);
质量档次 1 2 … x … 10
日产量(件) 95 90 … 100﹣5x … 50
单件利润(万元) 6 8 … 2x+4 … 24
为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.
(1)求y关于x的函数关系式;
(2)工厂为获得利润,应选择生产哪个档次的产品?并求出当天利润的值.
21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.
(1)求证:直线PC是⊙O的切线;
(2)若AB= ,AD=2,求线段PC的长.
22.阅读下面材料:
小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.
请回答:
(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;
(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.
请你帮小明计算:OC=;tan∠AOD=;
解决问题:
如图3,计算:tan∠AOD=.
23.在平面直角坐标系xOy中,反比例函数y= 的图象经过点A(1,4)、B(m,n).
(1)求代数式mn的值;
(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值;
(3)若反比例函数y= 的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.
24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;
(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.
①若α=90°,依题意补全图3,求线段AF的长;
②请直接写出线段AF的长(用含α的式子表示).
25.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.
定义图形W的测度面积:若|x1﹣x2|的值为m,|y1﹣y2|的值为n,则S=mn为图形W的测度面积.
例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得值,且值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得值,且值n=2.则图形W的测度面积S=mn=4
(1)若图形W是等腰直角三角形ABO,OA=OB=1.
①如图3,当点A,B在坐标轴上时,它的测度面积S=;
②如图4,当AB⊥x轴时,它的测度面积S=;
(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的值为;
(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.
-北京市海淀区九年级(上)期末数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题4分,满分32分)
1.方程x2﹣3x﹣5=0的根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 无法确定是否有实数根
考点: 根的判别式.
分析: 求出b2﹣4ac的值,再进行判断即可.
解答: 解:x2﹣3x﹣5=0,
△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,
所以方程有两个不相等的实数根,
故选A.
点评: 本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.
2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为( )
A. B. C. D.
考点: 锐角三角函数的定义.
分析: 直接根据三角函数的定义求解即可.
解答: 解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,
∴sinA= = .
故选A.
点评: 此题考查的是锐角三角函数的定义,比较简单,用到的知识点:
正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.
3.若如图是某个几何体的三视图,则这个几何体是( )
A. 长方体 B. 正方体 C. 圆柱 D. 圆锥
考点: 由三视图判断几何体.
分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
解答: 解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.
故选:D.
点评: 本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是( )
A. B. C. D.
考点: 概率公式.
分析: 由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.
解答: 解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,
∴抽到的座位号是偶数的概率是: = .
故选C.
点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为( )
A. 1 B. 2 C. 4 D. 8
考点: 位似变换.
专题: 计算题.
分析: 根据位似变换的性质得到 = ,B1C1∥BC,再利用平行线分线段成比例定理得到 = ,所以 = ,然后把OC1= OC,AB=4代入计算即可.
解答: 解:∵C1为OC的中点,
∴OC1= OC,
∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,
∴ = ,B1C1∥BC,
∴ = ,
∴ = ,
即 =
∴A1B1=2.
故选B.
点评: 本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,若x1<0
A. y1<0
考点: 反比例函数图象上点的坐标特征.
专题: 计算题.
分析: 根据反比例函数图象上点的坐标特征得到y1=﹣ ,y2=﹣ ,然后利用x1<0
解答: 解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,
∴y1=﹣ ,y2=﹣ ,
∵x1<0
∴y2<0
故选B.
点评: 本题考查了反比例函数图象上点的坐标特征:反比例函数y= (k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为( )
A. B. C. 1 D. 2
考点: 垂径定理;全等三角形的判定与性质.
分析: 根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.
解答: 解:∵OD⊥AC,AC=2,
∴AD=CD=1,
∵OD⊥AC,EF⊥AB,
∴∠ADO=∠OFE=90°,
∵OE∥AC,
∴∠DOE=∠ADO=90°,
∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,
∴∠DAO=∠EOF,
在△ADO和△OFE中,
,
∴△ADO≌△OFE(AAS),
∴OF=AD=1,
故选C.
点评: 本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.
8.如图,在矩形ABCD中,AB
A. 线段EF B. 线段DE C. 线段CE D. 线段BE
考点: 动点问题的函数图象.
分析: 作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论.
解答: 解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G.
由垂线段最短可知:当点E与点M重合时,即AE< 时,FE有最小值,与函数图象不符,故A错误;
由垂线段最短可知:当点E与点G重合时,即AEd> 时,DE有最小值,故B正确;
∵CE=AC﹣AE,CE随着AE的增大而减小,故C错误;
由垂线段最短可知:当点E与点N重合时,即AE< 时,BE有最小值,与函数图象不符,故D错误;
故选:B.
点评: 本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键.
二、填空题(共4小题,每小题4分,满分16分)
9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为 3π cm2.(结果保留π)
考点: 扇形面积的计算.
专题: 压轴题.
分析: 知道扇形半径,圆心角,运用扇形面积公式就能求出.
解答: 解:由S= 知
S= × π×32=3πcm2.
点评: 本题主要考查扇形面积的计算,知道扇形面积计算公式S= .
10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为 24 m.
考点: 相似三角形的应用.
分析: 根据同时同地的物高与影长成正比列式计算即可得解.
解答: 解:设这栋建筑物的高度为xm,
由题意得, = ,
解得x=24,
即这栋建筑物的高度为24m.
故答案为:24.
点评: 本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.
11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为 x1=﹣2,x2=1 .
考点: 二次函数的性质.
专题: 数形结合.
分析: 根据二次函数图象与一次函数图象的交点问题得到方程组 的解为 , ,于是易得关于x的方程ax2﹣bx﹣c=0的解.
解答: 解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),
∴方程组 的解为 , ,
即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.
故答案为x1=﹣2,x2=1.
点评: 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣ , ),对称轴直线x=﹣ .也考查了二次函数图象与一次函数图象的交点问题.
12.对于正整数n,定义F(n)= ,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.
(1)求:F2(4)= 37 ,F2015(4)= 26 ;
(2)若F3m(4)=89,则正整数m的最小值是 6 .
考点: 规律型:数字的变化类.
专题: 新定义.
分析: 通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可.
解答: 解:(1)F2(4)=F(F1(4))=F(16)=12+62=37;
F1(4)=F(4)=16,F2(4)=37,F3(4)=58,
F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16,
通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26;
(2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6.
故答案为:(1)37,26;(2)6.
点评: 本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.
三、解答题(共13小题,满分72分)
13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+( )﹣1.
考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
专题: 计算题.
分析: 原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可.
解答: 解:原式=﹣1+ ﹣1+2= .
点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.
考点: 相似三角形的判定.
专题: 证明题.
分析: 根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论.
解答: 证明:∵AB=AC,D是BC中点,
∴AD⊥BC,
∴∠ADC=90°,
∵BE⊥AC,
∴∠BEC=90°,
∴∠ADC=∠BEC,
而∠ACD=∠BCE,
∴△ACD∽△BCE.
点评: 本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质.
15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式 的值.
考点: 一元二次方程的解.
专题: 计算题.
分析: 把x=m代入方程得到m2﹣2=3m,原式分子利用平方差公式化简,将m2﹣2=3m代入计算即可求出值.
解答: 解:把x=m代入方程得:m2﹣3m﹣2=0,即m2﹣2=3m,
则原式= = =3.
点评: 此题考查了一元二次方程的解,熟练掌握运算法则是解本题的关键.
16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.
考点: 二次函数图象与几何变换.
专题: 计算题.
分析: 由于抛物线平移前后二次项系数不变,则可设平移后的抛物线的表达式为y=2x2+bx+c,然后把点A和点B的坐标代入得到关于b、c的方程组,解方程组求出b、c即可得到平移后的抛物线的表达式.
解答: 解:设平移后的抛物线的表达式为y=2x2+bx+c,
把点A(0,3),B(2,3)分别代入得 ,解得 ,
所以平移后的抛物线的表达式为y=2x2﹣4x+3.
点评: 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y= 的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.
(1)求反比例函数的解析式;
(2)若点P是反比例函数y= 图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.
考点: 反比例函数与一次函数的交点问题.
分析: (1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;
(2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.
解答: 解:
(1)把x=2代入y=2x中,得y=2×2=4,
∴点A坐标为(2,4),
∵点A在反比例函数y= 的图象上,
∴k=2×4=8,
∴反比例函数的解析式为y= ;
(2)∵AC⊥OC,
∴OC=2,
∵A、B关于原点对称,
∴B点坐标为(﹣2,﹣4),
∴B到OC的距离为4,
∴S△ABC=2S△ACO=2× ×2×4=8,
∴S△OPC=8,
设P点坐标为(x, ),则P到OC的距离为| |,
∴ ×| |×2=8,解得x=1或﹣1,
∴P点坐标为(1,8)或(﹣1,﹣8).
点评: 本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键.
18.如图,△ABC中,∠ACB=90°,sinA= ,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值.
考点: 解直角三角形;勾股定理.
专题: 计算题.
分析: (1)在△ABC中根据正弦的定义得到sinA= = ,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD= AB=5;
(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC= S△ABC,即 CD?BE= ? AC?BC,于是可计算出BE= ,然后在Rt△BDE中利用余弦的定义求解.
解答: 解:(1)在△ABC中,∵∠ACB=90°,
∴sinA= = ,
而BC=8,
∴AB=10,
∵D是AB中点,
∴CD= AB=5;
(2)在Rt△ABC中,∵AB=10,BC=8,
∴AC= =6,
∵D是AB中点,
∴BD=5,S△BDC=S△ADC,
∴S△BDC= S△ABC,即 CD?BE= ? AC?BC,
∴BE= = ,
在Rt△BDE中,cos∠DBE= = = ,
即cos∠ABE的值为 .
点评: 本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.
19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.
(1)求m的取值范围;
(2)若x2<0,且 >﹣1,求整数m的值.
考点: 根的判别式;根与系数的关系.
专题: 计算题.
分析: (1)由二次项系数不为0,且根的判别式大于0,求出m的范围即可;
(2)利用求根公式表示出方程的解,根据题意确定出m的范围,找出整数m的值即可.
解答: 解:(1)由已知得:m≠0且△=(m+2)2﹣8m=(m﹣2)2>0,
则m的范围为m≠0且m≠2;
(2)方程解得:x= ,即x=1或x= ,
∵x2<0,∴x2= <0,即m<0,
∵ >﹣1,
∴ >﹣1,即m>﹣2,
∵m≠0且m≠2,
∴﹣2
∵m为整数,
∴m=﹣1.
点评: 此题考查了根的判别式,一元二次方程有两个不相等的实数根即为根的判别式大于0.
20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);
质量档次 1 2 … x … 10
日产量(件) 95 90 … 100﹣5x … 50
单件利润(万元) 6 8 … 2x+4 … 24
为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.
(1)求y关于x的函数关系式;
(2)工厂为获得利润,应选择生产哪个档次的产品?并求出当天利润的值.
考点: 二次函数的应用.
分析: (1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;
(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.
解答: 解:(1)由题意,得
y=(100﹣5x)(2x+4),
y=﹣10x2+180x+400(1≤x≤10的整数);
答:y关于x的函数关系式为y=﹣10x2+180x+400;
(2)∵y=﹣10x2+180x+400,
∴y=﹣10(x﹣9)2+1210.
∵1≤x≤10的整数,
∴x=9时,y=1210.
答:工厂为获得利润,应选择生产9档次的产品,当天利润的值为1210万元.
点评: 本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.
21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.
(1)求证:直线PC是⊙O的切线;
(2)若AB= ,AD=2,求线段PC的长.
考点: 切线的判定;勾股定理;平行四边形的性质;相似三角形的判定与性质.
分析: (1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是 的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线;
(2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3﹣r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC的长.
解答: (1)证明:连接OC.
∵AD与⊙O相切于点A,
∴FA⊥AD.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴FA⊥BC.
∵FA经过圆心O,
∴F是 的中点,BE=CE,∠OEC=90°,
∴∠COF=2∠BAF.
∵∠PCB=2∠BAF,
∴∠PCB=∠COF.
∵∠OCE+∠COF=180°﹣∠OEC=90°,
∴∠OCE+∠PCB=90°.
∴OC⊥PC.
∵点C在⊙O上,
∴直线PC是⊙O的切线.
(2)解:∵四边形ABCD是平行四边形,
∴BC=AD=2.
∴BE=CE=1.
在Rt△ABE中,∠AEB=90°,AB= ,
∴ .
设⊙O的半径为r,则OC=OA=r,OE=3﹣r.
在Rt△OCE中,∠OEC=90°,
∴OC2=OE2+CE2.
∴r2=(3﹣r)2+1.
解得 ,
∵∠COE=∠PCE,∠OEC=∠CEP=90°.
∴△OCE∽△CPE,
∴ .
∴ .
∴ .
点评: 此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
22.阅读下面材料:
小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.
请回答:
(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;
(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.
请你帮小明计算:OC= ;tan∠AOD= 5 ;
解决问题:
如图3,计算:tan∠AOD= .
考点: 相似形综合题.
分析: (1)用三角板过C作AB的垂线,从而找到D的位置;
(2)连接AC、DB、AD、DE.由△ACO∽△DBO求得CO的长,由等腰直角三角形的性质可以求出AF,DF的长,从而求出OF的长,在Rt△AFO中,根据锐角三角函数的定义即可求出tan∠AOD的值;
(3)如图,连接AE、BF,则AF= ,AB= ,由△AOE∽△BOF,可以求出AO= ,在Rt△AOF中,可以求出OF= ,故可求得tan∠AOD.
解答: 解:(1)如图所示:
线段CD即为所求.
(2)如图2所示连接AC、DB、AD.
∵AD=DE=2,
∴AE=2 .
∵CD⊥AE,
∴DF=AF= .
∵AC∥BD,
∴△ACO∽△DBO.
∴CO:DO=2:3.
∴CO= .
∴DO= .
∴OF= .
tan∠AOD= .
(3)如图3所示:
根据图形可知:BF=2,AE=5.
由勾股定理可知:AF= = ,AB= = .
∵FB∥AE,
∴△AOE∽△BOF.
∴AO:OB=AE:FB=5:2.
∴AO= .
在Rt△AOF中,OF= = .
∴tan∠AOD= .
点评: 本题主要考查的是相似三角形的性质和判定、勾股定理的应用、锐角三角函数的定义,根据点阵图构造相似三角形是解题的关键.
23.在平面直角坐标系xOy中,反比例函数y= 的图象经过点A(1,4)、B(m,n).
(1)求代数式mn的值;
(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值;
(3)若反比例函数y= 的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.
考点: 反比例函数综合题;代数式求值;反比例函数与一次函数的交点问题;二次函数的性质.
专题: 综合题;数形结合;分类讨论.
分析: (1)只需将点A、B的坐标代入反比例函数的解析式就可解决问题;
(2)将点B的坐标代入y=(x﹣1)2得到n=m2﹣2m+1,先将代数式变形为mn(m2﹣2m+1)+2mm﹣4n,然后只需将m2﹣2m+1用n代替,即可解决问题;
(3)可先求出直线y=x与反比例函数y= 交点C和D的坐标,然后分a>0和a<0两种情况讨论,先求出二次函数的图象经过点D或C时对应的a的值,再结合图象,利用二次函数的性质(|a|越大,抛物线的开口越小)就可解决问题.
解答: 解:(1)∵反比例函数y= 的图象经过点A(1,4)、B(m,n),
∴k=mn=1×4=4,
即代数式mn的值为4;
(2)∵二次函数y=(x﹣1)2的图象经过点B,
∴n=(m﹣1)2=m2﹣2m+1,
∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n
=mn(m2﹣2m+1)+2mm﹣4n
=4n+2×4﹣4n
=8,
即代数式m3n﹣2m2n+3mn﹣4n的值为8;
(3)设直线y=x与反比例函数y= 交点分别为C、D,
解 ,得:
或 ,
∴点C(﹣2,﹣2),点D(2,2).
①若a>0,如图1,
当抛物线y=a(x﹣1)2经过点D时,
有a(2﹣1)2=2,
解得:a=2.
∵|a|越大,抛物线y=a(x﹣1)2的开口越小,
∴结合图象可得:满足条件的a的范围是0
②若a<0,如图2,
当抛物线y=a(x﹣1)2经过点C时,
有a(﹣2﹣1)2=﹣2,
解得:a=﹣ .
∵|a|越大,抛物线y=a(x﹣1)2的开口越小,
∴结合图象可得:满足条件的a的范围是a<﹣ .
综上所述:满足条件的a的范围是0
点评: 本题主要考查了反比例函数图象上点的坐标特征、求代数式的值、求直线与反比例函数图象的交点坐标、二次函数的性质等知识,另外还重点对整体思想、数形结合的思想、分类讨论的思想进行了考查,运用整体思想是解决第(2)小题的关键,考虑临界位置并运用数形结合及分类讨论的思想是解决第(3)小题的关键.
24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;
(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.
①若α=90°,依题意补全图3,求线段AF的长;
②请直接写出线段AF的长(用含α的式子表示).
考点: 几何变换综合题.
分析: (1)根据等腰直角三角形的性质得出即可;
(2)①设DE与BC相交于点H,连接 AE,交BC于点G,根据SAS推出△ADE≌△BDC,根据全等三角形的性质得出AE=BC,∠AED=∠BCD.求出∠AFE=45°,解直角三角形求出即可;
②过E作EM⊥AF于M,根据等腰三角形的性质得出∠AEM=∠FME= ,AM=FM,解直角三角形求出FM即可.
解答: 解:(1)AD+DE=4,
理由是:如图1,
∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE,
∴AD+DE=BC=4;
(2)①补全图形,如图2,
设DE与BC相交于点H,连接AE,
交BC于点G,
∵∠ADB=∠CDE=90°,
∴∠ADE=∠BDC,
在△ADE与△BDC中,
,
∴△ADE≌△BDC,
∴AE=BC,∠AED=∠BCD.
∵DE与BC相交于点H,
∴∠GHE=∠DHC,
∴∠EGH=∠EDC=90°,
∵线段CB沿着射线CE的方向平移,得到线段EF,
∴EF=CB=4,EF∥CB,
∴AE=EF,
∵CB∥EF,
∴∠AEF=∠EGH=90°,
∵AE=EF,∠AEF=90°,
∴∠AFE=45°,
∴AF= =4 ;
②如图2,过E作EM⊥AF于M,
∵由①知:AE=EF=BC,
∴∠AEM=∠FME= ,AM=FM,
∴AF=2FM=EF×sin =8sin .
点评: 本题考查了全等三角形的性质和判定,解直角三角形,等腰三角形的性质,平移的性质的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度偏大.
25.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.
定义图形W的测度面积:若|x1﹣x2|的值为m,|y1﹣y2|的值为n,则S=mn为图形W的测度面积.
例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得值,且值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得值,且值n=2.则图形W的测度面积S=mn=4
(1)若图形W是等腰直角三角形ABO,OA=OB=1.
①如图3,当点A,B在坐标轴上时,它的测度面积S= 1 ;
②如图4,当AB⊥x轴时,它的测度面积S= 1 ;
(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的值为 2 ;
(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.
考点: 圆的综合题.
分析: (1)由测度面积的定义利用它的测度面积S=|OA|?|OB|求解即可;
②利用等腰直角三角形的性质求出AC,AB,利用测度面积S=|AB|?|OC|求解即可;
(2)先确定正方形有测度面积S时的图形,即可利用测度面积S=|AC|?|BD|求解.
(3)分两种情况当A,B或B,C都在x轴上时,当顶点A,C都不在x轴上时分别求解即可.
解答: 解:(1)①如图3,
∵OA=OB=1,点A,B在坐标轴上,
∴它的测度面积S=|OA|?|OB|=1,
故答案为:1.
②如图4,
∵AB⊥x轴,OA=OB=1.
∴AB= ,OC= ,
∴它的测度面积S=|AB|?|OC|= × =1,
故答案为:1.
(2)如图5,图形的测度面积S的值,
∵四边形ABCD是边长为1的正方形.
∴它的测度面积S=|AC|?|BD|= × =2,
故答案为:2.
(3)设矩形ABCD的边AB=4,BC=3,由已知可得,平移图形W不会改变其测度面积的大小,将矩形ABCD的其中一个顶点B平移至x轴上,
当A,B或B,C都在x轴上时,
如图6,图7,
矩形ABCD的测度面积S就是矩形ABCD的面积,此时S=12.
当顶点A,C都不在x轴上时,如图8,过点A作直线AH⊥x轴于点E,过C点作CF⊥x轴于点F,过点D作直线GH∥x轴,分别交AE,CF于点H,G,则可得四边形EFGH是矩形,
当点P,Q与点A,C重合时,|x1﹣x2|的值为m=EF,|y1﹣y2|的值为n=GF.
图形W的测度面积S=EF?GF,
∵∠ABC+∠CBF=90°,∠ABC+∠BAE=90°,
∴∠CBF=∠BAE,
∵∠AEB=∠BFC=90°,
∴△AEB∽△BFC,
∴ = = = ,
设AE=4a,EB=4b,(a>0,b>0),则BF=3a,FC=3b,
在RT△AEB中,AE2+BE2=AB2,
∴16a2+16b2=16,即a2+b2=1,
∵b>0,
∴b= ,
在△ABE和△CDG中,
∴△ABE≌△CDG(AAS)
∴CG=AE=4a,
∴EF=EB+BF=4b+3a,GF=FC+CG=3b+4a,
∴图形W的测度面积S=EF?GF=(4b+3a)(3b+4a)=12a2+12b2+25a =12+25 =12+25 ,
当a2= 时,即a= 时,测度面积S取得值12+25× = ,
∵a>0,b>0,
∴ >0,
∴S>12,
综上所述:测度面积S的取值范围为12≤S≤ .
物理九年级上册知识点 篇5
物理九年级上册知识1
能量与做功
1、做功
物理学中规定:作用在物体上的力,使物体在力的方向上通过了一段距离,就说这个力对物体做了机械功(简称“做功”)
2、做功的两个必要的因素:
(1)作用在物体上的力;
(2)物体在力的方向上通过的距离。
3、功的计算方法:
定义:力对物体做的功,等于力跟物体在力的方向上通过的距离的乘积。
公式:功=力×距离,即 W=F·s
单位:在国际单位制中,功W的单位:牛·米(N·m)或焦耳(J)
1J的物理意义:1 N的力,使物体力的方向上通过1m的距离所做的功为1J。
即:1J=1N×1m=1 N·m
注意:在运算过程中,力F的单位:牛(N);距离s的单位:米(m);
4、机械功原理
⑴使用机械只能省力或省距离,但不能省功。
⑵机械功原理是机械的重要定律,是能量守恒在机械中的体现。
5、功率
⑴功率概念:物理学中,把单位时间里做的功叫做功率。
⑵功率的物理意义:功率是表示做功快慢的物理量。
⑶功率计算公式:功率=功/时间
符号表达式:P=W/ t推导式p=Fv(F单位是N,V单位是m/s)
⑷功率的单位:在国际单位制中,功的单位是焦耳,时间的单位是秒,功率的单位是焦耳/秒,它有一个专门名称叫瓦特,简称瓦,符号是W,这个单位是为了纪念英国物理学家瓦特而用他的名字命名的。1W=1 J / s6、机械效率
⑴机械效率的定义:有用功与总功的比。
⑵公式:
⑶有用功(W有用):克服物体的重力所做的功 W=Gh。
⑷额外功(W额外):克服机械自身的重力和摩擦力所做的功。
⑸总功(W总):动力对机械所做的功W=FS。
⑹总功等于用功和额外功的总和,即W总=W有用+W额外。
7、“能量”的概念:物体具有做功的本领,就说物体具有能。
总结:在物理学中,能量和做功有密切的联系,能量反映了物体做功的本领。一个物体能做的功越多,这个物体的能量就越大。
⑴动能:物体由于运动而具有的能。
⑵重力势能:物体由于被举高而具有的能。
⑶弹性势能:物体由于发生弹性形变而具有的能。
质量相同时,速度越大的物体能做的功越多,表明它具有的动能越大;速度相同时,质量越大的物体能做的功越多,表明它具有的动能大。
物体被举得越高,质量越大,它具有的重力势能就越大。物体具有的动能和势能是可以相互转化的。
8、内能与热量
⑴内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。
⑵物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。
⑶热运动:物体内部大量分子的无规则运动。
⑷改变物体内能的方法:做功和热传递,这两种方法对改变物体的内能是等效的。
⑸物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。
⑹物体吸收热量,当温度升高时,物体内能增大;物体放出热量,当温度降低时,物体内能减小。
⑺所有能量的单位都是:焦耳。
⑻热量(Q):在热传递过程中,传递能量的多少叫热量。(物体含有多少热量的说法是错误的)
⑼比热(c):单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫做这种物质的比热。
⑽比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,只要物质相同,比热就相同。
⑾比热的单位是:焦耳/(千克·℃),读作:焦耳每千克摄氏度。
⑿水的比热是:C=4.2×103焦耳/(千克·℃),它表示的物理意义是:每千克的水当温度升高(或降低)1℃时,吸收(或放出)的热量是4.2×103焦耳。
⒀热量的计算:① Q吸 = =cm(t-t0)=cm△t升(Q吸是吸收热量,单位是焦耳;c 是物体比热,单位是:焦/(千克·℃);m是质量;t0是初始温度;t 是后来的温度。)② Q放 =cm(t0-t)=cm△t降
⒁能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移过程中,能量的总量保持不变。
9、内能与热机
⑴燃烧值q :1千克某种燃料完全燃烧放出的热量,叫热值。单位是:焦耳/千克。
⑵燃料燃烧放出热量计算:Q放 =qm或者Q放 =qv;(Q放是热量,单位是:焦耳;q是热值,单位是:焦/千克;m是质量,单位是:千克。),有时候气体的热值可以用 Q放 =qv计算(Q放是热量,单位是:焦耳;q是热值,单位是:焦/立方米;v是体积,单位是:立方米。)
⑶利用内能可以加热,也可以做功。
⑷内燃机可分为汽油机和柴油机,它们一个工作循环由吸气、压缩、做功和排气四个冲程。一个工作循环中对外做功1次,活塞往复2次,曲轴飞轮转2周。
⑸热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比,叫热机的效率。热机的效率是热机性能的一个重要指标。
⑹在热机的各种损失中,废气带走的能量最多,设法利用废气的能量,是提高燃料利用率的重要措施。
物理九年级上册知识2
电学初步
1、静电现象:
⑴摩擦可以使物体带电,带电体具有吸引轻小物体的性质。
⑵摩擦起电实质:电荷从一个物体转移到另一个物体,使物体显示出带电的状态。
⑶正电荷:与丝绸摩擦过的玻璃棒所带的电荷相同,叫正电荷;负电荷:与毛皮摩擦过的橡胶棒所带的电荷相同,叫负电荷。
⑷电荷间的相互作用:同种电荷互相排斥,异种电荷互相吸引。
⑸要知道物体是否带电,可使用验电器;验电器的原理:同种电荷互相排斥。
⑹闪电是一种瞬间发生的大规模放电现象。
2、电路
电路:用导线把电源、用电器、开关等连接起来组成的电的路径。
⑴各元件的作用:用电器:利用电来工作。电源:供电;开关:控制电路通断;导线:连接电路,形成电流的路径;
⑵短路:导线不经过用电器直接跟电源两极连接的电路,叫短路。整个电路短路是指电源两端短接,这时整个电路电阻很小,电流很大,电路强烈发热,会损坏电源甚至引起火灾。做实验时,一定要避免短路;家庭用电时也要注意防止短路。
⑶画的电路图说明注意事项:⑴用统一规定的符号;⑵连线要横平竖直;⑶线路要简洁、整齐、美观。
⑷通路是指闭合开关接通电路,电流流过用电器,使用电器进行工作的状态。断路是指电路被切断,电路中没有电流通过的状态。
⑸串联电路、并联电路的区别
(识别串联电路与并联电路的方法:⑴路径法⑵拆除法⑶支点法)
3、电流
电流是指电荷的定向移动。电流的大小称为电流强度(简称电流,符号为I),国际单位是安培,符号为A。电流方向规定:正电荷运动的方向为电流方向,自由电子移动的方向与电流方向相反。
⑴电流表的读数:一看量程,二算分度值,三读数。
⑵电流表的接法:①电流表必须串联在电路中;②使电流从电流表的“+”接线柱流入,从“-”接线柱流出;③通过电流表的电流不能超过其量程;④严禁将电流表与电源或用电器并联。(注意:①在不超过最大测量值的情况下,应尽量使用较小的量程测量,对于同一个电流表来说,量程越小测量结果越精确;②在不能估计被测电流大小的情况下,可先用最大的量程试触,根据情况选用合适的量程。)
⑶串联电路的电流特点:串联电路中的电流处处相等;并联电路中的电流特点:并联电路干路中的电流等于各支路电流之和。
4、电压
电压的单位:伏、千伏、毫伏。电源是提供电压的装置,电压使电荷定向移动形成电流原因.⑴生活中常见的电压值:一节干电池电压1.5V;一节蓄电池电压2V;我国生活用电电压220V;对人体安全电压≤36V。
⑵串联电路中的电压规律:串联电路中总电压等于各部分电压之和;并联电路中的电压规律:并联电路中各支路的电压相等。
5、电阻
物理学中把导体对电流阻碍作用的大小叫电阻。电阻的符号:R
⑴电阻的单位:欧姆;符号:Ω
⑵单位换算关系:1MΩ=1000kΩ 1 kΩ=1000Ω
6、电阻相关特性
导体的电阻与导体的材料、长度、横截面积有关
⑴长度相同、横截面积相同,材料不同,电阻不同;
⑵材料相同、长度相同,横截面积越大,电阻越小。
⑶材料相同、横截面积相同,长度越长,电阻越大;
⑷对大多数导体来说,温度越高,电阻越大。
7、电阻分类
保持阻值不变的电阻简称定值电阻。可以调节变化的电阻简称可变电阻
8、滑动变阻器的结构:
⑴金属杆:金属杆的电阻很小,其两端接线柱间的电阻值几乎为零,可以忽略不计;
⑵电阻丝:圆筒上缠绕的是表面涂有绝缘层的电阻丝,其阻值较大,标牌上所标的“50Ω”即指电阻丝两端接线柱间的电阻值;
⑶滑片:滑片可以在金属杆上左右移动,滑片的上部与金属杆相连,下端通过电阻丝的接触滑道(刮去绝缘层的部分)与电阻丝相连通。
⑷接线柱:有四个接线柱,一上一下接入电路时,能起到变阻作用。连接电路时,要断开开关,滑动变阻器的滑片要调到阻值最大的位置
⑸滑动变阻器的原理:通过改变连入电路的电阻丝的长度来改变接入电路中电阻的大小。
9、欧姆定律:
导体中的电流跟导体两端的电压成正比,跟这段导体的电阻成反比.欧姆定律公式:I=U/R欧姆定律公式变形式:U=IR R=U/IR10、欧姆定律意义
欧姆定律的物理意义:揭示了“导体中的电流由导体两端的电压和导体的电阻决定”这一制约关系。
11、伏安法测电阻:
把导体接入电路,使导体中通过电流,用电压表测出灯泡两端的电压,用电流表测出通过灯泡的电流,再用欧姆定律公式算出灯泡的电阻。
物理九年级上册知识3
电功和电功率
1.电功(W):电流所做的功叫电功
2.电功的单位:国际的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时=3.6×106焦耳。
3.测量电功的工具:电能表(电度表)
4.电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。
5.利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。
6.计算电功还可用以下公式:W=I2Rt;W=Pt;Q=It(Q是电量);
7.电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦
8.计算电功率公式:P=W/t=UI(式中单位P→瓦(w);W→焦(J);t→秒(s);U→伏(V);I→安(A)
9.利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。
10.计算电功率还可用右公式:P=I2R和P=U2/R
11.额定电压(U0):用电器正常工作的电压。
12.额定功率(P0):用电器在额定电压下的功率。
13.实际电压(U):实际加在用电器两端的电压。
14.实际功率(P):用电器在实际电压下的功率。
当U > U0时,则P > P0;灯很亮,易烧坏。
当U < U0时,则P < P0;灯很暗,当U = U0时,则P = P0;正常发光。
(同一个电阻或灯炮,接在不同的电压下使用,则有;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例“220V100W”是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。)
15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。
16.焦耳定律公式:Q=I2Rt,(式中单位Q→焦;I→安(A);R→欧(Ω);t→秒。)
17.当电流通过导体做的功(电功)全部用来产生热量(电热),则有W=Q,可用电功公式来计算Q(如电热器,电阻就是这样的。)
九年级历史上册知识点 篇6
1、爱琴文明:克里特文明、迈悉尼文明
2、古希腊繁荣的成邦:雅典、斯巴达
3、雅典城邦的自然条件:近海,海上交通便利,工商业发达;气候湿润,适宜种经济作物。
4、公元前5世纪后半期,伯利克里当政期间,雅典达到全盛。
原因:伯利克里进行了一系列改革。
内容:扩大公民权利,成年男性公民可以参加公民大会;鼓励学术研究,发展文艺,重视教育。
5、伯利克里时期雅典繁荣的表现:政治上, 奴隶制民主政治发展到顶峰;经济上, 奴隶制经济高度繁荣;文化上 文化昌盛。
6、斯巴达成邦:崇尚武力,实行严格的军事训练制度。
7、罗马共和国的兴亡
(1)罗马历史发展线索:罗马城(公元前8世纪)——罗马共和国(公元前5)——称霸地中海(公元前2世纪)——罗马帝国(公元前27年)——帝国分裂(395年)——西罗马灭亡(476年,欧洲奴隶社会结束)
(2)主要战争及战役:布匿战争(罗马——迦太基) 坎尼战役以少胜多
(3)公元前49年,凯撒夺取政权;公元前27年,屋大维独揽国家大权,建立罗马帝国。
九年级数学复习策略浅谈 篇7
一、把好脉搏精心策划
1. 研读课程标准, 研究数学考试范围及要求
课程标准是初中毕业生学业考试内容命题的依据。认真研究课程标准, 是九年级学生备考前要做的一项重要工作, 没有课程标准的要求为依据的备考是低效的、盲目的、缺乏针对性的, 师生都要掌握对每一知识点和考点的要求。
2. 仔细研究近年来的命题趋势及考题热点
进行九年级复习备考时, 应该研究近年来的命题趋势及考题热点。学业考试的要求是基本的、基础的, 以考察整体教学效果为目的的, 通过考试来检验教育教学效果, 深度揣摩命题的难度要求和命题变化形式。还需教师开阔视野, 搜集新题型, 以及领会新的解决问题的方式和方法。
二、把握学情合理规划
第一轮:单元复习
打破章节限制, 可以重新将初中数学教学内容分成三大体系, 即:数与代数, 空间与图形, 统计与概率。在单元复习中, 不限于单一知识点, 而是建构完整的知识系统, 按循序渐进的原则, 把知识有机地整合和综合, 对知识进行全方位梳理, 使学生真正地构建起一个系统的知识体系。
第二轮:专题研究
结合学生掌握知识和解决问题的实际情况, 可设置专题研究。例如:应用问题, 开放问题, 图表信息问题, 运动变化问题等。例如, 在应用问题专题复习时, 又设定了方程的应用、函数的应用、不等式的应用。现以函数的应用中的一次函数的应用为例分析做法, 一次函数应用是近几年的中考必考考点, 也是学生失分最多的题型之一, 教师应该搜集题型, 师生一起进行深入细致地研究, 学生便会对此类问题的分析有明确的思路, 从而能够从不同的角度寻求解决问题的突破口, 用不同的方法去解决问题。
第三轮:综合提升
这一阶段是在专题研究的基础上进行延伸与拓展, 在原有知识的基础上进行一定的深、广、难度的发展, 提高学生运用知识解决问题的思维能力和解题技能。例如, 在攻克压轴题时, 根据很多压轴题都有运动的元素, 就可以针对运动问题进行相应的训练, 如:1.用简单的代数式表示某些变化的量。2.找好界, 分清限。也就是分析图形变化有几种趋势, 找到关键点, 画出各种图形, 分清几种情况。3.解决运动问题常见的几种方法。在教学过程中让学生去体会、去分析、去实践。有的同学对压轴题采取放弃的态度, 要让学生拥有自信, 尝试成功, 消除畏惧心理。
第四轮:模拟测试
这一阶段可以采取“考—批—讲”的程序, 以考代练, 让学生在真枪实弹中迅速成长起来, 成熟起来, 因为只有在考试中才能暴露出问题, 只有在考试中才能培养学生的考试能力, 学生的失误才能逐渐变少, 才能很快走过害怕考试的心理阶段。
第五轮:考前浏览
这一阶段是考前休整阶段, 学生的紧张程度已达到极限, 这时候最重要的是给学生一个轻松的环境, 把做过的试卷进行浏览, 是查漏补缺, 要有轻有重而不是面面俱到。在这一阶段, 学生可以浏览一下教材, 也可以浏览自己的错题集。
三、适度挖掘细致深化
1. 创新备课———复习课既是新课, 又不是新课, 复习课不是重
复, 不是原地踏步, 学生对某些知识点的掌握具有片面性, 在复习阶段如果还是对知识进行简单的重复, 那么学生的发展就会受到限制, 也没有什么新的收获。
2. 精选课题和精编试题———复习课上要做到精心选择学生掌握上存在困难的问题, 进行重点的复习, 强化训练, 力求全面过关。
3. 建立学生错题档案, 每一次考试中, 都要将学生易错的问题
【数学九年级上册圆周率知识点】推荐阅读:
九年级数学上册教学工作计划10-09
九年级上册数学教学工作总结09-01
九年级上册数学优秀教学工作总结09-27
九年级数学上册18.1比例线段教案10-09
八年级上册数学知识点10-21
三年级上册知识点数学10-23
三年级数学上册第五―第九单元复习提纲05-15
鲁教版九年级数学上册全年教学计划09-22
二年级上册数学乘法知识点06-14
一年级数学上册知识点总结10-04