离散数学实验报告

2025-01-30

离散数学实验报告(共10篇)

离散数学实验报告 篇1

离散数学的实验教学探讨

离散数学是计算机专业的一门很重要的`专业基础课,该课程概念多,理论性强,高度抽象.传统教学中过于注重理论而忽略实验,学生在学习过程中往往态度消极.从教材中选取适合实验教学的重要理论的算法描述、课程实验体系建设、实际应用等方面入手,强化实验教学,培养学生学习兴趣,提高学生的应用能力.

作 者:沈来信 杨帆 Shen Laixin Yang Fan 作者单位:黄山学院信息工程学院,安徽,黄山,245021刊 名:黄山学院学报英文刊名:JOURNAL OF HUANGSHAN UNIVERSITY年,卷(期):11(3)分类号:G642.423关键词:离散数学 实验教学 课程实验 应用能力

离散数学考试范围 篇2

带全称量词和存在量词的命题逻辑推理的构造和证明 第二部分

集合基本运算,文氏图 有序对的基本知识,笛卡儿积,特征函数

函数的性质(单射,满射,双射)

集合的基本概念(交集,并集,幂集,定义域,值域)

给出关系图,画出r(R),s(R),t(R)等价关系及等价划分 集合相等证明

从A到B的函数的性质

关系的性质(自反,对称,传递)偏序关系和哈斯图

A卷

1、选择10题(2*10=20分)

2、填空8题(1*15=15分)

3、综合题(6题,39分)(1)前束范式

(2)偏序关系和哈斯图(3)文氏图(4)关系的闭包

(5)用真值表判断公式的成真赋值(6)量词消去

4、证明题(3题,共26分)自然推理系统证明(第三章)集合相等证明

命题逻辑推理证明(第五章)B卷

1、填空10题(2*10=20分)

2、选择10题(1*10=10分)

3、综合题(6题,44分)(1)主析取范式判断公式类型(2)量词消去,求公式真值(3)集合计算(4)量词消去(5)前束范式

(6)偏序关系和哈斯图

4、推理填空题(8分)

离散数学 篇3

第一部分 集合论

第一章集合的基本概念和运算

1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]

A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2}  A。

1-2 A,B,C 为任意集合,则他们的共同子集是[ D ]

A.C;B.A;C.B;D.Ø。

1-3 设 S = {N,Z,Q,R},判断下列命题是否成立 ?

(1)N  Q,Q ∈S,则 N  S[不成立]

(2)-1 ∈Z,Z ∈S,则-1 ∈S[不成立]

1-4 设集合 A ={3,4},B = {4,3} ∩ Ø,C = {4,3} ∩{ Ø },D ={ 3,4,Ø },2E = {x│x ∈R 并且 x-7x + 12 = 0},F = { 4,Ø,3,3},试问哪两个集合之间可用等号表示 ?

答:A = E;B = C;D = F

1-5 用列元法表示下列集合(1)A = { x│x ∈N 且 x2 ≤ 9 }

(2)A = { x│x ∈N 且 3-x 〈 3 }

答:(1)A = { 0,1,2,3 };

(2)A = { 1,2,3,4,……} = Z+;

第二章二元关系

2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:

R = {〈x,y〉x,y ∈X 且 x≤ y }

求:(1)domR =?;(2)ranR =?;(3)R 的性质。

答:R = {<2,3>,<1,2>,<1,3>};

DomR={R中所有有序对的x}={2,1,1}={2,1};

RanR={R中所有有序对的y}={3,2,3}={3,2};

R 的性质:反自反,反对称,传递性质.2-2 设 R 是正整数集合上的关系,由方程 x + 3y = 12 决定,即

R = {〈x,y〉│x,y∈Z+ 且 x + 3y= 12},试求:

(1)R 的列元表达式;(2)给出 dom(R。R)。

答:根据方程式有:y=4-x/3,x 只能取 3,6,9。

(1)R = {〈3,3〉,〈6,2〉,〈9,1〉};

至于(2),望大家认真完成合成运算 R。R={<3,3>}.然后,给出 R。R 的定义域,即

(2)dom(R。R)= {3}。

2-3 判断下列映射 f 是否是 A 到 B 的函数;并对其中的 f:A→B 指出他的性质,即

是否单射、满射和双射,并说明为什么。

(1)A = {1,2,3},B = {4,5},f = {〈1,4〉〈2,4〉〈3,5〉}。

(2)A = {1,2,3} = B,f = {〈1,1〉〈2,2〉〈3,3〉}。

(3)A = B = R,f=x。

(4)A = B = N,f=x2。

(5)A = B = N,f = x + 1。

答:(1)是 A 到 B 的函数,是满射而不是单射;

(2)是双射;

(3)是双射;

(4)是单射,而不是满射;

(5)是单射而不是满射。

2-4 设 A ={1,2,3,4},A 上的二元关系

R ={〈x,y〉︱(x-y)能被3整除},则自然映射 g:A→A/R使 g(1)=[C]

A.{1,2};B.{1,3};C.{1,4};D.{1}。

2-5 设 A ={1,2,3},则商集A/IA =[D]

A.{3};B.{2};C.{1};D.{{1},{2},{3}}。

2-6.设f(x)=x+1,g(x)=x-1 都是从实数集合R到R的函数,则f。g=[C]

A.x+1;B.x-1;C.x;D.x2。

第三章 结构代数(群论初步)

3-1 给出集合及二元运算,阐述是否代数系统,何种代数系统 ?

(1)S1 = {1,1/4,1/3,1/2,2,3,4},二元运算 *是普通乘法。

(2)S2 = {a1,a2,……,an},ai ∈R,i = 1,2,……,n ;

二元运算。定义如下:对于所有 ai,aj ∈S2,都有 ai。aj = ai。

(3)S3 = {0,1},二元运算 * 是普通乘法。

答:(1)二元运算*在S1上不封闭.所以,"S1,*"不能构成代数系统。

(2)由二元运算的定义不难知道。在 S2 内是封闭的,所以,〈S2。〉构成代数

系统;然后看该代数系统的类型:该代数系统只是半群。

(3)很明显,〈{0,1},*〉构成代数系统;满足结合律,为半群;1是幺元,为独异

点;而 0 为零元;结论:仅为独异点,而不是群。

3-2 在自然数集合上,下列那种运算是可结合的[A]

A.x*y = max(x,y);B.x*y = 2x+y ;

C.x*y = x2+y2 ;D.x*y =︱x-y︱..3-3 设 Z 为整数集合,在 Z 上定义二元运算。,对于所有 x,y ∈Z都有

x。y=x + y,试问〈Z。〉能否构成群,为什麽 ?

答:由题已知,集合Z满足封闭性;二元运算满足结合律,依此集合Z为半群;有幺元为 -5,为独异点.假设代数系统的幺元是集合中的元素 e,则一个方程来自于二元运算定义, 即e。x= e + x,一个方程来自该特殊元素的定义的性质,即e。x = x.由此而来的两个方程联立结果就有: e+x=x 成立.削去 x,e=0 的结果不是就有了吗!;每个元素都有逆.求每个元素的逆元素,也要解联方程,如同求幺元一样的道理;结论是:代数系统〈 Z。〉构成群。

第二部分图论方法

第四章 图

4-1 10 个顶点的简单图 G 中有 4 个奇度顶点,问 G 的补图中有几个偶数度顶点 ? 答:因为10阶完全图的每个顶点的度数都是n-1=9――为奇数。这样一来,一个无向简单图 G 的某顶点的度数是奇数,其补图的相应顶点必偶数,因为一个偶数与一个奇数之和才是奇数.所以,G的补图中应有 10-4=6 个奇数度顶点。

4-2 是非判断:无向图G中有10条边,4个3度顶点,其余顶点度数全是2,共有 8 个顶点.[是]

4-3 填空补缺:1条边的图 G 中,所有顶点的度数之和为[2]

第五章树

5-1握手定理的应用(指无向树)

(1)在一棵树中有 7 片树叶,3 个 3 度顶点,其余都是 4 度顶点,问有(有1个4度顶点)个?

(2)一棵树有两个 4 度顶点,3 个 3 度顶点,其余都是树叶,问有(9个1度顶点)片?

5-2 一棵树中有 i 个顶点的度数为 i(i=2,…k),其余顶点都是树叶(即一度顶点),问树叶多少片?设有x片,则 x=

答:假设有 x 片树叶,根据握手定理和树的顶点与边数的关系,有关于树叶的方程,解方程得到树叶数 x = Σi(i—2)i + 2,(i = 2,3,……k)。

5-3 求最优 2 元树:用 Huffman 算法求带权为 1,2,3,5,7,8 的最优 2 元树 T。试问:(1)T 的权 W(T)?(2)树高几层 ?

答:用 Huffman 算法,以 1,2,3,5,7,8 为权,最优 2 元树 T ;然后,计算并回答所求问题:(1)T 的权 W(T)= 61;(2)树高几层:4 层树高。

5-4以下给出的符号串集合中,那些是前缀码?将结果填入[]内.B1 = {0,10,110,1111}[是]B2 = {1,01,001,000}[是]B3 = {a,b,c,aa,ac,aba,abb,abc}[非]B4 = {1,11,101,001,0011}[非]

5-5(是非判断题)11阶无向连通图G中17条边,其任一棵生成树 T 中必有6条树枝 [非]

5-6(是非判断题)二元正则树有奇数个顶点。[是]

5-7 在某次通信中 a,b,c,d,e 出现的频率分别为 5%;10%;20%;30%;35%.求传输他们的最佳前缀码。

1、最优二元树 T;2.每个字母的码字;

答:每个字母出现频率分别为:G、D、B、E、Y:14%,O:28%;(也可以不归一,某符号

出现次数即为权,如右下图).。100(近似)7.。563..4。282..2..2。..1..14141414111

1所以,得到编码如下:G(000),D(001),B(100),E(101),Y(01),O(11)。

第三部分逻辑推理理论

第六章 命题逻辑

6-1 判断下列语句是否命题,简单命题或复合命题。

(1)2月 17 号新学期开始。[真命题]

(2)离散数学很重要。[真命题]

(3)离散数学难学吗 ?[真命题]

(4)C 语言具有高级语言的简洁性和汇编语言的灵活性。[复合命题]

(5)x + 5 大于 2。[真命题]

(6)今天没有下雨,也没有太阳,是阴天。[复合命题]

6-2 将下列命题符号化.(1)2 是偶素数。

(2)小李不是不聪明,而是不好学。

(3)明天考试英语或考数学。(兼容或)

(4)你明天不去上海,就去北京。(排斥或)

答:(1)符号化为: p ∧ q。

(2)符号化为:p ∧ ﹃q。

(3)符号化为:p ∨ q。

(4)符号化为:(﹃p ∧ q)∨(p ∧ ﹃q)。

6-3分别用等值演算法,真值表法,主析取范式法,判断下列命题公式的类型.(1)﹃(p→q)∧ q;(2)((p→q)∧ p)→q;(3)(p→q)∧ q。答:(1)0;

(2)Σ(0,1,2,3);

(3)Σ(1,3)。

以下两题(6-4;6-5)为选择题,将正确者填入[]内.6-4 令 p:经一堑;q:长一智。命题’’只有经一堑,才能长一智’’符号化为[B]

A. p→q;B.q→p;C.p∧q;D.﹁q→﹁p

6-5 p:天气好;q:我去游玩.命题 ”如果天气好,则我去游玩” 符号化为[B]

A. p→q;B.q→p;C.p∧q;D.﹁q→p

6-6证明题:用不同方法(必须有构造证明法)判断推理结果是否正确。

如果今天下雨,则明天不上体育课。今天下雨了。所以,明天没有上体育课。答:将公式分成前提及结论。

前提:(p→﹃q),p;

结论:﹃q;

证明:(1)(p→﹃q)前提引入

(2)p前提引入

(3)(p→﹃q)∧p(1)(2)假言推理

(4)﹃q

要证明的结论与证明结果一致,所以推理正确。

第七章谓词逻辑

7-1 在谓词逻辑中用 0 元谓词将下列命题符号化

(1)这台机器不能用。

(2)如果 2 > 3,则 2 > 5。

答:(1)﹃F(a)。

(2)L(a,b)→ H(a,z)。

7-2 填空补缺题:设域为整数集合Z,命题xy彐z(x-y=z)的真值为(0)

7-3在谓词逻辑中将下列命题符号化

(1)有的马比所有的牛跑得慢。

(2)人固有一死。

答:(1)符号化为:彐x(F(x)∧ 彐y(G(y)∧ H(x,y)))。

(2)与(1)相仿,要注意量词、联结词间的搭配:

x(F(x)→y(G(y)→ H(x,y)))。

《附录》习题符号集

Ø 空集, ∪ 并, ∩ 交,⊕ 对称差,~ 绝对补,∑ 累加或主析取范式表达式缩写 , - 普通减法, ÷ 普通除法, ㏑ 自然对数, ㏒ 对数,﹃ 非,量词 ”所有”,”每个”,∨ 析取联结词,∧ 合取联结词,彐 量词”存在”,”有的”。

离散数学复习重点 篇4

1、集合的运算以及运算律;

2、关系的三种表示方法,以及他们之间的转化;

3、常见关系的定义;

4、哈斯图的画法,以及最大最小元、极大极小元、上下界,上下确界的求法;

5、单射、满射以及双射的证明(尤其是在代数系统中);

6、代数系统的概念以及代数系统的常用性质,能够证明具体的代数系统的运算律,找出单

位元,零元、以及逆元等;

7、环和格只要记住不同的环和格满足的运算律就好;

8、各种图和树的概念及相关的结论,比如:欧拉图的充要条件,哈密顿图的充分条件、必

要条件、充要条件等;

9、图的矩阵计算;

10、会画一些简单的树;

11、五种联结词的真值表;

12、一些要求记住的命题公式;

13、命题公式的证明;

14、命题公式的析取范式,合取范式,主析取范式和主合取范式的求法。

题型:填空题、证明题和解答题。

友情提醒:

1、周三下午一点半到三点半在逸夫楼519答疑。

2、概念、定理和公式请务必记住,可能会出填空题;

3、考试内容不会超出我们的重点;

离散数学试题+答案 篇5

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条()A.汉密尔顿回路

B.欧拉回路 C.汉密尔顿通路

D.初级回路

2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是()A.10

B.12

C.16

D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是()A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是()A.<{1},·>

B.〈{-1},·〉

C.〈{i},·〉

D.〈{-i},·〉

5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有()A.〈Z,+,/〉

B.〈Z,/〉 C.〈Z,-,/〉

D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是()A.〈Q,*〉Q是全体有理数集,*是数的乘法运算

B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z,〉,Z是整数集,定义为xxy=xy,x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算

7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性

8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉〈,a,c〉},则关系R的对称闭包S(R)是()A.R∪IA

B.R

C.R∪{〈c,a〉}

D.R∩IA 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取()A.{〈c,a〉,〈a,c〉}

B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉}

D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是()A.∈

B.

C.{}

D.{}∈

11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

专注于收集各类历年试卷和答案

D.(x)(y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(x)(A(x)→B)等价于()A.(x)A(x)→B

B.(x)A(x)→B C.A(x)→B

D.(x)A(x)→(x)B 13.谓词公式(x)(P(x,y))→(z)Q(x,z)∧(y)R(x,y)中变元x()A.是自由变元但不是约束变元 B.既不是自由变元又不是约束变元 C.既是自由变元又是约束变元 D.是约束变元但不是自由变元

14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为()A.P∨Q

B.P∧┐Q

C.P→┐Q

D.P∨┐Q 15.以下命题公式中,为永假式的是()A.p→(p∨q∨r)

B.(p→┐p)→┐p C.┐(q→q)∧p

D.┐(q∨┐p)→(p∧┐p)

二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。17.A={1,2,3,4}上二元关系R={〈2,4〉,〈3,3〉,〈4,2〉},R的关系矩阵MR中m24=______,m34=______。18.设〈s,*〉是群,则那么s中除______外,不可能有别的幂等元;若〈s,*〉有零元,则|s|=______。19.设A为集合,P(A)为A的幂集,则〈P(A),是格,若x,y∈P(A),则x,y最大下界是______,〉最小上界是______。

20.设函数f:X→Y,如果对X中的任意两个不同的x1和x2,它们的象y1和y2也不同,我们说f是______函数,如果ranf=Y,则称f是______函数。

21.设R为非空集合A上的等价关系,其等价类记为〔x〕R。x,y∈A,若〈x,y〉∈R,则 〔x〕R与〔y〕R的关系是______,而若〈x,y〉R,则〔x〕R∩〔y〕R=______。

22.使公式(x)(y)(A(x)∧B(y))(x)A(x)∧(y)B(y)成立的条件是______不含有y,______不含有x。23.设M(x):x是人,D(s):x是要死的,则命题“所有的人都是要死的”可符号化为(x)______,其中量词(x)的辖域是______。24.若H1∧H2∧„∧Hn是______,则称H1,H2,„Hn是相容的,若H1∧H2∧„∧Hn是______,则称H1,H2,„Hn是不相容的。

25.判断一个语句是否为命题,首先要看它是否为,然后再看它是否具有唯一的。

三、计算题(共30分)26.(4分)设有向图G=(V,E)如下图所示,试用邻接矩阵方法求长度为2的路的总数和回路总数。

27.(5)设A={a,b},P(A)是A的幂集,是对称差运算,可以验证

是群。设n是正整数,求({a}-1{b}{a})n{a}-n{b}n{a}n 28.(6分)设A={1,2,3,4,5},A上偏序关系

R={〈1,2〉,〈3,2〉,〈4,1〉,〈4,2〉,〈4,3〉,〈3,5〉,〈4,5〉}∪IA;

专注于收集各类历年试卷和答案

(1)作出偏序关系R的哈斯图

(2)令B={1,2,3,5},求B的最大,最小元,极大、极小元,上界,下确界,下界,下确界。29.(6分)求┐(P→Q)(P→┐Q)的主合取范式并给出所有使命题为真的赋值。

30.(5分)设带权无向图G如下,求G的最小生成树T及T的权总和,要求写出解的过程。

31.(4分)求公式┐((x)F(x,y)→(y)G(x,y))∨(x)H(x)的前束范式。

四、证明题(共20分)32.(6分)设T是非平凡的无向树,T中度数最大的顶点有2个,它们的度数为k(k≥2),证明T中至少有2k-2片树叶。

33.(8分)设A是非空集合,F是所有从A到A的双射函数的集合,是函数复合运算。

证明:〈F, 〉是群。

34.(6分)在个体域D={a1,a2,„,an}中证明等价式:

(x)(A(x)→B(x))(x)A(x)→(x)B(x)

五、应用题(共15分)35.(9分)如果他是计算机系本科生或者是计算机系研究生,那么他一定学过DELPHI语言而且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。请用命题逻辑推理方法,证明该推理的有效结论。

36.(6分)一次学术会议的理事会共有20个人参加,他们之间有的相互认识但有的相互不认识。但对任意两个人,他们各自认识的人的数目之和不小于20。问能否把这20个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?

参考答案

一、单项选择题(本大题共15小题,每小题1分,共15分)

1.B

2.D

3.A

4.A

5.D

6.D

7.D

8.C

9.D

10.B

11.A

12.A

13.C

14.B

15.C

二、填空题 16.0 17.1

0 18.单位元

19.x∩y

x∪y 20.入射

满射

21.[x]R=[y]R

 22.A(x)

B(y)23.(M(x)→D(x))

M(x)→D(x)

专注于收集各类历年试卷和答案

24.可满足式

永假式(或矛盾式)25.陈述句

真值

三、计算题

1100101026.M=

1011001122M=21110111

121011M2ij18,ij6 M2i1i1j144

G中长度为2的路总数为18,长度为2的回路总数为6。

27.当n是偶数时,x∈P(A),xn=

当n是奇数时,x∈P(A),xn=x

于是:当n是偶数,({a}-1{b}{a})n{a}-n{b}n{a}n

=({a}-1)n{b}n{a}n=

当n是奇数时,({a}-1{b}{a})n{a}-n{b}n{a}n

={a}-1{b}{a}({a}-1)n{b}n{a}n

={a}-1{b}{a}{a}-1{b}{a}= 28.(1)偏序关系R的哈斯图为

(2)B的最大元:无,最小元:无;

极大元:2,5,极小元:1,3

下界:4,下确界4;

上界:无,上确界:无

29.原式(┐(P→Q)→(P→┐Q))∧((P→┐Q)→┐(P→Q))

((P→Q)∨(P→┐Q))∧(┐(P→┐Q)∨┐(P→Q))

(┐P∨Q∨┐P∨┐Q)∧(┐(┐P∨┐Q)∨(P∧┐Q))

(┐(P∧┐Q)∨(P∧┐Q))

(P∧Q)∨(P∧┐Q)

P∧(Q∨┐Q)

P∨(Q∧┐Q)

(P∨Q)∧(P∨┐Q)

命题为真的赋值是P=1,Q=0和P=1,Q=1

专注于收集各类历年试卷和答案

30.令e1=(v1,v3),e2=(v4,v6)

e3=(v2,v5),e4=(v3,v6)

e5=(v2,v3),e6=(v1,v2)

e7=(v1,v4),e8=(v4,v3)

e9=(v3,v5),e10=(v5,v6)

令ai为ei上的权,则

a1

取a1的e1∈T,a2的e2∈T,a3的e3∈T,a4的e4∈T,a5的e5∈T,即,T的总权和=1+2+3+4+5=15 31.原式┐(x1F(x1,y)→y1G(x,y1))∨x2H(x2)

(换名)

┐x1y1(F(x1,y)→G(x,y1))∨x2H(x2)

x1y1┐(F(x1,y1)→G(x,y1))∨x2H(x2)

x1y1x2(┐(F(x1,y1)→G(x,y1))∨H(x2)

四、证明题

32.设T中有x片树叶,y个分支点。于是T中有x+y个顶点,有x+y-1 条边,由握手定理知T中所有顶点的度数之的

xy

d(vi)=2(x+y-1)。

i又树叶的度为1,任一分支点的度大于等于2

且度最大的顶点必是分支点,于是

xy

d(vi)≥x·1+2(y-2)+k+k=x+2y+2K-4 i1

从而2(x+y-1)≥x+2y+2k-4

x≥2k-2 33.从定义出发证明:由于集合A是非空的,故显然从A到A的双射函数总是存在的,如A上恒等函数,因此F非空

(1)f,g∈F,因为f和g都是A到A的双射函数,故fg也是A到A的双射函数,从而集合F关于运算是封闭的。

(2)f,g,h∈F,由函数复合运算的结合律有f(gh)=(fg)h故运算是可结合的。

(3)A上的恒等函数IA也是A到A的双射函数即IA∈F,且f∈F有IAf=fIA=f,故IA是〈F,〉中的幺元

(4)f∈F,因为f是双射函数,故其逆函数是存在的,也是A到A的双射函数,且有ff-1=f-1f=IA,因此f-1是f的逆元

由此上知〈F,〉是群

34.证明(x)(A(x)→B(x)) x(┐A(x)∨B(x))

专注于收集各类历年试卷和答案

(┐A(a1)∨B(a1))∨(┐A(a2)∨B(a2))∨„∨(┐A(an)∨B(an)))

(┐A(a1)∨A(a2)∨„∨┐A(an)∨(B(a1)∨B(a2)∨„∨(B(an))

┐(A(a1)∧A(a2)∧„∧A(an))∨(┐B(a1)∨B(a2)∨„∨(B(an))

┐(x)A(x)∨(x)B(x)(x)A(x)→(x)B(x)

五、应用题

35.令p:他是计算机系本科生

q:他是计算机系研究生

r:他学过DELPHI语言

s:他学过C++语言

t:他会编程序

前提:(p∨q)→(r∧s),(r∨s)→t

结论:p→t

证①p

P(附加前提)

②p∨q

T①I

③(p∨q)→(r∧s)

P(前提引入)

④r∧s

T②③I

⑤r

T④I

⑥r∨s

T⑤I

⑦(r∨s)→t

P(前提引入)

⑧t

T⑤⑥I 36.可以把这20个人排在圆桌旁,使得任一人认识其旁边的两个人。

根据:构造无向简单图G=,其中V={v1,v2,„,V20}是以20个人为顶点的集合,E中的边是若任两个人vi和vj相互认识则在vi与vj之间连一条边。

Vi∈V,d(vi)是与vi相互认识的人的数目,由题意知vi,vj∈V有d(vi)+d(vj)20,于是G中存在汉密尔顿回路。

离散数学习题集 篇6

数理逻辑(离散数学一分册)王捍贫 北京大学出版社 定价:15元

集合论与图论(离散数学二分册)耿素云 北京大学出版社 定价:19元

代数结构与组合数学(离散数学三分册)屈婉玲 北京大学出版社 定价:21元

离散数学习题集——数理逻辑与集合论分册 耿素云 北京大学出版社 定价:11.5元

离散数学习题集——图论分册 耿素云 北京大学出版社 定价:8元

离散数学习题集——抽象代数分册 张立昂 北京大学出版社 定价:8.8元

离散数学 左孝凌 刘永才 上海科学技术文献出版社 定价:16元

学习《离散数学》心得体会 篇7

计算机3班

120210324 罗 鸿

起先以为《离散数学》讲的是比高数更加深奥的数学问题,其实不为然。《离散数学》是计算机科学与技术专业的一门重要的专业基础课程,它在计算机科学中有着广泛的应用。离散数学,对绝大多数学生来说是一门十分困难的课程,当然也包括我在内。开始学的时候有点蒙,加上老师讲课有点口音,速度很快,课下也没及时地去复习,所以学得不是很好。

第一章学了数理逻辑,前面的几节学得还可以,可是后面几节就不行了。学习谓词时中,起初我并不知道它到底要讲些什么东西,将命题拆了几大块,又莫名奇妙将这些小块用联结词组合在一起,还对它们进行一系列的判断,越学越没想法。也许是自己的逻辑能力不是很好。

接下来学习了图论,这里所说的图并不是几何学中的图形,而是客观世界中某些具体事物间联系的一个数学抽象,用顶点代表事物,用边表示各式物间的二元关系,如果所讨论的事物之间有某种二元关系,我们就把相应的顶点练成一条边。这种由顶点及连接这些顶点的边所组成的图就是图论中所研究的图。由于它关系着客观世界的事物,所以对于解决实际问题是相当有效的。这一章概念很多,也让我也感觉很乱,这一章基本都是自学的,因为老师很快就过了,自己也是迷糊迷糊的。所以只能在课后多下功夫了。

离散数学试题答案[范文] 篇8

一、单项选择题(每小题2分,共10分)1.命题公式(PQ)Q为()

(A)矛盾式(B)可满足式(C)重言式(D)合取范式

2.设C(x): x是国家级运动员,G(x): x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为()

(A)x(C(x)G(x))(B)x(C(x)G(x))

(C)x(C(x)G(x))(D)x(C(x)G(x))

3.设集合A={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是()

(A)1A(B){1,2, 3}A

(C){{4,5}}A(D)A

4.设A={1,2},B={a,b,c},C={c,d}, 则A×(BC)=()

(A){<1,c>,<2,c>}(B){,<2,c>}(C){,}(D){<1,c>,}

5.如第5题图所示各图,其中存在哈密顿回路的图是()

二、填空题(每小题3分,共15分)

6.设集合A={,{a}},则A的幂集P(A7.设集合A={1,2,3,4 }, B={6,8,12}, A到B的关系R={x,yy2x,xA,yB},那么R1=

8.图G如第8题图所示,那么图G的割点是-abfced第8题图

9.连通有向图D含有欧拉回路的充分必要条件是.10.设X={a,b,c},R是X上的二元关系,其关系矩阵为

101,那么R的关系图为MR=100100

三、化简解答题(每小题8分,共24分)11.简化表达式(((A(BC))A)(B(BA)))(CA).12.设代数系统(R*, ),其中R*是非0实数集,二元运算为:a,bR, ab=ab.试问是否满足交换律、结合律,并求单位元以及可逆元素的逆元.13.化简布尔表达式aab(cab).四.计算题(每小题8分,共32分)

14.求命题公式(PQ)(PQ)的真值表.15.试求谓词公式x(P(x)xQ(x,y)yR(x,y))A(x,y)中,x,x,y的辖域,试

问R(x,y)和A(x,y)中x,y是自由变元,还是约束变元?16.设R1是A1={1,2}到A2=(a,b,c)的二元关系,R2是A2到A3={,}的二元关系,R1= {<1,a>,<1,b>,<2,c>}, R2={,}试用关系矩阵求R1R2的集合表达式.v

217图G如第17题图

求图G的最小生成树.v4v

3第17题图

五、证明题(第18题10分,第19题9分)18.证明(PQ)((QR)R)(PS))S19.设G为9个结点的无向图,每个结点的度数不是5就是6,试证明G中至少有5个度数为6的结点,或者至少有6个度数为5的结点.《计算机数学基础》离散数学试题

之五解答

一、单项选择题(每小题2分,共15分)1.B2.D3.C4.A5.C

二、填空题(每小题3分,共15分)6.{,{},{{a}},{,{a}}}

7.{<6,3>,<8,4> }8.a, f9.D中每个结点的入度=出度.10.见第10题答案图.三、化简解答题(每小题8分,共24分)(((A(BC))A)(B(BA)))(CA)

c第10题答案图

(A(B(~BA)))(CA)(2分)

(A(AB))(CA)AC~A)

(4分)

(6分)(8分)

12.a,b,cR*, ab=ab=ba=ba,可交换;(2分)(ab)c=abc=abc=a(bc)=a(bc)=a(bc),可结合.(4分)易见,单位元为1.(6分)

对aR*, aa1=aa1=1=a1a=a1a,故a的逆元:a1

(8分)a

13.aab(cab)

=aabcaab(2分)

=aab(5分)=(aa)(ab)ab(8分)

四、计算题(每小题8分,共32分)

表中最后一列的数中,每对1个数得2分.15.x的辖域:(P(x)xQ(x,y)yR(x,y))(2分)x的辖域:Q(x,y)(4分)y的辖域:R(x,y)(6分)R(x,y)中的x,y是约束变量,A(x,y)中的x,y是自由变量.(8分)

110

16.MR1,(2分)

001

01

(4分)MR20100

01

11001(6分)MR1R201

0010000



R1R2{1,}(8分)

v217图G的最小生成树,如第17题答案图.首先选对边(v 1, v 2)得2分,再每选对一条边得分.v4v

3第17题答案图

五、证明题(第18题10分,第19题9分,共19分)18.①QRP(2分)②RP(4分)

③Q①,②析取三段论

④PQP(7分)

⑤P③,④拒取式⑥PSP

⑦S⑤,⑥析取三段论(10分)

19.由第5章定理1(握手定理)的推论,G中度数为5的结点个数只能是0,2,4,6,8五种情况;(3分)此时,相应的结点度数为6的结点个数分别为9,7,5,3,1个,(6分)

离散数学证明方法有哪些 篇9

反证法反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在”等的题目。它的方法是首先假设出所求命题的否命题,接着根据这个否命题和已知条件进行推演,直至推出与已知条件或定理相矛盾,则认为假设是不成立的,因此,命题得证。

构造法证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出矛盾,也可以直接构造出这么一个例子就可以了。这就是构造法,通常这样的题目在图论中多见。值得注意的是,有一些题目其实也是本类型的题目,只不过比较隐蔽罢了,像证明两个集合等势,实际上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以直接构造出这个双射。

电大离散数学证明题参考题 篇10

1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等. 证明:设GV,E,V,E.则E是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结

点uV,u在G和G中的度数之和等于u在Kn中的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n1(2)度),于是若uV在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.

k条边才能使其成为欧拉图.

2证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶数.

又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图. k故最少要加条边到图G才能使其成为欧拉图. 2

五、证明题

1.试证明集合等式:A(BC)=(AB)(AC).

证:若x∈A(BC),则x∈A或x∈BC,即x∈A或x∈B且x∈A或x∈C.

即x∈AB且x∈AC,即x∈T=(AB)(AC),所以A(BC)(AB)(AC).

反之,若x∈(AB)(AC),则x∈AB且x∈AC,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈BC,即x∈A(BC),所以(AB)(AC) A(BC).

因此.A(BC)=(AB)(AC).

2.对任意三个集合A, B和C,试证明:若AB = AC,且A,则B = C.

证明:设xA,yB,则AB,因为AB = AC,故 AC,则有yC,所以B C.

设xA,zC,则 AC,因为AB = AC,故AB,则有zB,所以CB.

故得B = C.

3、设A,B是任意集合,试证明:若AA=BB,则A=B.

许多同学不会做,是不应该的.我们看一看

证明:设xA,则AA,因为AA=BB,故BB,则有xB,所以AB.

设xB,则BB,因为AA=BB,故AA,则有xA,所以BA.

故得A=B.

2.设连通图G有k个奇数度的结点,证明在图G中至少要添加

1.试证明命题公式(P(QR))PQ与(PQ)等价.

证:(P(QR))PQ(P(QR))PQ

((PQR)P)Q

PQ(吸收律)

(PQ)(摩根律)

2.试证明(x)(P(x)R(x))(x)P(x)(x)R(x).

分析:前提:(x)(P(x)R(x)),结论:(x)P(x)(x)R(x).

证明(1)(x)(P(x)R(x))P

(2)P(a)R(a)ES(1)(存在指定规则)

(3)P(a)T(2)(化简)

(4)(x)P(x)EG(3)(存在推广规则)

(5)R(a)T(2)(化简)

(6)(x)R(x)EG(5)(存在推广规则)

(7)(x)P(x)(x)R(x)T(4)(6)(合取引入)

2.设集合A={1,2,3,4},B={2, 4, 6, 8},判断下列关系f:A→B是否构成函数,并说明理由.

(1)f={<1, 4>,<2, 2,>,<4, 6>,<1, 8>};(2)f={<1, 6>,<3, 4>,<2, 2>};

(3)f={<1, 8>,<2, 6>,<3, 4>,<4, 2,>}.

解:(1)f不能构成函数.

因为A中的元素3在f中没有出现.

(2)f不能构成函数.

因为A中的元素4在f中没有出现.

(3)f可以构成函数.

因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.

三、公式翻译题

1.请将语句“今天是天晴”翻译成命题公式.

解:设P:今天是天晴;

则命题公式为: P.

问:“今天不是天晴”的命题公式是什么?

2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.

解:设P:小王去旅游,Q:小李去旅游,则命题公式为:PQ.

注:语句中包含“也”、“且”、“但”等连接词,命题公式要用合取“”.

3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.

解:设P:他去旅游,Q:他有时间,则命题公式为:PQ.

注意:命题公式的翻译还要注意“不可兼或”的表示.

例如,教材第164页的例6 “T2次列车5点或6点钟开.”怎么翻译成命题公式?这里的“或”为不可兼或.

4.请将语句“所有人都努力工作.”翻译成谓词公式.

解:设P(x):x是人,Q(x):x努力工作.

上一篇:组织部部门总结下一篇:关于圣诞节走心的文案