小学六年级数学《圆锥的体积》教学教案

2024-08-23

小学六年级数学《圆锥的体积》教学教案(共12篇)

小学六年级数学《圆锥的体积》教学教案 篇1

教学目标:

1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。

2.培养学生观察、实践能力。

3.使学生在解决实际问题中感受数学与生活的密切联系。

教学重、难点:结合实际问题运用所学的知识

教学理念:

1.数学源于生活,高于生活。

2.学生动手实践,自主学习与合作交流相结合

教学设计:

一 回顾旧知:

1.圆锥的体积公式是什么? S、h各表示什么?

2.求圆锥的体积需要知道什么条件?

3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

投影出示:

(1)S = 10,h = 6 V = ?

(2)r = 3,h = 10 V = ?

(3)V = 9.42,h = 3 S = ?

二 运用知识,解决实际问题

1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗? 怎么办呢?

2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米

(1)麦堆的底面积:__________________

(2)麦堆的体积:____________________

3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)

4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方 米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)

5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多 少立方分米的木料?

(1)(出示图)什么情况下削出的圆锥是的?为什么?

(2)削去的木料占原来木料的几分之几?

(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是的呢?

三 综合练习

1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。

2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米

3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?

小学六年级数学《圆锥的体积》教学教案 篇2

一、等底等高的圆柱与圆锥的体积

第一, 给出圆柱与圆锥体积的“和”。

题目经常给出等底等高的圆柱圆锥的体积的和, 而让我们去求圆柱与圆锥的体积或求圆柱比圆锥多余的体积, 这时, 我们把圆锥的体积看成一份, 把圆柱的体积看成三份, 这样就把圆柱与圆锥的体积看成相等的四份, 如果给出体积之和, 就可以把这个和平均分成四份, 求出每一份的体积, 也就是圆锥的体积, 再乘3就得到圆柱的体积。这样还可求出圆柱比圆锥多余的体积。

例如:等底等高的圆柱与圆锥的体积之和为64立方厘米, 求圆柱比圆锥多多少立方厘米?

根据以上分析:圆柱的体积为3份, 圆锥的体积为1份, 并且这四份都是相等的, 也就是说把圆柱与圆锥的体积之和平均分成4份, 其中一份的体积则为圆锥体积, 三份体积则为圆柱体积, 圆柱体积比圆锥体积多两份, 如果算出一份的体积, 多余的体积就会迎刃而解。

64÷4=14 (立方厘米) 14×3=42 (立方厘米)

42-14=28 (立方厘米)

答:圆柱的体积比圆锥多28 (立方厘米)

第二, 给出圆柱与圆锥的体积之“差”。

我们在练习题目时, 经常碰到等底等高的圆柱与圆锥的体积之差, 而求出圆柱或圆锥的体积, 有时还要求出圆柱的体积是圆锥的几倍或圆锥的体积是圆柱的几分之几。

根据所学知识, 等底等高的圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 这样我们就会把圆柱体积和圆锥体积看成相等的四份, 这样看来, 圆柱体积就比圆锥体积多两份, 而多余的体积给出来, 把它平均分成两份, 就是每一份的体积, 圆柱占三份就乘3, 得到圆柱的体积, 圆锥占一份乘一, 就得到圆锥的体积。

例如:一个圆柱削成一个最大的圆锥, 体积减少了36立方分米, , 求圆柱与圆锥的体积分别是多少立方分米?削去部分的体积是圆锥的几倍?

根据以上分析:把圆柱削成最大的圆锥, 削出来的的圆锥与原来圆柱的关系是等底等高, 那么就存在这样的关系, 圆柱体积的三分之一是圆锥体积, 其实把三分之二削掉了。也就是说把圆柱体分成三份, 消掉了两份, 剩下一份为圆锥体。

36÷2=18 (立方分米) 18×3=54 (立方分米)

18×1=18 (立方分米) 36÷18=2 (倍)

答:圆柱体积是54圆锥体积是18, 削去部分的体积是圆锥的2倍。

第三, 给出圆柱或圆锥的体积, 求出另一个的体积。

我们在学习中经常碰见给出等地等高的圆柱和圆锥的其中一种的体积, 而要求出另外一种体积, 或者求出两个的体积之差。

等底等高的圆柱与圆锥的体积关系, 即圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 如果给出圆柱体积, 要求圆锥体积, 则圆柱体积撑三分之一就是圆锥体积。如果给出圆锥体积, 要求圆柱体积, 则圆锥体积乘三就是圆柱体积。

例一:一个圆柱的体积为102立方分米, 与它等底等高圆柱的体积是多少立方分米?

根据以上分析:圆锥的体积为圆柱体积的三分之一。

102×1/3=34 (立方分米)

答:圆锥的体积为34立方分米。

二、圆柱和圆锥的体积在相等或不相等的情况下, 它们的底和高的关系

第一, 圆柱与圆锥的体积相等, 找出它们的底面积和高的关系。

在体积相等的情况下, 底面积和高的关系有两种, 第一种是给出底面积的关系, 找出高的关系。第二种是给出高的关系, 找出底面积的关系。以下根据例题详细的分析:

例一:体积相等的圆柱与圆锥, 圆柱的底面积是圆锥的三倍, 则圆柱与圆锥的高的比是多少?

分析:圆柱与圆锥的体积相等, 则S柱H柱=1/3S锥H锥, 而圆柱的底面积是圆锥的3倍, 则S柱=3S锥, 把上述等式替换可得:3S锥H柱=1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 这样可得到:3H柱=1/3H锥, 所以圆柱的高与圆锥的高的比是:H柱:H锥=1/3:3=1:9。

例二:体积相等的圆柱与圆锥, 圆柱的高是圆锥的1/4, 则圆柱的底面积是圆锥的 () 。

A、3/4 B、3倍C、4倍D、4/3倍

分析:它们的体积相等, 即:S柱H柱=1/3S锥H锥, 而圆柱的高是圆锥的1/4, 即H柱=1/4H锥, 把上述等式替换可得:S柱×1/4H锥=1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 这样可得到:S柱×1/4=1/3S锥, 然后两端同时乘4, 可得:S柱=4/3S锥, 圆柱的体积是圆锥的4/3倍。可选D答案。

第二, 圆柱与圆锥的体积不相等, 找出它们的底面积和高的关系。下面有两个例题就能很好的说明它们的关系。

例一:一个圆柱的体积是一个圆锥的2倍, 它们的底面积相等, 求圆柱与圆锥高的比是多少?

分析:体积相等可得:V柱=2V锥, 可得:S柱H柱=2×1/3S锥H锥, 而它们的底面积相等, 则S柱=S锥, 等式的两端同时除以相同的数, 等式不变, 可得:H柱=2×1/3H锥, 即H柱=2/3H锥, 那么圆柱与圆锥高的比:H柱:H锥=2/3:1=2:3。

例二:一个圆柱的体积是一个圆锥的1/2, 圆柱的底面积是圆锥的3倍, 那么, 圆锥高是圆柱高的 () 。

A、1/6 B、3倍C、12倍D、18倍

分析:圆柱的体积是圆锥的1/2, 可知:V柱=1/2V锥, 即:S柱H柱=1/2×1/3S锥H锥, 圆柱的底面积是圆锥的3倍, 可知:S柱=3S锥, 把上述等式替换:3S锥H柱=1/2×1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 可得:3H柱=1/6H锥, 两端同时乘6, 这样可得:18H柱=H锥, 所以圆锥的高是圆柱的18倍。

总之, 我们作为教师, 尽可能的深入研究教材, 把课堂设计成多种形式的教学情景, 让课堂充满探索性、竞争性、趣味性, 同时让学生参与进来快乐的获得知识。这样即增加了学生学习数学的兴趣, 还培养了学生的合作、探究、操作、创新的能力。

摘要:等底等高的圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 这样我们就会把圆柱体积和圆锥体积的和评价分成四份, 圆柱体积占三份, 圆锥占一份, 圆柱比圆锥多两份。

小学六年级数学《圆锥的体积》教学教案 篇3

[关键词]模型思想 圆锥的体积 数学模型

[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)02-92

数学课程标准指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径,建立和求解模型可以提高学习数学的兴趣和应用意识。”由此可见,模型思想是数学教学必须渗透的思想方法之一。因此,在教学时,我们要善于引导学生自主探究、合作交流,力求构建数学模型。下面就以“圆锥的体积”为例,谈谈如何渗透数学模型思想,建构数学模型。

[片段一]创设情境,初步感知数学模型

师(课件出示):小麦丰收了!看,小麦堆得像小山一样(麦堆近似于圆锥),小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面直径,给小虎出了一个难题——你能算出这堆小麦大约有多少立方米吗?这下难住了小虎。今天,我们来研究圆锥的体积。(板书课题:圆锥的体积)圆锥的体积可能与哪种立体图形的体积有关?

生1:可能与圆柱的体积有关。

生2:因为它们都是旋转体。

师:请同学们回忆一下,在学习圆柱的体积推导过程中,应用了哪些数学思想方法?

生3:转化的数学思想方法。

师:你说的很准确!仔细观察,看看又能发现什么?

生4:圆锥的底面和圆柱的底面完全重合。

生5:它们的高相等。

师:也就是说,它们是一组等底等高的圆柱和圆锥。猜想一下,它们的体积会有什么关系?

生6:圆柱的体积可能是圆锥的2倍。

生7:圆柱的体积可能是圆锥的3倍或4倍。

集生活味、数学味、趣味性与挑战性为一体而创设的情境,以学生已有认知为起点,通过猜想圆柱与圆锥的体积关系,激发学生学习动机的同时直奔主题。

[片段二]参与探究,自动建构数学模型

师:各小组根据老师提供的实验器材,开展实验,填写实验报告单,验证猜想。

生1:圆柱和圆锥等底不等高,圆锥容器装满水往圆柱容器里倒,倒了一次,又倒了一些,才装满。

生2:圆柱和圆锥等高不等底,圆锥容器装满水往圆柱容器里倒,倒了两次,又倒了一些,才装满。

生3:圆柱和圆锥等底等高,圆锥容器装满水往圆柱容器里倒,倒了三次,正好装满。

生4:圆柱和圆锥不等底不等高,圆锥容器装满水往圆柱容器里倒,倒了四次多一些……

师:想一想,在什么情况下,圆锥容器装满水往圆柱容器里倒,倒了三次,正好装满?

生5:只有在等底等高的情况下,圆锥容器装满水往圆柱容器里倒,倒了三次,正好装满。

本环节充分发挥了学生的主体作用,让学生自己做、自己想。为了克服实验误差对圆锥体积计算公式的推导造成的影响,教师及时进行课件演示,通过比较、分析、推导出圆锥体积的计算公式,让学生初步学会运用实验的方法探索新知识。

[片段三]解决问题,拓展应用数学模型

1.基础练习:一个圆锥的底面积是19平方厘米,高是12厘米。它的体积是多少?

2.综合练习:麦堆的高为1.2米和底面直径为4米,求麦堆的体积。如果每立方米小麦大约重735千克,这堆小麦大约有多少千克?(得数保留整千克数)

3.拓展练习:有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把削成与它等底等高的圆锥形零件,要削去钢材多少立方厘米?

基础练习是圆锥体积公式的直接应用;综合练习和拓展练习不仅是公式的灵活应用,还让学生经历生活问题数学化的过程,体验学习数学的价值。练习设计突出了实效性、层次性和生活性,力求落实“下要包底,上不封顶”的教学理念。

[教后反思]

本节课学生经历了“猜想——验证——应用”的知识建构过程,渗透了数学模型思想,建构了数学模型。

1.猜想验证——培养自主获取知识的能力

课程标准指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学时,要利用学生已有的知识基础和学习经验,让学生自己猜想、自己验证、自己总结,自主解决问题,培养学生自主获取知识的能力。

2.亲身经历——关注知识的形成过程

课程标准指出:“学习数学知识应从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程。”本节课,引导学生通过实验,自主发现圆锥体积等于和它等底等高的圆柱体积的三分之一,导出公式:V= ■Sh。这样,既发展了学生的空间观念,又培养了学生独立思考和合作交流的能力,让学生享受成功的喜悦。

总之,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的、更一般的情景,学生在主动探索的过程中,进行了再创造学习,以抽象概括方式自主总结出圆锥体积计算公式。

小学六年级数学《圆锥的体积》教学教案 篇4

圆锥的体积

教学内容:教科书第42~~43页的例

1、例2,完成“做一做”和练习九的第3—题。

教学目的:使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

教具准备:等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土.

教学过程:

一、复习、圆锥有什么特征?

使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、导人新

我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书题:圆锥的体积

三、新、教学圆锥体积的计算公式。

教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满?

问:把圆柱装满一共倒了几次?

学生:3次。

教师:这说明了什么?

学生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

板书:圆锥的体积=1/3

×

圆柱体积

教师:圆柱的体积等于什么?

学生:等于“底面积×高”。

教师:那么,圆锥的体积可以怎样表示呢?

引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

板书:圆锥的体积=

/3

×底面积×高

教师:用字母应该怎样表示?

然后板书字母公式:V=1/3

SH

2、教学例1。

一个圆锥形的零,底面积是19平方厘米,高是12厘米。这个零的体积是多少?

教师:这道题已知什么?求什么?

指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算?

引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、做第0页“做一做”的第1题。

让学生独立做在练习本上,教师行间巡视。

做完后集体订正。

4、教学例2。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是12米。每立方米小麦约重73千克,这堆小麦大约有多少千克?

教师:这道题已知什么?求什么?

学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。

教师:要求小麦的重量,必须先求出什么?

学生:必须先求出这堆小麦的体积。

教师:要求这堆小麦的体积又该怎么办?

学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。

教师:但是题目的条中不知道圆锥的底面积,应该怎么办。?

学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。

教师:求得小麦的体积后.应该怎样求小麦的重量?

学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。

分析完后,指定两名学生板演.其余学生将计算步骤写在教科书第0页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过量才能确定,73千克并不是一个固定的常数

组织学生讨论,怎样测量小麦堆的底面直径和高?

讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围上一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。、做“做一做”的第2题。

教师:这道题应该先求什么?

学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。

做完后集体订正。

四、小结

五、堂练习、做练习九的第3题。

指定3名学生在黑板上板演,其余学生做在练习本上。

集体订正时.让学生说一说自己的计算方法。

2,做练习九的第4题。

教师可以让学生回答以下问题:

这道题已知什么?求什么?

求圆锥的体积必须知道什么?

求出这堆煤的体积后,应该怎样计算这堆煤的重量?

然后让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习九的第题。

教师指名学生先后回答下面问题:

圆柱的侧面积等于多少?

圆柱的表面积的含义是什么?怎样计算?

圆柱体积的计算公式是什么?

圆锥的体积公式是什么?

小学六年级数学《圆锥的体积》教学教案 篇5

教学内容:

冀教版小学数学六年级下册第40~42页。

一、教材分析:

本单元《圆柱和圆锥》是小学数学“图形与几何”部分的重要内容,是学生学习图形与几何的重要知识基础,是培养学生几何直观和空间观念的重要内容。本节课《圆锥和圆锥的体积》是学生在学习了圆柱体积相关知识的基础上进行教学的。教材安排了两个知识点:一是从实物中抽象出圆锥的立体图形并认识圆锥的各部分名称,二是通过实验探索圆锥的体积计算公式。圆锥图形是学生第一次接触,从实物中抽象出几何图形,认识特征比较容易,想象圆锥的高和侧面展开图对学生来讲有一定的挑战性。学生通过猜想、观察、实验等活动,经历探索圆锥的体积计算公式的过程,掌握圆锥体积的计算方法,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法。

二、学情分析:

六年级的学生对于圆锥形物体有一定的生活经验,具备一定的关于长方体、正方体和圆柱的图形知识储备和学习经验,通过前几节的学习,学生已经对圆柱的基本特征有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,体会了转化的数学思想在探索体积计算公式中的应用。绝大多数学生的动手实践能力比较强,但学生的空间想像能力因年龄特点,还有待进一步加强训练。

三、教学目标

知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

四、教学重难点:

教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

教学难点:理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。

五、设计理念

(1)体现数学活动化、游戏化。学生通过教师设计的“面的旋转”游戏、动手实验等活动主动去学习圆锥的特征和体积的计算,这种方式符合小学生的年龄特点,更能激发学习兴趣,吸引学生的注意力,是学生在轻松愉快的状态下获得知识和提高技能。

(2)既动手操作,又动脑思考,努力探索圆锥体的计算方法。通过猜想、小组交流、动手操作等方式,从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。真正做到“动手操作、体验成功”。

六、教学具准备:

(1)每人一个圆锥形实物(也可以是自己做的圆锥),每组同学准备等底等高的圆柱体和圆锥体容器各一个,沙子。

(2)教师自制的多媒体课件。

七、教学过程:

(一)炫我两分钟。

游戏:面的旋转。

主持人:大家好。今天的炫我两分钟时间由我来主持。大家看,我这里有一个由小棒和一张长方形硬纸片做成的小旗,如果我快速旋转小棒,转出来的是什么形状?关于圆柱体你有哪些了解呢?

学生回答。

主持人:我们认识立体图形,要从它的面、棱、定点和高、体积等几方面进行了解。看来大家对于圆柱体的知识掌握的非常好。今天的炫我两分钟就是这些了,谢谢大家。

教师:谢谢主持人。大家看,我这里有一个由小棒和一张直角三角形硬纸片做成的小旗,如果我快速旋转小棒,大家再猜一猜,转出来的又是什么形状哪?(圆锥)今天就让我们走进圆锥的世界,探索有关圆锥的奥秘吧。

【设计意图:以游戏的形式引入新课,一方面激发学习兴趣,吸引学生的注意力;另一方面在在活动中感受有线到面、由面到体的建构几何图形的过程。】

二、自主探究圆锥体的特征。

教师:生活中的圆锥随处可见。想一想,我们身边哪些物体的形状是圆锥形的呢?

学生举例,教师结合课件显示圆锥形实物图和抽象出的立体图形。

1、学生手拿自己的圆锥形物体和全班同学交流圆锥的特征。

2、教师点拨提升。重点指导学生认识圆锥的侧面和高。

教师出示一个圆锥形生日帽,提问:

(1)怎样证明圆锥的侧面是个扇形呢?

(2)用什么方法能测得这个圆锥形的高是多少?

教师可以结合之前炫我两分钟形成的圆锥、伞柄帮助学生认识高,结合测量身高的示意图介绍测量圆锥高的方法,最后在课件中呈现平面图中圆锥的高。

【设计意图:学生调动多种感官,在动手、动眼、动脑的自主活动中结合生活中的实物认识圆锥体的特征,了解圆锥各部分的名称,感受数学与生活的密切联系。圆锥的侧面展开图和圆锥的高是教学的难点,教师及时发挥引导点拨作用,结合实物演示从而突破教学难点。】

三、动手实验,探索圆锥的体积计算公式。

1、生活中引入:学校要建室外楼梯,需要准备10立方米的沙子,大家看,这是工人师傅运来的一堆沙子,但是这些沙子够不够呢,需要知道这些沙子的什么?(体积)接下来我们就来探究圆锥的体积。

2、大胆猜想:前面我们学习圆柱的体积时运用了哪种数学思想?(板书:

转化)猜一猜,圆锥是不是也可以这样做呢?圆锥的体积可能会转化成哪一种图形呢?你的根据是什么?

学生说明想法。

教师出示一组等底等高圆柱和圆锥,请学生观察比较它们的底和高的关系。教师板书:等底等高。

猜想:等底等高的圆柱和圆锥的体积有什么关系呢?(自由猜想)下面我们就让我们到实验中去寻找答案吧。

3、小组实验。

课件出示实验方法和要求。

(1)在圆锥容器中装满沙子,然后倒入圆柱容器中,看几次能倒满。

(2)每倒入一次,记录一下杯子中沙子的高度,直到装满为止。边实验边填写实验记录。

(3)通过实验结果,比一比圆锥的体积和圆柱的体积有什么关系?

4、班级汇报展示,总结圆锥的体积计算公式。

组长带领全组同学对实验方法进行交流汇报。在交流汇报的基础上,组内或其他组同学进行补充、质疑、评价。

教师利用课件演示实验过程。

教师:你能根据我们的实验和课件演示,也给圆锥体的体积写出一个公式吗?

学生自主总结圆锥的体积公式:圆锥的体积=圆柱的体积÷3=底面积×高×1\3=1\3SH.教师板书公式.并提问:公式里的S×h求的是什么。并进一步引导学生总结出利用圆锥底面半径和高、底面直径和高计算圆锥体的公式,教师板书。

5、运用公式解决问题。课件呈现沙堆的底面直径和高,学生计算沙堆体积。

【设计意图:在生活情境中产生探究圆锥体积的需求和愿望,联系已知知识经验进行大胆、合理猜想,在猜想、实验、交流、验证的过程中经历探索圆锥体积计算公式的过程。通过小组间思维碰撞,以及老师精彩的点拨引导,教学重点得以突破,激发全体学生参与学习、探索知识的欲望。】

四、挑战自我。

基础练习

1、指出下图中哪些是圆锥。(P42练一练第1题)

2、判断下面说法正确吗?为什么?

(1)圆锥的侧面展开是三角形,它有无数条高。

()

(2)

圆柱的体积等于圆锥体积的3倍。

()

(3)一个圆柱的体积是45立方厘米,与它等底等高的圆锥的体积是15立方厘米。

()

3、计算圆锥的体积。

(1)底面面积是9.6平方米,高是2米。

(2)底面半径是5分米,高是3.3分米。

(3)底面直径是6厘米,高是1厘米。

学生完成后教师引导学生说一说分别利用哪个公式计算圆锥体积。

变式练习:一根圆柱形木料,底面半径是2分米,高是3米。将这根木料加工成最大的圆锥,圆锥的体积是多少立方分米?

【设计意图:通过分层次的练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,提高学生应用所学知识解决实际问题的能力。】

五、盘点收获。

通过今天的学习你有哪些收获?

教师结合学生的发言完善板书形成思维导图。

【设计意图:引导学生进行小结,有利于知识的积累和自主学习能力的提高。】

六、拓展延伸。

校园内的刺柏形状类似我们认识的哪种立体图形?要想知道它的体积是多少需要测量哪些数据?试着量一量、算一算。

【设计意图:

把课上的知识延伸到课外,使学生进一步感受数学来源于生活并应用于生活。

《圆锥和圆锥的体积》尝试小研究一

拿一个圆锥形的物体,看一看,摸一摸,它们有哪些特点?

我发现:

(1)圆锥由

个面组成。它的每个面有什么特点?。

(2)

你能找到圆锥的高吗?(可以参照圆柱的高)说说你的方法。你觉得可以怎样描述圆锥的高?

我觉得圆锥的高指。

(3)自己动手做一个圆锥,如果有困难可以请爸爸妈妈帮忙。

《圆锥和圆锥的体积》尝试小研究二

小实验。

实验用具:每小组各一套等底等高的圆柱形容器和圆锥形容器;沙子(或水)

(1)在圆锥形容器中装满沙子(或水),然后倒入圆柱形容器中,看几次能倒满。

(2)小组成员要分工合作,做好实验记录。

实验记录

实验工具

杯子:高

实验过程记录:

第一次

第二次

杯中沙子的高度(毫米)

小学六年级数学《圆锥的体积》教学教案 篇6

一、说教材

本节课是北师大版义务教育标准实验教科书六年级数学下册第11页-13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:

1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。

二、说教法

本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。

三、说学法

动手操作法,观察发现法,自主探究法,合作交流法

四、说教学过程

1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。

2、揭示课题,展示目标。

3、以旧引新,探究新知。

通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。

教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)

4、运用公式,解决问题

通过“算一算”和“试一试”让学生掌握公式的运用。

5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。

6、质疑问难,总结升华

小学六年级数学《圆锥的体积》教学教案 篇7

在教法上能充分利用圆柱形实物,让学生自己去观察,认识了圆柱的特征,使学生对圆柱的特征有直观的认识,有利于学生对知识的理解和掌握。学生对新知识是好奇的,在教学新知识时,让学生亲自动手去做一做,采用小组合作,讨论,交流等形式,让学生多角度,多层面地表达自己的

思维过程,整体地感知圆柱的特征。在讨论圆柱的侧面时,设置悬念,先让学生猜一猜圆柱的侧面展开会是什么图形,通过猜测再进行验证,认识到长方形与圆柱侧面积之间的关系。在练习阶段,我设计了针对性练习和发展性练习,在形式,难度,灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。

小学六年级数学《圆锥的体积》教学教案 篇8

第十一课时 测量物体的体积 总第22课时

教学内容:教材第37页测量物体的体积

教学目标:

1.通过学习,使学生所有的物体都有一定的体积,并学会求同一种物体的体积。

2.通过学习,使学生了解不规则物体的计算方法,并提高灵活应用计算方法解决一些实际问题的能力。

教学重点:学会求不规则物体的体积。

教学难点:进一步掌握同一种物体的体积计算方法。

预习作业:

1、回家找一块土豆,并计算它的体积。

2、回家找同一种铁块大小不同的3块,并算一算它的体积。

教学过程:

-、预习效果检测

1、计算下面物体的体积

圆柱:底面直径5厘米,高7厘米

圆柱:底面直径15厘米,高7厘米

圆柱:底面直径5厘米,高14厘米

圆柱:底面直径5厘米,高21厘米

圆锥:底面直径5厘米,高7厘米

圆锥:底面直径5厘米,高21厘米

圆锥:底面直径5厘米,高14厘米

通过计算,你发现了什么?

二、合作探究

1、出示准备好的圆柱形容器1个,土豆1个,小组合作,用下面的方法测量物体的体积,并填写表格。

实际操作时应注意什么?

2、出示准备好的2块铁块,并用天平称出它们的质量,并填写下表。

比较测量和计算的结果,你有什么发现?

三、教师小结

同学们,同一种材料,质量与体积比的比值时一定的。应用这一知识,我们就能算出另一块铁块的体积。

四、课堂小结

小学六年级数学《圆锥的体积》教学教案 篇9

一、教材分析

1、说课内容:《圆锥的体积》,西师版小学数学六年级下册第二单元《圆柱和圆锥》中《圆锥》的第二课时。

2、教材简析:圆锥是小学几何初步知识最后一个单元的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形,也是在此基础上的又一个延伸,同时为学生以后系统学习立体几何知识打下基础。按编者意图《圆锥》(含“圆锥的认识”和“圆锥的体积”)新课为一课时,但我认为这样教学内容太多,时间不够充分,不能保证较好的教学效果,所以这部分内容我采用了两课时进行教学,先用《圆锥的认识》做准备和铺垫,再单独完成《圆锥的体积》教学,这样有利于更好地把握和突破教学重难点,使学生学习效果更明显。

3、教学重难点及关键:本课重点是能正确运用公式计算圆锥的体积,并能解决简单的实际问题。教学难点是理解圆锥体积公式的推导过程。关键是重视操作与思考、想像相结合,发展学生的空间观念。

4、教学目标:

(1)知识与技能目标:能正确运用公式计算圆锥的体积,并能解决简单的实际问题。

(2)过程与方法目标:引导学生通过实验操作、观察思考、讨论交流、归纳总结等活动探索和理解圆锥的体积计算公式。

(3)情感与态度目标:在圆锥体积公式的探索过程中,让学生体会类比的数学思想方法,体会数学问题的探索性和数学结论的严谨性;在解决问题的过程中体会数学与现实生活的密切联系;在探索和学习过程中培养学生交流与合作的团队精神。

5、教学准备:教师准备实物投影仪及等底等高的圆柱圆锥体模型。学生4—6人分组,每组准备等底等高的透明圆柱圆锥形容器一套、水槽和足够的水等。

二、教学方法

本课以实验法、观察法、谈话法为主,以讨论法、练习法为辅。教学中,重视对学生学法的指导,主要引导学生通过实验操作、观察思考、讨论交流、归纳总结等活动探索理解圆锥的体积计算公式,充分展示数学知识的形成过程,发挥学生的主体作用,让学生积极主动地参与学习的全过程。培养学生的动手操作能力和数学思维能力,使学生人人都能获得必要的数学,人人都能得到不同的发展。

三、教学流程

本节课我设计了以下五个教学环节:即提出猜想、实验操作、讨论归纳、练习应用、质疑提高

提出猜想:

先出示复习题(幻灯片2),让学生口算圆柱的体积,回忆圆柱的有关知识和圆柱的体积体积计算公式,为本课的学习做好铺垫。

接着出示圆锥(幻灯片3),让学生猜一猜怎样计算圆锥的体积,对学生的猜想不急于做出评价。通过交流使学生得到两点认识:①我们可以通过实验进行探索。②圆锥体积可能与它的底面积和高有关。

实验操作:

先展示幻灯片4-45,介绍等底等高的圆柱和圆锥,这是本课的重要前提和铺垫。

接着学生4-6人分组实验,1-2人共同操作,用等底等高的圆锥形容器装满水倒入圆柱形容器中。全体成员观察思考:①实验中的圆锥形和圆柱形容器有什么关系?②倒了几次水刚好把圆柱形容器装满?③通过实验你发现了什么?

3、讨论归纳:针对以上实验和问题,让学生先在小组内讨论,再进行全班交流。交流时只要学生说得合理,老师都要给予肯定。(由于学生实验操作不是很精确,实验中会出现细小偏差,老师说明:这是允许的,也是正常的,这里我们可以忽略不计。)

接着教师再次演示实验(展示幻灯片46-104)通过师生交流,重点引导学生得出:等底等高的圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的1/3,而圆柱的体积等于底面积乘高,所以圆锥的体积=底面积×高×1/3(同时教师板书)。然后老师再提出,如果用v表示圆锥的体积,用s表示圆锥的底面积,用h表示圆锥的高,让学生说出圆锥体积的字母公式,教师板书:V=1/3sh。

4、练习应用

(1)想一想,议一议,说一说。

①、已知圆锥的底面半径r和高h,如何求体积V?

让学生先回忆圆的面积公式,再综合得出V=1/3πr²h,同时教师板书。

②、已知圆锥的底面直径d和高h,如何求体积V?

让学生先交流讨论,再得出:要先求圆锥的底面半径,再求圆锥的体积。

③、已知圆锥的底面周长C和高h,如何求体积V?

同样学生会明白:要先求圆锥的底面半径,再求圆锥的体积。

通过本题的讨论练习,让学生熟练掌握圆锥体积计算公式,同时让学生明白,要求圆锥的体积,就要先找圆锥的底面半径和高这两个条件。(教师板书:要求体积,先找半径和高。)

(2)运用所学知识解决实际问题。

①、(出示幻灯片106)学习例1,求圆锥形铅锤的体积,先让学生独立解决问题,再组织全班交流。最后教师强调两点:A、不要忘记了1/3;B、连乘法计算时能约分的先约分,3.14最后乘比较简便。

②、(出示幻灯片107)学习例2,求一次运走这堆煤,需要多少辆车。先指导学生获取信息,理解题意,明确解决这个问题的步骤。(①求底面半径,②求圆锥形煤堆的体积,③求煤堆的重量,④求需要的车辆数。)接着,让学生独立解决问题,再组织学生全班交流。(同时,老师可以引导学生在完全理解算理的基础上,用综合式解答该题,强调“最后算π值”,掌握计算技巧,以减少乘除法计算的频率,降低计算难度,提高计算准确率,激发学生的学习积极性。还要提示学生最后一步结果要用进一法取近似值。

5、质疑提高

①师:通过这节课的学习,你学到了什么知识?还有哪些不明白的地方?让学生读书、回顾、思考、小结、提问等。

回顾总结和提出疑问,是一堂课的重要环节。每一节课,都应该留有足够的时间让学生去回顾所学知识,去发现问题,提出疑问,从而实现学生对数学知识的巩固和延伸。

②布置课堂作业:练习九1、2、3题。

③课外练习:(出示幻灯片109)考考你。

四、板书设计: 圆锥的体积

圆锥的体积=底面积×高×1/3

V=1/3sh=1/3πr²h

(要求体积,先找半径和高)

小学六年级数学《圆锥的体积》教学教案 篇10

教学内容:六年级下册数学课本第25页例2和相应的练习。

教学目标:

1、引导学生通过实验,推导出圆锥体积的计算公式,并能运用计算公式求圆锥的体积,解决有关的实际问题。

2、培养学生的观察、操作、分析表达,归纳概括能力。

3、培养学生良好的合作探究意识,引导学生掌握正确地学习方法。

教学重点:圆锥体积公式的推导过程。

教学难点:圆锥体积计算公式的理解。

教具、学具:

1、量筒、铅锤。

2、各组学生自己准备圆柱、圆锥教具每组各4-6个(有各种情况的)沙土、谷子、米、水等。

3、多媒体课件。

教学过程:

一、创设情境,导入新课

1、老师出示铅锤

问:(1)知道这是什么?(引导说出类似的圆锥及圆锥的体积,铅锤所占空间的大小就是这个铅锤的体积)

(2)你有没有办法来测量这个铅垂的体积?(有可能说:排水法)教师示范,学生观察水面的变化。

(3)这时你如何测量这个铅锤的体积呢?(测量不规则物体的体积的方法-排水法,引出这个方法太麻烦了)

2、老师课件出示近似圆锥形的麦堆,如果我们要测量像这样外形类似于圆锥形物体的体积麦堆,能把它放在水里吗?今天我们就来学习解决这类问题的方法(引导出课题:圆锥的体积)。

3、我们学过哪些物体的体积?你认为哪种物体的计算方法与圆锥有关?(他们有相似性的,底面都圆形)

二、自主探索,合作交流

(一)大胆猜想

1、那你认为哪一种物体的体积计算方法可能与圆锥有关呢?能说出你猜测的依据吗?

2、圆柱的体积和圆锥的体积之间会存在着什么样的关系?(猜测)

3、利用转化法把圆柱体转化成长方体,来计算圆柱的体积,今天我们应该把圆锥体转化成什么立体图形,从中求出圆锥的体积呢?(同学们想一想),片刻后,同学们会想到,把圆锥体转化成圆柱体来求它的体积。

4、有了猜测下一步我们应该做些什么?(验证)

(二)探索实验,验证结论。

1、提出问题

(1)圆锥体可能会转化成哪一种图形,你的根据是什么?

(2)有了猜测,下一步我们就要动手操作进行实验,来验证我们的猜测。

2、小组合作

验证猜测

(1)让学生以小组为单位,分别拿出圆锥与圆柱形容器(学具),分别观察它们底与高的大小关系,用简练的语言概括出来。(课件)老师板书:

(2)屏幕出示实验要求:

A、利用稻谷、米或水作为填充物。

B、小组合作实验时,请做好记录,填在表格上。

学生看明白活动要求,再以小组为单位开始实验。

3、汇报实验结果。

汇报要求:你是怎样做的?你的发现?

(1)让学生汇报他们是怎么做的,实物投影展示他们的实验结果,让学生观察得到的数据,发现了什么?

(2)分别让学生发言他们的发现:(多让学生发言)

(3)老师用电脑动画再展示验证一遍。

4、启发引导

推导公式

在学生发言中,让学生总结出:圆柱的体积等于与它等底等高圆锥体积的3倍;圆锥的体积等于与它等底等高圆柱体积的三分之一。

圆锥的体积=底面积×高×1/3

用字母表示v=1/3sh

问:我们要求圆锥的体积时,需要什么条件?

5、小结(说出研究问题的方法)。

四、巩固练习,回顾体验

1、现在我们可不可以计算出铅锤的体积?要想计算铅锤的体积,需要测量哪些条件呢?任选一组条件进行计算,可以吗?

求出铅锤的体积:

半径4厘米,高6厘米,直径8厘米,高6厘米;

周长25.12厘米,高6厘米。

(先指明一人到三人到台上计算)

2、请观察他的计算过,看有没有更简便的方法?(在计算前先观察数据的特点,然后用简便方法计算)

3、为什么你们都选择第一组条件?

五、联系生活,拓展运用

1、判断题√、×,并说说理由。

(1)圆锥的体积等于圆柱体积的1/3 倍。()

(2)圆柱的体积大于与它等底等高的圆锥体积。()

(3)圆锥的的高是圆柱的高的3倍,它们的体积一定相等。

()

2、练习四的第4题。

(学生板解,师生集体订正,让学生说理由。)

六、归纳整理:让学生说说这节课有什么收获?

像这样我们研究圆锥的体积时我们所用的猜测—验证—总结—归纳的方法也可以用在其他问题上。

七、课外延伸

1、回故前面出示的近似圆锥形的麦堆图片,现在能求出麦堆的体积了吗?(给学生创造一个求近似圆锥麦堆体积的悬念)这就是我们下节课学习的内容。

小学六年级数学《圆锥的体积》教学教案 篇11

新课程观强调:教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?本人结合“圆柱的体积”一课谈谈自己的实践与思考。

[片段一] 师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示:一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?

由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:1.5米=150厘米 20×1150=3000(立方厘米)

师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

① 20平方厘米=0.002平方米0.002×11.5=0.003(立方米)② 20平方厘米=0.2平方分米1.5米=15分米0.2×115=3(立方分米)师:为什么会出现三种结果?

经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。[片段二] 巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。表1 表2 学生填表后,师:观察前两组数据,你想说什么? 学生独立思考后再小组交流,最后汇报。

生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

生2:两个圆柱的高相等,底面积越大,体积就越大。师:观察后两组数据,你想说什么?

有了前面的基础,学生很容易说出了后两组的关系。

学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。

[片段三] 出示题目:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

[教学反思] 精心研究教材是用好教材的基础。

教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一]中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

落实课标理念是用好教材的关键

能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

学生获得发展是用好教材的标准

小学六年级数学《圆锥的体积》教学教案 篇12

教学目标

1.能够运用公式正确地计算圆柱的体积和容积。

2.初步学会用转化的数学思想和方法,解决实际问题的能力。

3.渗透转化思想,培养同学们的自主探索意识。

教学重点

掌握圆柱体积的计算公式。

教学难点

灵活应用圆柱的体积公式解决实际问题。

教学过程

一、复习

1.复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。

2.复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题

1.练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2.练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3.练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4.练习三第9、10题。

(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

三、布置作业

上一篇:六年级历史教研组计划下一篇:会计人员守则