小学六年级数学上册《分数除法》教案优秀(精选6篇)
小学六年级数学上册《分数除法》教案优秀 篇1
教学目标:
1、引导学生根据需要解决的实际问题,理解:把一个分数平均分成几
份,求每份是多少用除法计算的算理。
2、使学生经历探究分数除以整数的计算过程,掌握分数除以整数的计算方法。
教学重点:
使学生理解、认识分数除法的意义。
教学难点:
使学生理解、掌握分数除以整数的计算法则,并能根据具体情况灵活地进行计算;培养学生观察、比较、分析推理和概括等思维能力。
课前准备:
多媒体课件
教学过程:
一、引入新课
上个单元,我们学习了分数乘法,今天开始,我们来学习分数除法。这节课我们先学习分数除以整数。
二、教学新课
1、教学例1
(1)出示例题,让学生读题,理解题目意思。
(2)提问:量杯里有4/5升果汁,平均分给2个小朋友喝,怎样列式?为什么?(板书4/5÷2=)
(3)学生讨论:4/5÷2可以怎样计算?为什么可以这样算?
(4)让学生交流想法:
①把4个单位一平均分成2分,用分子4÷2,分母还是5。
引导学生用图示法表示出这样算的算理。
②升平均分成2份,求每份是多少,是求升的是多少,所以,4/5÷2就可以用4/5×1/2,结果是2/5。
谁能再说一说,4/5除以2为什么可以用4/5×1/2来计算?1/2是2的什么数?(倒数)
2、完成“试一试”。
(1)提问:如果4/5升果汁平均分给3个小朋友喝,每人喝多少升?怎样列式?(板书:4/5÷3)
(2)4/5÷3怎么计算呢?能不能直接用分子除以整数算出得数?为什么?可以怎么算?
3、总结方法。
提问:你觉得分数除以整数,可以怎么算?怎样算比较方便?
三、巩固练习
1、做“练一练”第1题。
引导学生根据分数的意义进行操作,并根据操作过程写出得数。
2、做“练一练”第2题。
练习后问:分数除以整数,可以转化成分数乘法来计算,用这个分数与谁相乘?
3、做“练一练”第3题。
各自练习后,指名说一说,每一题是怎么想怎么算的。
4、做练习七第2题。
提问:每组题有什么相同和不同的地方?计算时有什么不同?
四、课堂总结
这节课学习了哪些内容?分数除以整数怎样算?在什么情况下,可以用分数的分子直接除以整数?
五、布置作业
练习七第1、3、4题。
教学反思:
第三单元 分数除法
第2课时 整数除以分数
教学内容:
课本第44-46页例2、例3和“练一练”,练习七第5-8题。
教学目标:
1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。
2、使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
教学重点:
掌握整数除以分数的计算方法;发展分析、比较、抽象、概括的能力。
教学难点:
进一步感受数学学习的挑战性,体验成功的乐趣,培养学好数学的自信心。
课前准备:
小黑板,挂图。
教学过程:
一、复习导入
1.口算:3/8÷3 4/5÷4 9/5÷6 4/13÷2
2.揭题:整数除以分数。
二、教学例2
1、提问:把4个同样大小的橙子分给小朋友,如果每人吃2个,可以分给几个小朋友?怎么列式计算?
追问:为什么用4÷2?
继续提问:如果每人吃1个,可以分给几个小朋友?
2、出示第(2)题,指名读题,口头列式。
问:解答这个问题,为什么也是用除法计算?
出示挂图,请根据图的意思想一想:可以怎样计算4÷1/2?
先让学生分组讨论,再组织全班交流:
把4个橙子每 个分成一份,可分成几份?4÷1/2 是几?
板书:4÷1/2 =4×2
看到这个等式,你能想到什么?
3、出示第(3)题。
(1)学生读题,列式。
(2)你能在图中分一分,再想出计算结果吗?
让学生操作后明确:4÷1/3=12 4÷1/4 =16
(3)出示:4÷1/3 =4×( ) 4÷1/4 =4×( )
提问:从这两个式子中,你又想到了什么?
三、教学例3
1、出示题目,让学生读题列式。
2、请根据每 米剪一段,在图上分一分,看看结果是多少。
3、想一想:4÷ 可以怎么算,为什么?
板书:4÷2/3 =4×3/2 =6
4、归纳和总结:想一想,整数除以分数可以怎么算?
先在小组中说一说,再全班交流。
四、巩固练习
1、做“练一连”第1题。
先让学生各自在书上独立填写,再指名交流。
2、做“练一连”第2题。
各自练习,并指名板演,练习后评议交流。
提醒学生:把分数除法转化成分数乘法后,能约分的可以先约分,再计算。
3、做练习七第5题。
先让学生看图想商是几,再计算。比较看图得出的结果与计算得出的结果是否一致。
4、做练习七第7题。
先计算,再比较:每组中上、下两题有什么联系?
五、课堂总结
这节课学习了什么?你有什么收获?
六、布置作业
练习七第6题和第8题。
教学反思:
第三单元 分数除法
第3课时 分数除以分数
教学内容:
课本第46页例4和“练一练”,练习七第9-14题。
教学目标:
1、使学生经历探索分数除以分数的计算方法的过程,理解并掌握分
数除以分数的计算方法,能正确计算分数除以分数的试题。
2、使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
教学重点:
理解分数除以分数的计算方法,能正确地进行计算。
教学难点:
总结、归纳出分数除法的计算法则。培养学生分析、推理和归纳、总结等思维能力。
课前准备:
挂图,小黑板
教学过程:
一、复习引新
1、口算。
2/3÷2 1/4÷4 5/12÷10 3/10÷6
9÷3/10 4÷4/5 2÷3/14 1÷3/2
2、揭示课题: 分数除以分数
二、教学例4
1、出示例4,学生读题,列式。
提问:这是已知什么,要求什么?用什么方法计算?
追问:为什么用除法计算?怎样列式?
板书:_________________________
2、引导探索:分数除以整数怎么算呢?
(1)请大家画图探索一下这个算式得多少?
各自在书上的长方形里分一分,画一画。
(2)指名到黑板上画一画,使大家清楚地看出是3瓶。
(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?
请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)
得数相同,你能猜想到什么?
3、练习,验证猜想
完成练一练第1题:先在长方形中涂色表示3/5 ,看看3/5里有几1/5个 ,有几个 3/10,再计算。
3/5÷1/5=3/5×( ) 3/5÷3/10=3/5×( )
你发现了什么?
4、概括方法
联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗?
根据学生的讨论,板书:甲÷乙=甲×1/乙(乙≠0)
三、巩固练习
1、做“练一练”。
独立练习,并指名板演,练习后评议交流。
2、完成练习七第10题。
独立完成,并指名板演,练习后评议交流。
3、讨论练习七第11题。
独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小?什么情况下,除得的商比被除数大?
4、讨论练习七第12题。
不计算,用发现的规律直接判断左边的式子和右边数的大小。
各自判断后指名交流:你是怎么想的?
四、课堂总结
这节课学习了什么?你有什么收获?
五、布置作业
练习七第9、13、14题。
六、阅读与交流
阅读“你知道吗?”,然后全班交流。
教学反思:
第三单元 分数除法
第4课时 分数除法实际问题
教学内容:
课本第49页例5,“试一试”和“练一练”,练习八第1-4题。
教学目标:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学重点:
体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学难点:
使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等学习习惯,获得一些成功的体验,增强学好数学的信心。
课前准备:
多媒体课件
教学过程:
一、谈话导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的2/3。
这句话表示什么?你能说出等量关系式吗?
板书:大瓶里的果汁×2/3=小瓶里的果汁
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁? 自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题: 简单的分数除法应用题
二、教学例5
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
600÷2/3
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的,依据是什么?
解:设大瓶里有果汁x 升。
2/3x=600
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验: x=900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
板书:一盒牛奶的升数×1/2=喝了的升数
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、巩固练习
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习八第2题。
(1)读题,画出题目中的关键句。
(2)让学生说一说“一桶油用去3/5”和“黑兔是白兔的2/3”各表示什么意思?
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、小结解题策略。
四、布置作业
练习八第1、3、4题。(学生自主完成后全班交流)
五、课堂总结
这节课学习了什么?你有什么收获?
教学反思:
第三单元 分数除法
第5课时 练习课
教学内容:
课本第51页练习八第5-9题。
教学目标:
1、沟通分数除法与乘法应用题之间的关系,进一步掌握分数应用题的数量关系。
2、运用所学的知识解决生活中的实际问题,进一步提高学生解决问题的能力。
教学重点:
鼓励学生用多种方法探究解决问题。
教学难点:
进一步培养独立思考、主动与他人合作交流、自觉检验等学习习惯。
课前准备:
小黑板
教学过程:
一、基本练习
1、口算。
1/4÷5/8 1/2÷4/5 5/6÷1/2 4/5÷1/5
2、分析数量关系。
(1)出示,在小组里说说数量之间的关系。
①男生的人数是女生的4/5
②一桶油,用去了3/8
(2)汇报交流,师板书数量关系式。
①男生的人数×4/5=女生的人数
讨论:如果知道男生的人数,怎么求女生的人数?
如果知道女生的人数,怎么求男生的人数?
②方法同上。
二、综合练习
1、做练习八第6题。
画出题目中的关键句,并说出数量关系。
根据数量关系说一说,这题是已知什么求什么,怎么解答?各自解答,并指名板演。
2、做练习八第7题。
说出数量关系式,并列式解答。
3、分析练习八第8题。
(1)这两题的关键句分别是什么,在书上画出来。
(2)在小组中说出数量关系式。
(3)比较,这两题有什么不一样?
三、课堂总结
通过今天的学习,你有什么收获?
四、布置作业
练习八第5、9题。
教学反思:
第三单元 分数除法
第6课时 分数连除和乘除混合
教学内容:
课本第50页例6、“试一试”和“练一练”,练习八第10-13题。
教学目标:
1、结合生活中具体的情景使学生经历探索分数乘除混合运算的计算方法的过程。
2、能正确解答分数连除或分数乘除混合运算的式题。
教学重点:
正确进行分数连除或分数乘除混合运算。
教学难点:
使学生经历探索分数乘除混合运算的计算方法的过程。
课前准备:
小黑板
教学过程:
一、复习引入
上节课我们学习了用方程解答简单的分数除法应用题,这节课我们学习分数连除和乘除混合运算。(揭示课题)
二、教学例6
1、出示例6中的条件,引导理解题意。
(1)读题,理解题意。
(2)从题目中我们可以知道哪些信息?这些信息之间有什么关系?通过信息的组合,我们又可以获得什么新的信息?
2、讨论解决问题的策略。
(1)出示要解决的问题:3盒果汁可以倒多少杯?
(2)怎么解决这个问题呢?自己先想一想,看能不能把结果算出来。
(3)交流:你是怎么想的?先算的是什么?
①如果先求3盒一共有多少升,怎么想?怎么算?
板书:4/5×3=12/5(升) 12/5÷3/10=8(杯)
②如果先求一盒能装几杯呢?
板书: 4/5÷3/10 =8/3(杯) 8/3×3=8(杯)
3、这题如果列综合算式怎么列?
(1)各自尝试列式。
(2)指名汇报,根据学生的汇报板书:
4/5×3÷3/10 4/5÷3/10×3
让学生在书上完成计算,并指名板演。
4、教学“试一试”。
(1)出示: 5/8÷3/4÷5/7 ,这题是分数连除,怎么算?
(2)学生在书上独立计算后讨论算法,师板书计算过程。
5/8÷3/4÷5/7=( )×( )×( )=( )
5、讨论:分数连除或乘除混合运算可以怎么计算?
(1)在小组中说一说。
(2)全班交流。
明确:计算分数连除或乘除混合运算时,先要把其中的除法转化为乘法,再按照分数连乘的方法进行计算。
三、巩固练习
1、做“练一练”。
各自练习,并指名板演,然后评议矫正。
出示题目,比一比,看谁解得又对又快。
2、讨论练习八第11、12题中的数量关系。
(1)画出各题中的关键句。
(2)说说每题中关键句中的分数是什么意思,并说出数量关系式。
(3)完成练习八第13题。
各自练习后,将计算的结果填在书上。
交流:你是分别根据什么计算出各个洲的面积的?
四、课堂总结
这节课学习了什么?你有什么收获?
五、布置作业
练习八第10题。
教学反思:
第三单元 分数除法
第7课时 比的意义
教学内容:
课本第53--54页例7、例8和“练一练”,练习九第1-4题。
教学目标:
1、使学生理解比的意义,学会比的读写法,认识比的前项、比号和后项。
2、掌握求比值的方法,会正确求比值。
3、弄清比同除法、分数的关系,明白比的后项不能是零的道理,同时懂得事物之间是相互联系的。
教学重点:
比的意义和求比的方法。
教学难点:
理解比的意义。比同除法、分数的区别是教学的另一个难点。
课前准备:
课件
教学过程:
一、谈话引入
出示例7实物图
提问:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?
相差关系 倍数关系
二、导入新课
今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法——比。(板书课题)
1、教学比的意义。
(1)师:2÷3是哪个量和哪个量比较?
师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。
(2)3÷2求得又是什么,又可以怎样说?
(3)小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁比。
指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是那个数量与那个数量的比,不能颠倒两个数的位置。
(4)出示试一试。
提问:图中的四个比分别表示什么含义?
讨论:如果把内中溶液里的洗洁液看作1份,水分别可以看作几份?
2、教学例8。
出示例题后,让学生填表。
提问:小军和小伟的速度是怎样求出来的?
900:15表示什么?900:20又表示什么?
明确:900:15是小军走的路程与时间的比,就是小军走这段山路的速度;900:20是小伟走的路程与时间的比,就是小伟走这段山路的速度。
3、学习比的写法和各部分称及求比值的方法。
(1)师:以上我们学习了比的意义,在数学中,比还有这样的记法。
教师示范写比,提醒学生注意观察。
(2)师说明:中间的“:”叫做比号,读的时候直接读比。
(3)师:比的各部分名称是什么呢?请大家看书p53的中间内容。
(4)提问:比各部分的名称,并板书。
4.除法、分数之间的关系。
项目 相互关系 区别
比 前项 :(比号) 后项 比值
两个数的关系
除法 被除数 ÷(除号) 除数 商 一种运算
分数 分子 -(分数线) 分母 分数值 一种数
结合展示学生整理的表格,小结:
⑴比与除法、分数是有联系的:比的前项相当于除法中的衩除数,相娄于分数中的分子;比的后项相当于除法中的除数,相当于分数中的分母;比值相当于除法中的商,相当于分数中的分数值。
⑵比与除法、分数是有区别的:比表示两个数的关系,除法是一种运算,分数是一个数。
提问:比的后项可以是“0”吗?为什么?说说你的相法。
三、巩固深化
1.完成“练一练”第1-3题。
学生独立完成,直接填写在书上,完成后集体讲评。
2.练习九1、2、4题。
学生独立填写在书上,完成后交流核对。
四、课堂总结
通过今天的学习,你有什么收获呢?
五、布置作业
练习九第3题。
教学反思:
第三单元 分数除法
第8课时 比的基本性质
教学内容:
课本第55页例9、例10和“练一练”,练习九第5-8题。
教学目标:
1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。
2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使
学生认识事物之间都是存在内在联系的。
教学重点:
理解比的基本性质。
教学难点:
正确应用比的基本性质化简比。
课前准备:
多媒体课件
教学过程:
一、复习导入
1、填空。
师:除法、分数和比之间有什么联系?
2、做复习题。
师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?
3.导入课题。
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
二、学习新课
1、教学例9比的基本性质。
(1)学生填表
(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?
(3)师生共同总结比的基本性质:
比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.
(4)师:你觉得哪些词语比较重要?
0除外你怎样理解?
2、教学例10应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比。
(1)12:18 (2) (3)1.8:0.09
(1)让学生试做第(1)题。
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。
(2)化简第(2)题。
师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?
(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。
(4)化简第(3)题。
师:想一想如何化简小数比呢?
让学生独立在书上化简,指名板演
师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?
三、巩固练习
1、把“练一练”第1题填完整。
2、“练一练”第2题。
指名板演,其余练习,完成后集体核对。
3、做练习九第7、8题。
4、出示选择
(1)1千米∶20米=( )
A1∶20 B 1000∶20 C 5∶1
(2)做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )
A 20∶21 B 21∶20 C 7∶10
四、课堂总结
师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
五、布置作业
练习九第5、6题。
教学反思:
第三单元 分数除法
第9课时 练习课
教学内容:
课本第57页练习九第9-13题。
教学目标:
1、使学生加深认识比的意义和基本性质,能说出一个比的具体含义,
能比较熟练地应用比的基本性质化简比。
2、使学生认识求比值与化简比的联系和区别,以及比与相关知识间的联系和区别。
教学重点:
加深认识比的意义和基本性质。
教学难点:
正确应用比的基本性质化简比。
课前准备:
小黑板
教学过程
一、揭示课题
教师引导学生回忆比的意义和性质。
二、基本题练习
1、比的意义。
比 前项 比号 后项 比值
除法 被除数 除号 除数 商
分数 分子 分数线 分母 分数值
2、比的基本性质。
3、做练习九第9、10题。
三、综合练习
1、做练习九第11、12题。
2、口答:灵活提问,用不同的方法说说每句话的含义。
(1)男生人数和女生人数的比是5:6。
(2)公鸡只数和母鸡的比是2:5。
(3)汽车速度和火车的比是8:9。
(4)杨树棵数和柳树棵数的比的比值是1.5。
(5)女生人数是男生的 。
四、教学思考题
学生自己尝试做一做,然后和同桌交流。
五、阅读“你知道吗”
通过阅读,你有什么收获呢?
六、课堂总结
通过今天的学习,你有什么收获呢?
七、布置作业:
练习九第13题。
教学反思:
第三单元 分数除法
第10课时 按比例分配的实际问题
教学内容:
课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
理解按比例分配实际问题的意义,掌握解题的关键。
课前准备:
课件
教学过程:
一、创设情境、引入新知
根据信息填空:
(1)男生有31人,女生有21人,男生人数是女生人数的。
(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?
师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。
二、探究新知
1、出示例11中的实物图及例题。
(1)让学生阅读题目后说说你知道哪些信息?
(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:
①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;
②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。
③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。
师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。
学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?
说说你是怎样做的?
方法一:3+2=5 30÷5×3 30÷5×2
方法二:30×3/5 30×2/5
2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?
说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)
如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)
3、完成练一练第1题。
4、完成试一试。
出示试一试。
提问:“按各小组人数的比分配”是什么意思?你想到了什么?
5、归纳(讨论)。
(1)比较例题与试一试题目在解答方法上有什么共同特点?
(2)怎么解答?
求总份数,各部分量占总数量的几分之几,最后求各部分量。
(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)
三、应用比的知识解决实际问题
1、练一练第2题。
独立完成后进行交流
指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?
2、练一练第3题。
独立填表,完成后集体核对。
3、练习十第1题。
四、课堂总结
这节课学过以后,你有什么收获?
五、布置作业:
练习十第2、3题。
教学反思:
第三单元 分数除法
第11课时 练习课
教学内容:
课本第61页练习十第4-8题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
应用比的知识解决实际问题。
课前准备:
小黑板
教学过程:
一、基本练习
1、练习十第4题。指名学生回答:
(1)公鸡、母鸡各占总只数的几分之几?
(2)男生、女生各占总人数的几分之几?
2、练习十第5题。
提问:三角形的内角和是多少度?直角三角形中两个锐角的度数和呢?
学生独立完成,集体交流。
二、拓展练习
1、练习十第6题。
先解答410克药水中,药粉和水各有多少克?再解答书上两个问题说说与补充问题条件有什么不同,怎么解答?
学生尝试解答后,交流各自的解题方法和理由。
比较三个问题有什么区别?
2、练习十第7题。
学生独立完成,集体交流。
三、综合练习
1、练习十第8题
2、思考题
提示:分成的两部分的面积比是1:1,说明这两部分的面积相等。
四、课堂总结
通过今天的学习,你有什么收获呢?
五、布置作业
课本第62页下面的“动手做”。
教学反思:
第三单元 分数除法
第12课时 整理与练习(1)
教学内容:
课本第63--64页“回顾与整理”,“练习与应用”第1-8题。
教学目标:
1、帮助学生明晰本单元的学习内容,体验自己的学习收获,建立合理的认知结构。
2、帮助学生进一步掌握分数除法的计算方法,沟通分数除法与乘法的关系,形成响相应的计算技能。
3、通过练习,提高列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题的能力。
教学重点:
进一步掌握分数除法的计算方法。
教学难点:
提高列方程解答简单实际问题的能力。
课前准备:
小黑板
教学过程:
一、回顾与整理
1、回顾:这个单元我们学习了哪些知识?
2、小组讨论:
(1)怎样计算分数除法?
(2)列方程解有关分数的实际问题时是怎样分析数量关系的?举例
(3)什么叫做比?比和除法有什么关系?什么叫比值?怎样求比值?怎样按比例分配?
二、基本练习
1、练习与应用第1题,直接写得数。
(1)各自在书上完成,完成后校对。
(2)将做错的展示在黑板上,讨论做错的原因。
(3)让学生说一说,做分数除法要注意些什么?
2、练习与应用第2题。看谁算得又对又快。
(1)各自练习,并指名板演。
(2)注意了解学生计算中典型的错误,引导学生分析错因。
三、提高练习
1、对比练习。
(1)出示第8题,让学生独立完成。
(2)比一比,这三道题目有什么不同的地方?
分别怎样解答?
2、完成第3题。
提问:根据条件,你能写出哪些比?
指名口答。
3、完成第4题。
直接填写在书上,完成后集体核对。并指名说一说思考过程。
4、完成第5题。
学生先独立写,写完指名口答,交流核对。
四、课堂总结
这节课学习了什么?你有什么收获?
五、布置作业
练习与应用第6、7题。
教学反思:
第三单元 分数除法
第13课时 整理与练习(2)
教学内容:
课本第64--64页“练习与应用”第9-13题,“探索与实践”第14-17题。
教学目标:
1、引导学生联系分数的意义或通过画线段图进一步探索、体会分数除法计算方法的合理性,培养学生创造性。
2、引导学生用所学的知识解决生活中的实际问题,提高解决问题的能力。
3、引导学生反思本单元的学习情况,并能对自己的学习情况作出恰当的评价。
教学重点:
注意在解决问题的过程中培养学生的创造性。
教学难点:
学会从知识与技能、数学思考与解决问题方面、情感与态度方面反思自己的学习状况,对自己作出恰如其分的评价。
课前准备:
小黑板
教学过程:
一、综合练习
1、完成第9题。
指名三人板演,其余练习。
2、第10、11题。
独立练习,完成后指名说说解题思路。
二、探索与实践
1、提问:甲数除以乙数(0除外),等于什么?
你能举个这样的例子吗?
2、探索:你还能用什么方法证明甲数除以乙数(0除外),等于甲数乘乙数的倒数?
(1)联系分数的意义。
(2)画图理解。
(3)运用商不变的规律。
……
3、实践:分析讨论第15题。
(1)出示第15题,读题,理解题目意思。
(2)讨论:怎么判断他们各买的是什么水果呢?
①能算出各人各买了多少千克水果吗?
②每人买水果都用的多少元钱?
能算出所买水果的单价吗?
③根据算出的单价,能判断出各人买的是什么水果吗?
4、操作:第16题。
做前提问,怎样才能画出所要求的图形?
小结。
二、评价与反思
1、在学习分数除法这个单元的知识时,你_____________________
(1)能积极探索计算方法,并和同学交流吗?
(2)能正确计算吗?
(3)能联系学过的知识,主动探索解决问题的方法吗?
(4)能正确、有条理地说明解题的思考过程吗?
2、你认为自己在上面的这几个方面中,哪些方面比较好,哪些地方还需要努力?
三、课堂总结
通过这节课的学习,你有什么收获呢?
四、布置作业
练习与应用第12、13题。
教学反思:
第三单元 分数除法
第14课时 树叶中的比
教学内容:
课本第66--67页。
教学目标:
1、通过观察、测量、计算、比较、分析等活动,初步发现虽然树叶的大小各不相同,但长和宽的比值比较接近。
2、初步感受自然现象中蕴含的简单规律,培养用数学眼光观察生活的意识和能力,增强对数学学习的兴趣。
课前准备:
每个小组采集一种树叶(10片)
教学重点:
利用比的知识探究树叶长与宽之间的比例关系。
教学难点:
运用规律解决实际问题。
教学过程:
一、创设情境,提出问题
1、情境导入。
谈话:课前大家收集了很多树叶,仔细观察一下采集的树叶,看看每种树叶有什么特点,小组里互相说说看。
2、观察比较。
出示一些常见树叶。
引导:看看它们的大小形状是怎样的,不同树叶的大小、形状区别在哪里,同种树叶的大小、形状又有怎样的关系?
观察后小组讨论。
交流,板书: 不同树叶形状一般不同,同一种树叶形状是相似的。
同一种树叶形状相似,从数学角度看,反映出什么特点呢?
通过今天的学习大家会有很多收获的
3、揭示课题。
4、提出问题。
怎么样可以知道每种树叶长和宽的比呢?怎么样比较这些树叶长和宽的比呢?说说你的想法。
明确:先测量树叶的长和宽,再比较长和宽的比值。 指出:测量、计算、比较是我们研究数学常用的好方法。
二、动手实践、自主发现
1、举例介绍树叶的长和宽。
谈话:动手实践之前,我们先要弄清楚树叶的长和宽指的是什么?
结合书上66页的图,你能向大家解释一下吗?
2、动手实践。
活动要求:
(1)4人一组,每组测量2种不同的树叶,组长分工。
(2)每人测量10片同一种树叶的长和宽,并算出长和宽的比值(保留一位小数)填在67页的表里。
(3)计算出你测量的树叶的长和宽的比值的平均数。
(4)在小组里交流各自测量到的树叶的长和宽的比值的平均数。
(5)将测量和计算的结果与相应树叶对照,看看树叶的长短宽窄和比值有什么关系,在小组里说说你的发现。
3、学生操作实践,记录数据并进行相应计算。
4、组织比较交流。
(1)你测量的是哪种树叶,比较每片树叶的长和宽的比值,你有什么发现?
指出:同一种树叶的长和宽的比值都比较接近(板书)。虽然大小可能不同,但形状是相似的。
(2)如果不是同一种树叶,对照它们的比值和长短宽窄,你对形状和比值大小之间的关系有什么发现吗?说说你的发现。
如果不同树叶的长和宽的比值比较接近,它们的形状会怎么样呢?
指出:不是同一种树叶的长和宽的比值不同,所以形状也不同。(板书:不同树叶的长和宽的比值一般不同)但如果比值接近,它们的形状也是相似的。
长和宽的比值越小,树叶显得宽一些,比值越大,树叶就越狭长。
5、实际运用。
猜猜老师采集的几种树叶:
1号树叶:长和宽的比的2:1
2号树叶:长和宽的比是7:1
3号树叶:长和宽的比是10:9
学生猜测、它们各是什么树叶,说说你是怎么猜的?
三、课堂总结
谈话:今天我们上了一节有趣的数学实践活动课,探究树叶中的比,通过这次实践活动,你知道了树叶中的哪些奥秘?我们在怎样发现的?你还有什么体会?教学反思:
小学六年级数学上册《分数除法》教案优秀 篇2
我校一直着力于打造简约、高效、自主的数学课堂, 鼓励数学老师们放手让学生自主探索, 结合新课标的要求, 关注学生的问题意识和数学思想的形成.
在这样的一个环境背景下, 我尝试“放手”, 将课堂还给学生, 真正让孩子们成为课堂的主人. 我执教了苏教版小学《数学》六年级上册“百分数的认识”一课, 通过教学与生活实际的紧密联系, 让学生感受到数学学习的价值, 激发学生对数学探索的兴趣和求知欲望.
在引导组织学生学习百分数时, 跳出了教材、课堂这个狭小的空间, 发动学生去寻找生活中的百分数 (如商标中、新闻联播中介绍的百分数) , 关注在课堂学习中新生成的百分数, 使“单纯从书本中学数学”变为“密切联系生活做数学”.
这节课中, 我特别注意培养学生的问题意识, 让学生在一个个问题生成中研究探索数学知识. “问题是数学的心脏”, 我尝试用心创设问题情境, 使学生在学习中自主生成“为什么要学习百分数”“百分数的意义是什么”“百分数有什么用处”“在什么情况下用到百分数”“百分数与分数有什么区别与联系”这样一系列问题, 为学生的探索发现起到了推波助澜的作用.
由于学习方式的转变, 促进了学生积极主动地探索新知, 从自己发现问题、提出问题, 到自主分析问题、解决问题, 为学生创设了自主探索、合作学习、独立获取知识的机会, 通过让学生调查寻找的丰富教材, 组织学生之间有效的交流讨论, 提升了对百分数意义的认识和理解.
【案例描述及评析】
一、我的课堂我做主, 学习内容我来定
在上这节课之前, 我给学生布置了课前准备:寻找生活中的百分数, 可以摘抄, 也可以拍照或将实物带来.
于是, 课堂伊始, 我就提问:“你在生活中找到百分数了吗? ”
生:“我在餐巾纸的包装袋上找到了百分数, 100%纯木浆. ”
生:“我在牛奶盒上找到了百分数, 100%纯牛奶. ”
生:“我在衣服的标签上找到了百分数, 85%山羊绒. ”
……
师:“百分数好找吗? 为什么那么好找? ”
生:“因为生活中很多地方都能见到百分数. ”
师:“这就说明大家都非常喜欢使用百分数. 这是为什么呢? 这个话题值得我们研究吗? 除了这个问题, 你还能想到哪些有研究价值的问题? ”
小组讨论中列举出本节课学生期望研究的问题:百分数的意义, 百分数的用处、优势, 百分数与分数的区别与联系……
案例评析:课堂伊始, 我就请学生自己提出问题:关于百分数, 你想知道什么? 想研究哪些问题? 学生在小组中思维的火花互相碰撞, 畅所欲言, 学习积极性相当浓厚. 在全班汇报的过程中, 我根据学生的汇报, 着重引导出几个重要的问题:如百分数的意义、用途、好处、百分数与分数的区别与联系等板书在黑板上, 极大力度地发散学生的思维, 这样会让学生很有成就感, 感觉在老师和大家讨论我提出的问题. 一节灵动的课, 如果光有老师不停地讲学, 那绝对是不完美的, 因为这样就忽视了学生的主体性, 剥夺了学生自由发表想法的权利. 应该充分挖掘学生生成的资源, 围绕学生的问题进行分析、探索, 这样才能真正体现学生的主体地位, 给课堂以最真实的本色, 让学生成为课堂的主人.
二、我的问题我分析, 学习方法由我选
根据学生提出的这些问题, 我征求孩子们的意见, 自己制定学习方法, 逐一解决.
师:“我们通过激烈的讨论列举这几个颇为关键的、继续解决的问题, 那么你们是想我来逐一告诉你们, 还是想自己研究呢? ”
生:“当然想自己研究! ”
师:“好, 那我们就先来解决第一个问题———百分数的意义, 自己看书, 勾画出你认为重要的句子, 结合刚才我们找到的百分数用自己的语言解释出来. ”
生:“85%山羊绒中的百分数表示山羊绒占整件毛衣的85%. ”
生:“100%纯木浆, 如果把整袋餐巾纸看作100份, 那么里面的木浆就占100份, 说明全是木浆, 没有其他物质. ”
生:“蛋白质28%, 牛奶盒上的这个百分数指的是蛋白质占整盒牛奶的28%. ”……
出示豆奶的营养成分:蛋白质34.5%, 糖20.5%, 脂肪10.67%, 矿物质28.5%, 维生素5.83%, 提问:“你还有什么发现? ”学生很自然地利用表中的百分数去比较各种营养物质的多少.
师:“你们是怎么看出来的豆奶中蛋白质含量最高? 为什么这么容易发现? ”
通过我的追问, 自然就过渡到第二个问题的研究———百分数的好处和用途.
结合刚才学生的比较结果, 我进行了小结:正是因为都把一个整体看成100份, 所以百分数非常便于比较, 人们在统计、调查、分析、比较的时候往往选择使用百分数来呈现研究结果.
师:“我这里有三袋纯度不同的牛奶:100%, 75%, 90%, 如果是你, 会选择哪种牛奶? ”
生:“我会选择纯度是100%的, 这样比较营养, 毫无添加. ”
生:“我要选纯度是90%的, 添加一点食用香料味道会更佳, 我就比较喜欢麦香味的. ”
案例评析:百分数在日常生活中有广泛的应用, 我通过让学生在课前找百分数、课中交流、展示生活中常见的百分数, 让学生体会到数学来源于生活、服务于生活的文化特点.同时, 通过学生的自主阅读, 自己解决问题, 学生能用自己的语言解释生活中的百分数, 恰恰说明了他们对于百分数意义的真正内化. 接下来的练习中, 通过一个开放式的提问“你有什么想说的”, 很自然地引起了学生的仔细观察, 同时应用刚掌握的对百分数意义的理解对这组数据进行了处理和分析, 得出了各种物质间的大小关系. 我恰到好处地引导:“为什么这么容易发现? ”立刻过渡到学生对于百分数优点的研究上.最后的三袋纯度不同的牛奶, 正是考验学生对于这一知识点的灵活应用, 学生在牛奶纯度问题上的表达, 引来了全班学生的一阵笑声, 但恰恰是这有趣的谈话, 足以证明他们对这一知识点的掌握和理解是透彻的.
三、我的疑问我解决, 学习效果你来测
此时还剩最后一个问题: 百分数与分数的区别与联系.我开展了小组竞赛, 比一比哪组找到的最多, 借此引导学生发现百分数与分数之间的各种不同点:读写方式不同;表示的意义不同;百分数的分母看成100, 分数分母不唯一;分数可以表示分率或带单位表示具体数量, 百分数只能表示分率, 又叫作百分比或百分率;百分数便于比较, 分数则要通分;分数单位不同……
师:“通过刚才的交流, 我们找到了百分数和分数间的区别与联系, 下面就请你们读一读这两句话, 判断这些分母是100的分数都能改写成百分数吗? ”
生:“一根绳子93/100米, 用去了它的37/100. 第一个分数不能改写成百分数形式, 因为93/100有单位, 表示一个具体的数量. 第二个分数可以写成37%, 把一根绳子看成100份, 用去了37份. ”
生:“23/100千克相当于46/100千克的50/100. 前两个分数表示具体数量, 不能改写成百分数形式, 而最后一个分数可以, 改写成50%, 表示百分率, 是数量之间的关系. ”
师:“我这里还有一些百分数:1%, 18%, 50%, 89%, 100%, 125%, 7.5%, 0.03%, 300%. 选择你喜欢的读一读, 说说自己为什么喜欢它? ”
生:“我最喜欢100%, 因为100%就表示全部, 非常圆满. ”
生:“我喜欢50%, 这个数和0.5, 1/2一样, 也能表示一半. ”
生:“我喜欢300%, 这个数是100%的3倍, 比1还要大, 说明超额完成任务. ”
生:“125%也比100%多, 比1要大. ”
生:“我喜欢0.03%, 因为这个百分数中还有小数, 很有意思.”
师追问:“那你们觉得0.03%这个数大还是小? ”
生:“很小, 因为如果把总数看成100份的话, 才占0.03份, 太少了. ”
案例评析:数学练习的价值, 不仅在于巩固知识, 反馈信息, 更重要的是在自主探索和合作交流的过程中真正理解数学知识, 形成技能, 获得数学思想和方法, 拥有广泛的数学活动经验, 培养良好的数学素养, 能够自主探索和创新, 有可持续发展的能力. 因此, 通过最后的几道练习, 能够很好测试出学生对于本节内容的掌握程度. 特别是让学生选择自己喜欢的百分数这个设计, 在测量对百分数意义理解的同时, 也打开了学生的想象空间, 激发他们自主联系实际, 思考这些百分数所表示的意义和使用场景, 为后续的百分数实际问题的学习埋下了伏笔.
【案例反思】
《数学课程标准》指出, 数学教学活动不但要帮助学生理解和掌握基本的数学知识、技能, 还要帮助学生掌握数学思想和方法. 学生学习应当是一个生动活泼的、主动的和富有个性的过程. 作为一个鲜活的生命个体, 学生需要的不仅仅是知识和能力, 更需要不断地发展学生的思维、意识, 实现自我, 完善自我. 在教学活动中, 我们把催生数学思想看成是教学的根本目的, 把学生的自我发展当作教学的至尊追求.
“百分数的意义”是学生在已经学习了整数、小数, 特别是分数的意义、性质以及实际应用基础上的进一步学习. 这节概念课的教学重点在于联系生活, 引导学生理解百分数的意义, 会正确地读、写百分数. 对于百分数, 学生在生活中已经有了一定的生活经验和知识基础, 并不陌生, 因此在教学中完全可以“放手”一点, 给学生创造参与学习活动、自主学习、自我发展的机会、空间和余地, 使学生的学习从被动到主动, 从学会到会学, 在活动过程中不断自我调控, 获得亲身体验和直接经验, 享受自主的权利和快乐.
在小学数学教学过程中, 其实教师只需要在关键时给予点拨、评价, 在课堂中, 教师扮演的应该是组织者、引导者、协调者的角色. 我们不仅要教会学生如何学习, 而且要培养他们的思维能力. 如通过数学基础知识的掌握和理解, 可使学生学会多种思考方法;通过解答不同层次、不同类型的数学问题, 从而培养学生独立思考、耐心细致、自觉检查的良好学习习惯;特别是那些需要经过周密思考, 反复研究才能解决的问题, 更有利于培养学生的意志品质和克服困难的精神.
摘要:“百分数的意义”是学生在已经学习了整数、小数, 特别是分数的意义、性质以及实际应用基础上的进一步学习.这节概念课的教学重点在于联系生活, 引导学生理解百分数的意义, 会正确地读、写百分数.对于百分数, 学生在生活中已经有了一定的生活经验和知识基础, 并不陌生, 因此在教学中完全可以“放手”一点, 培养学生的问题意识, 让学生在学习中自主生成“为什么要学习百分数”“百分数的意义是什么”“百分数有什么用处”“在什么情况下用到百分数”“百分数与分数有什么区别与联系”这样一系列问题, 为学生的探索发现起到了推波助澜的作用.通过“放手”, 给学生创造参与学习活动、自主学习、自我发展的机会、空间和余地, 使学生的学习从被动到主动, 从学会到会学, 在活动过程中不断自我调控, 获得亲身体验和直接经验, 享受自主的权利和快乐.
关键词:放手,自主探究,问题意识
参考文献
[1]小学数学课程标准 (2011版) [M].北京:北京师范大学出版社, 2012.
[2]史宁中.教育与数学教育[M].长春:东北师范大学出版社, 2006.
小学六年级数学上册《分数除法》教案优秀 篇3
三单元分数除法 单元目标:
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。单元重点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。单元难点:
一个数除以分数的计算法则的推导。
1、分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地回顾整理,总结反思出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。教学重点:
使学生理解算理,正确回顾整理,总结反思、应用计算法则。教学难点:
使学生理解整数除以分数的算理。教学过程:
一、创设情境,生成问题
1、创设情境,生成问题整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × × × ×6 ×
二、探索交流,解决问题
1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
(3)将100克化成 千克,300克化成千克,得出三道分数乘、除法算式。×3=(千克)÷3=(千克)÷3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的操作得出每份是这张纸的几分之几。
平均分成2份,并通过(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、÷2= =,每份就是2个。
B、÷2=×=,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
四、回顾整理,总结反思
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说? 教后反思:
(2)一个数除以分数 教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生回顾整理,总结反思出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。教学重点:
回顾整理,总结反思出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。教学过程:
一、创设情境,生成问题
1、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)
2、计算下面,直接写出得数
×4 ×3 ×2 ×6 ÷4 ÷3 ÷2 ÷6
二、探索交流,解决问题
1、默读例3,理解题意,列出算式:2÷
2、探索整数除以分数的计算方法
÷
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2××3(1)综合整个计算过程:2÷=2×个分数的倒数。
×3=2×
2、小结出计算法则:从上面这个推算过程,我们发现——整数除以,分数等于用整数乘这
3、计算÷,探索分数除以分数的计算方法
(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷=×=2(km)
(2)学生用自己的方法来验证结果是否正确。
4、回顾整理,总结反思计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、练习
1、P31“做一做”的第1、2题。
2、练习八第2、4题。教学追记:(3)分数混合运算 教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。教学过程:
一、创设情境,生成问题
1、创设情境,生成问题整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。(1)428+63÷9―17×5(2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)
二、探索交流,解决问题
1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m,每朵花用少朵花。
m 彩带,可以先算出一共做了多B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
2、巩固练习:P34“做一做”
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。
(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷×;B、可以先求装完的有多少千克,综合算式是240×÷。
四、布置作业 练习九第5-9题。教学追记:
2、解决问题
(1)已知一个数的几分之几是多少求这个数的应用题 教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:
弄清单位“1”的量,会分析题中的数量关系。教学:难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、创设情境,生成问题
1、出示创设情境,生成问题题:
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×=体内水分的重量
4、指名口头列式计算。
二、探索交流,解决问题
1、教学例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×=体内水分的重量
(3)这道题与创设情境,生成问题题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重×=体内水分的重量,反过来,体内水分的重量÷=小明的体重)
2、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸: 小明:
爸爸的体重×=小明的体重
①方程解:解:设爸爸的体重是χ千克。②算术解: 35÷=75(千克)
χ=35 χ=35÷
χ=75
3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、练习
1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)
2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)
四、回顾整理,总结反思
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。教学追记:
(2)稍复杂的分数除法应用题 教学目标:
1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。教学重点:
弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。教学过程:
一、创设情境,生成问题
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、探索交流,解决问题
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量(4)指名列出方程。解:设买来大米X千克。
x-x=15
2、教学例2(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式: 航模小组人数+美术小组比航模小组多的人数=美术小组人数(4)根据等量关系式解答问题。解:设航模小组有χ人。
χ+χ=25(1+)χ=25 χ=25÷χ=20
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。教学追记:
3、比和比的应用(1)比的意义
教学目标:
1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。
教学重点:比与除法、分数的关系 教学难点:理解比的意义
教学过程:
一、创设情境,生成问题。
1. 某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?
2. 分数与除法有什么关系?
二、探索交流,解决问题。1. 教学比的意义。
(1)教学同类量的比。
A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍? 或求红旗的宽是长的几分之几?)
B、这两个关系都是用什么方法来求的?(除法)
C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。
D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。(2)教学不同类量的比。
A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:42252÷90)
B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。
(3)归纳比的意义。
A、通过上面两个例子,你认为什么是比?(学生试说,教师回顾整理,总结反思:两个数相除,又叫做两个数的比。)
B、练习:判断,下面数量间的关系是表示两个数的比吗?
① 甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。③ 足球比赛,甲队和乙队的比分是3比2。2. 教学比的写法、比的各部分名称。比的写法。
15比10 记作15∶10 10比15 记作10∶15 42252比90记作42252: 90 比的各部分名称。
A、学生自学课本,小组讨论概括知识点。B、小组汇报并举例:
“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如: ∶ 2=3÷2=
3.教学比与除法、分数的关系。
(1)比与除法的关系
A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什么?(商)。B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0)
C、比值通常用分数表示,也可以用小数或整数表示。(2)比与分数的关系。
A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)
a)两个数的比也可以写成分数的形式。例如15:10,可写成结合上面的讲解,板书下表: 除法 分数 比 被除数 分子 前项
÷(除号)
除数
商,读作15比10。
-(分数线)分母 :(比号)
后项
分数值 比值
三、巩固练习。1. 完成课本“做一做”。2. 练习十一第1、2题。
四、布置作业。
1. 课本练习十一的第3题。2. 补充:求出比值。
0.375∶0.875 比的基本性质 教学目的: ∶ 0.75∶ 2.6∶3.9
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。教学重点:理解比的基本性质,掌握化简比的方法 教学难点:化简比与求比值0的不同 教学过程:
一、创设情境,生成问题。
1、什么叫做比?比的各部分名称是什么?
2、比与除法和分数有什么关系? 比 除法 分数 前项 被除数 分子
:(比号)÷(除号)
后项 除数
比值 商 分数值
-(分数线)分母
3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16
4、分数的基本性质是什么?举例:
二、探索交流,解决问题
= =
1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)
2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4
3、小组派代表说明验证过程,其他同学补充说明。
4、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
5、教学例1(1)出示例题:把下面各比化成最简单的整数比
15∶10 ∶ 0.75∶2(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)(3)指名学生说出自己化简的方法,全班评判。
三、练习
1、P46“做一做”
2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)
四、回顾整理,总结反思
今天我们学习了什么知识?比的基本性质可以应用在哪些方面? 教学追记:(3)比的应用
教学目标:
1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。教学难点:
正确分析解答比例分配应用题。教学过程:
一、创设情境,生成问题。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、探索交流,解决问题。
1、教学例2。(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)① 稀释液平均分成的份数:1+4=5 12 ② 浓缩液的体积:500× =100(ml)
③ 水的体积:500× =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)(4)怎样分别算出各班应种的棵数?引导学生解答: ① 三个班的总人数:47+45+48=140(人)
② 一班应栽的棵数: 280× = 94(人)
③ 二班应栽的棵数: 280×= 90(人)
④ 三班应栽的棵数: 280×= 96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。教学追记:
4、整理和创设情境,生成问题 整理创设情境,生成问题(1)创设情境,生成问题目标:
使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。创设情境,生成问题重点:分数除法的计算方法,化简比。创设情境,生成问题难点:正确计算分数除法。
创设情境,生成问题过程:
一、创设情境,生成问题分数除法的意义和计算法则
1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?
(1)分数除以整数,例如÷5;
(2)一个数除以分数,它又包括整数除以分数,例如20÷;和分数除以分数,例如
÷。
(3)做第52页“整理和创设情境,生成问题”的第2题。
2、分数除法的意义
(1)第52页“整理和创设情境,生成问题”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)
(2)让学生说说是怎样题改写成两道分数除法算式的。
(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)
3、分数除法的计算法则
(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。
(3)完成P52“整理和创设情境,生成问题”第2题。(4)P53练习十三第2题。
二、创设情境,生成问题比的意义和基本性质
1、比的意义
(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。3∶2 =1.5 ┇ ┇ ┇ ┇
前 比 后 比
项 号 项值
(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式(4)比和除法、分数的联系 除法 分数 比,但仍读作3比2。特别强调比的后项不能为0)
被除数 分子 前项
÷(除号)除数 商 分数值 比值
-(分数线)分母 :(比号)
后项
2、比的基本性质
(1)创设情境,生成问题概念及化简方法 ①比的基本性质是什么?
②应用比的基本性质,怎样对整数比进行化简? ③不是整数的比应该怎样化简?
(2)学生做P52“整理和创设情境,生成问题”第3题(指名学生说说自己是怎样想的)
三、课堂练习
1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)
2、做练习十四的第2题.
3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)
4、做练习十四的第7题. 整理复习(2)
教学目的:
使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力. 教学重点:正确解答分数乘除法应用题 教学难点:分数乘除法应用题的联系与区别 教学过程:
一、推理训练
1、男生占全班人数的,女生占全班人数的()。
2、一堆煤,用去了,还剩下()。
3、今年比去年增产
二、对比训练:
1、一步分数应用题,今年相当于去年的()。
① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?
② 张大爷养了200只鹅,鹅的只数是鸭的只数的,养了多少只鹅?
③ 张大爷养了200只鹅,鸭的只数是鹅的只数的,养了多少只鸭?
(1)比较相同点和不同点
引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。
(2)比较完后,学生将三道题的解答过程写在练习本上。
2、出示题组: ① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?
② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?
(1)学生自己画线段图,分析,解答。](2)对比:两题有什么异同?你是怎样分析的,如何区别的?
3、出示题组:
① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆? ② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆? ③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆 ④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?(1)学生独立画线段图,分析,解答。](2)对比:
1、2两题有什么异同?
3、4两题呢?你是怎样分析的,如何区别的?(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么? 引导学生归纳出:
㈠ 分析“分率句”,判断单位“1”是哪个数量?
㈡ 画出线段图,找出“量”和“率”的对应关系。
㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。
三、课堂练习:
1、第53页“整理和创设情境,生成问题”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未知?)
2、练习十三第4、5题,独立完成,集体订正。
四、作业:
六年级上册数学分数除法教学设计 篇4
第三单元分数除法
单元教学内容:课本28页——47页,倒数的认识和分数除法的意义与计算以及解决相关的实际问题。
单元教学目标:
知识与技能:
1.使学生理解倒数的的意义,掌握求一个数的倒数的方法。
2.使学生体会分数除法的意义,理解并掌握分数除法的计算方法,会进行分数除法的计算。3.使学生会解决一些和分数除法相关的实际问题。
过程与方法:经历观察、推理等过程,发展合情推理和总结概括的能力。掌握分数除法的计算方法,能综合运用所学的分数除法知识解决实际生活中的问题。
情感态度与价值观:使学生体会数学与生活的密切联系,体会并掌握模型、方程、数形结合等数学思想。
单元教材分析: 本单元是在学生已经掌握了分数乘法计算方法的基础上学习分数除法。通过本单元的学习,学生一方面完成了分数加减乘除的学习任务,比较系统地掌握了分数的四则运算,掌握了解决相关实际问题的方法;另一方面也进一步加深了对乘除法关系的理解,体会数学知识方法的内在联系,为解决有关分数的实际问题提供更多的支持;同时也为后面学习比和比例、百分数打下坚实的基础。单元教学重点:分数除法的意义和计算方法及用除法解决实际问题。单元教学难点:分数除法计算方法的探索与理解。
单元教学措施: 1.充分利用教材,促进学习迁移。本单元教材在揭示相关知识的内在联系,提供类比思维材料方面做了不少努力。教学时,应充分利用这些资源,激活学生已有的知识经验,引导他们进行类比,促进学习的正向迁移。2.加强直观教学,结合实际操作和图形语言,探索、理解计算方法。3.提供丰富的问题情境,培养学生学习能力。
单元教学课时:10课时 1 第一课时倒数的认识
教学内容:倒数的认识(教材第28、第29页的内容)
教学目标:
知识与技能:引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
过程与方法:通过探究发现活动,使学生理解倒数的意义,掌握求倒数的方法。
情感态度与价值观:通过自行设计方案,培养学生自主探索和创新的意识。
教学重难点:
重点:理解倒数的含义,掌握求倒数的方法。
难点:用倒数的意义求小数的倒数。
教学准备:课件
教学过程:
一、课前预习
二、创设情境
1、师:我们再来玩一种文字游戏,老师说“秦少坤是朱倩倩同学的同桌”,还可以怎么说呢? 生:还可以说“朱倩倩是秦少坤同学的同桌。” 师:老师能不能理解为“秦少坤和朱倩倩同学互为同桌呢? 生:开始有些迟疑,然后回答到“可以”。板书“互为”。同学们,我们的民族语言文字有这样的美妙,其实在数学王国也存在着这样的美,我们不妨来试试。
2、揭示课题。今天,我们就来研究这样的数——倒数。
三、自主探究
1、出示下列习题。×=2 ×= 5×=×12=(1)指名学生回答。
(2)学生观察这些算式有什么特点?
(3)小组内进行交流。
(4)各组汇报交流的情况。
(5)师总结归纳: ① 这些算式的乘积都是1.② 这些算式中分子和分母都打颠倒了。
板书:像这样乘积是1的两个数互为倒数。
学生齐读倒数的概念,理解倒数具备的条件。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
四、合作交流
1、找一个数的倒数的方法:
我们刚才认识了倒数的概念,如何去找一个数的倒数呢?
出示例1。下面哪两个数互为倒数? 怎样找一个数的倒数呢?
×= = ×= 所以,的倒数是,的倒数是
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
五、拓展应用
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1-5题。
六、总结评价 3 第二课时 分数除法的意义
教学内容:分数除法的意义和分数除以整数(教材第30页的内容)教学目标:
知识与技能:1.使学生经历探索分数除以整数方法的过程,理解并掌握分数除以整数的计算方法。2.能正确计算分数除以整数的试题。过程与方法:动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
情感态度与价值观:培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。教学难点:掌握分数除以整数的计算方法。
教学准备:课件、一张长方形的纸
教学过程:
一、课前预习
二、创设情境
三、自主探究
1、出示例1。
2、改编条件和问题,用除法计算。
3、初步理解分数除法的意义。师问:如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?
4、归纳概括分数除法的意义。4 58
四、合作交流
1、分数除以整数。
(1)出示例1.引导学生分析并用图表示数量关系。
师问:求每份是这张纸的几分之几,怎样列式?
(2)列式计算。
师问:÷2的结果是多少?这个结果是怎样得到的? 小组内学生折一折,算一算。
(3)理清思路。思路一:把平均分成2份,就是把4个平均分成2份,每份是2个,也就是。思路二:把平均分成2份,求每份是多少,就是求的是多少。
(4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
五、拓展应用
1、巩固练习。完成教材第30页“做一做”。
2、填空。
(1)分数除法的意义与整数除法的意义(),都是已知()与(),求()的运算。
(2)分数除以整数(0除外),等于分数()这个整数的()。
(3)÷5=×()=()
3、计算并验算。651115÷3= ÷10= ÷11= ÷30= 1128***5121525451545
六、总结评价
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)5 篇二:2014最新版(义务教育版)六年级数学上册教案 分数除法
第三单元分数除法
一、单元目标:
1、使学生理解倒数的意义,掌握求一个数的倒数的方法。
2、使学生会解决一些和分数除法相关的实际问题
3、使学生体会数学与生活的密切联系,体会并掌握模型、方程、数形结合等数学思想。
二、与实验教材的主要区别
1.“倒数的认识”由“分数乘法”单元移至本单元。2.把“比”的内容单设一单元。3.增加两类新的问题解决:和倍、差倍问题;可用单位“1”解决的问题。
三、具体编排 1.倒数的认识
例1:求一个数的倒数 2.分数除法
例1:分数除以整数。例2:一个数除以分数。例3:分数混合运算。
例4:“已知一个数的几分之几是多少,求这个数”的实际问题。
例5:“已知比一个数多(或少)几分之几的数是多少,求这个数”的实际问题。例6:和倍问题、差倍问题。
例7:可用单位“1”解决的实际问题。
四、教学建议
1.加强直观教学,结合实际操作和直观图形,帮助学生理解算理,掌握方法。2.加强分数乘、除法的沟通与联系,促进知识正迁移,提高解决实际问题的能力。
第一课时 倒数的认识
教学目标:
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。教学重、难点:理解倒数的含义,掌握求倒数的方法。教学过程:
一、复习导入 口算下面各题。
二、引入情境,探究新知
(一)观察算式,揭示课题
问题:1.观察上面各题,你有什么发现?(乘积都是1,两个因数的分子和分母的位置刚好相反。)2.请你写出几个这样的算式。(反馈交流,教师板书)3.还能写吗?能写多少个?(板书:无数个)
(二)出示概念,加深理解
乘积是1的两个数互为倒数。3/8和8/3 互为倒数,就是指:3/8的倒数是 8/3,3/8 问题:
1.能说说什么是倒数吗?
2.请你举例说说,什么是“互为”倒数?
(三)自学概念,探究理解 下面哪两个数互为倒数?
问题:
1.怎样找一个数的倒数呢?
2.1的倒数是多少呢?0有倒数吗? 写出下面各数的倒数。4 16 7 4 11 9 35 8 15 问题:说说你是怎样写的?(反馈与交流)
三、巩固练习,提升认识 1.将互为倒数的两个数用线连起来。2.下面的说法对不对?为什么? 8/3的倒数是
3.小红和小亮谁说得对?
问题:你认为谁说得对,说明你的理由。(小红说得对。乘积是1的两个数就互为倒数,这两个数可以是分数,也可以是小数或整数。)4.写出下面各数的倒数。
(1)0.8的倒数是()或()。(2)4又1/3的倒数是()。
作业:第29页练习六,第3题。
第二课时分数除以整数
教学目标:
知识目标:通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
能力目标:动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
情感目标:培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。教学重点:
使学生理解算理,正确总结、应用计算法则。教学难点:
使学生理解整数除以分数的算理。教学过程:
一、复习导入
说出下面各数的倒数。
二、教学例1分数除以整数
(一)引入情境,探究新知
问题:
1.你能用阴影表示出这张纸的4/5吗?(学生画出长方形纸的4/5)用算式表示出刚才折或画的过程。
2.请看上面的问题,和我们以前学过的什么知识有关系?(平均分,求一份是多少)你能列出算式吗?
3.借助手中的学具,折一折,画一画,表示出4/5÷2 的意义。
问题:1.用算式表示出刚才折或画的过程。2.结合画好的图,说说你的计算过程。
(二)自主操作,深入理解
出示
问题:
1.借助手中的学具,折一折,画一画,表示出 4/5÷3 的意义。2.用算式表示出刚才折或画的过程。
3.结合画好的图,说说你的计算过程。(出示预设1时)你遇到了什么问题? 4.比较两种解法,你有什么想法?
5.根据上面的折纸实验和算式,你能发现什么规律?(出示预设2)说说你的想法。
(三)巩固练习计算下面各题。
(四)总结
1、今天我们学习了哪些内容?
2、谁来把这两部分内容说一说?
第三课时 一个数除以分数
教学目标:
知识目标:在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。能力目标:培养学生的语言表达能力和抽象概括能力。情感目标:培养学生良好的计算习惯。教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。教学过程:
(一)引入情境,探究新知
小学六年级数学上册《分数除法》教案优秀 篇5
西师版小学数学六年级上册《分数乘法》教案
分数乘法 教学目标: 1.进一步掌握分数乘法的计算方法。 2.让学生经过“独立思考D尝试解决例4D交流D质疑D达成共识”等过程,培养学生独立运用知识解决问题的能力,体验成功的快乐和学数学的价值。 教学重点: 让学生体验分数乘分数、分数乘整数的简便计算方法(先约分后相乘) 教学难点: 分数乘分数或分数乘整数先约分再相乘的书写格式。 教 具:小黑板 教学过程: 一、情境引入 师:同学们,你认识蜂鸟吗?它有什么特点呢?它飞的速度怎么样呢? 生:…… (稍停片刻后,用小黑板出示例4) 二、探索新知 1.独立审题、尝试解决问题。 师:请同学们认真读题,想好后独立完成。 2.学生交流各自的方法。 (1)让学生说说:怎么列式的,为什么要这样列式?谁有不同的想法?(有生可能说:根据“速度×时间=路程”;也有生可能说:这道题就是求3/10的`2/3是多少。) (2)交流不同的计算方法,请两名学生板演,并让学生亲自体验两种计算方法,从中感受到分数乘分数时,先约分再相乘比较简便。(突破难点) (3)学生达成共识(怎样计算简便的问题) (4)让学生说分数乘分数和分数乘整数时,先约分再相乘的书写格式 三、归纳总结 1、引导学生小结分数乘分数的简便计算方法。 2、引导学生小结分数乘整数的简便计算方法。 四、质疑:分数乘整数怎样约分?(难点部分) 五、课堂检测: 1、教科书第11页“做一做”中的题目。 2、练习二第9、10题。 六、作业 练习二第7、8题
小学六年级数学上册《分数除法》教案优秀 篇6
因此,学生数学思维方法的形成过程,理应是学生在已有知识经验不断积累的基础上其数学思维得到有效迁移的过程。一线教师在教学实践中只有适时引领学生实施数学思维方法的有效迁移,才能促进学生对数学问题的思考逐步走向深入,继而形成问题解决的思维方法,并逐步内化为学生解题的技能与技巧,不断增强学生在数学应用过程中的数学悟性。
一、思维路径:有效迁移的激活点
在分数除法的简单应用过程中,学生所表现出来的思维常态路径为:一旦题中所表达的“应用意义”与分数除法的“算式意义”能够走向统一,分数除法的运算意义在解决实际问题中的数学思维就会被激活,此时的数学思考会驱使学生把分数除法的“算式意义”向分数除法的“应用意义”进行有效迁移,从而顺势利用分数除法的计算方法解决实际问题。因此,教师在教学时要能结合具体的问题情境和分数除法的固有特征,有针对性地引领学生在已有思维路径的基础上对已有知识经验进行自然迁移,使新知识的应用在旧知识的思维经验基础上自然生成。
例如,一块地有9/10公顷,3小时可以耕完,平均每小时耕多少公顷?题中虽然呈现给学生的“9/10公顷”是一个分数形式的“工作总量”,但被平均分的份数“3小时”依然是一个整数形式的“工作时间”。因此,在这种类型的分数除法应用中,学生的思维路径仍然保持着“把9/10公顷平均分成3份,求每份是多少公顷”的数学思维方法,这与9/10÷3表示“把9/10平均分成3份,表示每份是多少”的算式意义在学生的头脑中是一致的。所以,此时学生会自然把“9/10÷3”计算思路迁移到“平均每小时耕多少公顷”的应用意义的思考中,从而顺利求得解题结果。这一思维过程符合儿童的思维现实,顺应除法运算的算式意义,学生在已有知识经验的基础上,思维路径被自然打开,数学迁移被有效激活。
二、思维困惑:有效迁移的冲突点
在小学阶段,学生在对加、减、乘、除的运算意义的建构探索过程中,除法的运算意义最能驱动学生产生认知上的冲突、思维上的困惑。因为对于整数、小数、分数的加法、减法和乘法在认知上其意义始终是同一的,学生只要建立了整数的运算意义,就能顺势探索出其对应的小数或分数的运算意义。而对于除法,从整数到小数再到分数的发展过程中,学生经历了其运算意义由原先的整数的直观意义逐步向分数的抽象意义的建构,理解上形成思维困惑,无法直接触摸分数除法的运算意义,更无法把分数除法的运算意义向分数除法的应用意义迁移,继而产生了思维迁移的冲突。教师在教学时要抓住整数除法的应用意义和分数除法的应用意义的异同点,有效捕捉学生思维困惑过程中数学迁移的冲突点,促使学生的数学思考由直观思维上升到抽象思维,由概念抽象走向数学质疑,由思维困惑走向理解内化。
例如,上题变式为:一块地有9/10公顷,3/4小时可以耕完,平均每小时耕多少公顷?原先的“3 小时可以耕完,求平均每小时耕多少公顷”在学生脑海里形成的“平均分”的数学思维能直接得到有效迁移,现在换成“3/4小时”这样的分数形式,学生此时无法直观理解,更不会直接想到用除法算式去计算。从学生的思维经验和已有知识分析,此时学生的思维状态会呈现出如下过程:求平均每小时耕多少公顷?一定是超过1 小时的公顷数量,经过平均分,可以得到每小时耕地的公顷数量。当把整数变成真分数,学生产生认知冲突:“3/4小时”没有“1 小时”多或者不满1 小时,无法平均分。学生的思维处于迷茫、困惑状态,数学思考无法进行下去,更不会想到用除法来算。即使是换成大于1 小时的假分数,学生的思维依然无法进行下去,因为此时学生缺失了这一数学概念的思维基础和经验,缺少了思考这一问题的思维支撑。所以,从整数除法的应用意义到分数除法的应用意义的迁移中,看似其思考问题的路径是一致的,可是在相同路径上学生所产生的思维深度和性质却是不一样的,因为这一思考路径不符合学生的思维现实,也不符合学生的学习现实,未能顺应学生的思维特征和认知特点。因而,在分数除法里,每当除数从整数变化到分数,对除法意义进行迁移时就会形成思维上的障碍,产生认知冲突,学生此时需要寻求思考此类数学问题的思维支撑。
三、思维依托:有效迁移的支撑点
在数学思考过程中,学生的大脑时常会呈现出树枝网状的思维结构,只要探寻到每一节的思维支点,学生就会顺着网状的思维枝丫一节一节地深入下去,最终到达解决问题的彼岸。所以,当学生的思维徘徊在问题分析的十字路口,迷失了解决问题的思维方向时,教师要能从儿童的思维现实出发,抓住数学概念之间的前后联系和知识的生长点,探寻知识形成过程中的思维依托,让学生有“知”可依,有“经”可循。即在已有知识和经验的基础上,形成有效迁移的思维支点,继而萌发解决问题的数学思维方法。
教材传递给学生对于分数除法的应用经验是根据乘法数量关系式列方程解答,初步为学生提供分数除法应用的思维依托。因此,教学时教师必须从学生的思维经验出发,借助列方程解题过程中所需数量关系的思维依托,逐步引领学生建构起分数除法的初步意义。还以上题为例在耕地效率不变的情况下,3/4小时的耕地量一定是1小时的34,由此引导学生得出数量关系式:1小时的耕地公顷数×3/4=34小时耕地的公顷数。从而让学生感受到,要求1小时的耕地公顷数实际上是用“3/4小时耕地的公顷数”除以“3/4”可以得到。在如此解题思考过程中,学生已经初步感知了分数除法的思考方法,此时学生经历了从分数乘法数量关系中捕捉到分数除法的应用方法后,学生对于分数除法意义建构的数学思维受到“摇动”,教师顺势“推动”除法“包含除”的意义理解,引领学生联想和思考:1小时里面有几个3/4小时就表示有几个3/4小时耕地的公顷数,这样就可以用1小时除以3/4小时,得到了包含几个34小时的个数,再乘34小时耕地的公顷数(910公顷),即910×(1÷34)=910÷34,从而顺利理解了“用3/4小时耕地的公顷数除以3/4小时,就得到每小时耕地的公顷数”的应用意义。如此引领学生由“根据乘法数量关系列方程解答”的思维“摇动”除法运算意义的思维,再由除法“包含除”运算意义的思维“推动”分数除法应用意义的思维,学生对分数除法意义运用的思维就会被唤醒。只有这样,引领学生从两个维度进行数学思考,学生才会在分数除法的意义建构过程中找到相应的思维依托,并在体验过程中,初步感受到“3/4小时耕了9/10公顷,要求平均每小时耕多少公顷?”依然可以直接用分数除法进行计算。但如何让学生能彻悟此分数除法应用中的运算意义,还需要帮助学生揭示其中“等份除”的含义,才会支撑着学生对分数除法应用的理解与掌握走向直观化和明朗化。
四、思维顿悟:有效迁移的着力点
数学迁移是数学理解的前提,是知识内化的根基。所以,思维顿悟是数学迁移过程中的思维着力点,它会在数学思考活动中不断引导学生自主发现数学规律,领悟数学思想,掌握数学方法。当学生的大脑经历了思维路径、思维困惑、思维依托的思维活动后,对于分数除法的意义理解得以顿悟,激发了学生用“整数倍”的思维向“非整数倍”的思维进行有效迁移,促使分数除法的运算意义由抽象走向直观,促进了除法运算意义和解决问题的有效融合,助推了学生对分数除法简单应用的数学思维方法的形成。
因此,经过上述思维活动后,学生已经坚信:一块地有9/10公顷,无论是“3小时可以耕完”还是“3/4小时可以耕完”,要求平均每小时耕地多少公顷,均可以直接列除法算式计算。由此,当“耕地时间”在整数数量到分数数量的变化过程中,学生的数学思维产生如下顿悟,数学方法得到有效迁移。
学生从“一块地有9/10公顷,3小时可以耕完,平均每小时耕地多少公顷?”不难想到,问题要求的是“每份数”,3小时不是“一份数”,它显然是一个“多份数”,就可以把9/10公顷平均分成3份,继而求出“每份数”,即平均每小时耕多少公顷。而对于某一个数,要么是“一份数”,要么就是“多份数”,所以对于“3/4小时”抑或任意一个诸如1/4、5/4等真、假分数,它既然不是“一份数”,就可以看作是一个“多份数”。因此,既然是一个“多份数”,就可以根据“平均分”的含义,直接除以这个“多份数”,从而求得“每份数”。这样学生就会把除数是整数的分数除法的方法顺利迁移到除数是分数的分数除法上来,有效突破了分数除法意义难于理解的教学难点,加深了对分数除法意义的直观理解和自然建构。所以,学生只有从自己的已有知识经验出发,经历解决问题的思维过程,才会产生寻求数学方法的思维冲动,学生的思维才会顿悟,继而激发学生探寻数学迁移的连接点,最终形成解决实际问题的直接思维方法和数学技能。
【小学六年级数学上册《分数除法》教案优秀】推荐阅读:
小学六年级上册数学第三单元分数除法试卷07-14
小学六年级数学上册百分数复习教学设计11-26
小学数学三年级上册《分数的初步认识》教案05-20
小学六年级上册数学第五单元百分数试卷10-10
小学六年级数学除法07-12
人教版小学六年级数学上册教案10-22