轧机刚度(精选4篇)
轧机刚度 篇1
1 高刚度短应力棒材轧机的结构组成
1.1 轧机本体装置
机架本体主要由四个带螺纹的拉杆组成, 他们控制支撑轧辊的轴承座的开闭, 轴承座的打开是通过调节上面的压下装置的压下传动来实现的。机体的设计是采用拉杆短应力线结构以保证极小的变形。轧制所产生的张力被轴承座和压下装置吸收, 不会影响机体的其它部件。辊缝相对于轧线可对称、同步调整。轧辊由四列径向圆柱滚子轴承支撑, 轴向力由双列圆锥滚子轴承承受。轧辊轴承的轴承座可使载荷在轴承上很好的分布, 以延长轴承寿命。轴向调节作用于轧辊的时候, 通过蜗轮蜗杆驱动的装有止推轴承的螺纹套来实现, 止推轴承套通过传动螺纹进行调节, 液压轧辊平衡装置同时对压下机构施加了预紧力以消除间隙。轴承的润滑由集中干油系统提供。
1.2 压下装置
压下装置用于控制轧辊的开口度, 结构紧凑, 易于拆卸。运动的传递是通过一对蜗轮副和四个锥齿轮实现的。这些操作可以通过一个特制的调节扳手来完成, 或是在操作台上控制一个液压马达来完成, 液压马达的动力源来自于机架的液压系统。压下装置上装有读数装置, 可读出轧辊开口度。如用户需要可以在压下装置上安装编码器, 自动的显示开口度。
1.3 轧机底座装置
轧机底座结构坚固, 即使在重载下也能保持轧机的稳定。机架通过环螺栓固定在轧机底座上, 轧机底座通过滑板与机架底座相连, 便机架移动。滑板有一个倾斜面, 以使轧机底座在机架底座上定位。
1.4 锁紧装置
轧机底座由四个夹紧装置锁紧在机架底座上, 它的原理是弹簧夹紧, 液压松开, 由机架的液压系统提供动力。夹紧斜面产生斜楔效应确保了锁紧的有效。每一个夹紧装置是通过两个螺栓固定在机架底座上的, 若出现不正常情况, 可以很方便的检修替换。
2 高刚度短应力棒材轧机的研制
2.1 锁紧系统设计
2.1.1 锁紧缸的结构设计
本系统的设计是根据锁紧缸所要达到的功能来进行设计的, 弹簧夹紧, 液压松开的结构非常适合用在此锁紧系统中。本系统的密封结构采用双密封圈的冗余设计保证使用现场不漏油, 保证轧机的正常工作, 固定销也是本系统的优化之处, 固定销装配后焊在端盖上, 保证压紧活塞不发生旋转。
2.1.2 碟弹簧参数的选择
本系统选用弹簧压紧的方式, 弹簧选择碟弹簧, 承受静载荷和变载荷, 由于压紧活塞的行程为12mm, 为此选择了对合组合的形式, 一共七片, 材料方面选择了60Si2MnA。在压缩状态的力为33048Kg (压缩弹簧力) , 在锁紧状态的力为22956Kg (锁紧力)
2.2 轧机底座的设计
2.2.1 焊接件结构的设计
由于底座的尺寸较大, 空间紧凑的特点, 经过分析采取了板料焊接的结构, 底部内侧和支撑处的外侧增加了加强筋, 保证底座的强度, 也就是保证了轧机轧钢的精度, 为了方便锁紧缸的拆卸, 底座两侧各增加了一个缺口。
2.2.2 耐磨板材料的选择
底部因为在更换轧钢的品种时需要将轧机拉出, 底部和底座产生摩擦, 底部必须选择一种耐磨材料, 保证轧机底座本身不至于损坏, 定期更换底部耐磨板就可以了, 为降低成本, 选择了尼龙作为本轧机的耐磨板材料。
2.3 压下机构的设计
2.3.1 传动机构的设定
经过反复的论证和设计, 确定运动的传递通过一对蜗轮副和四个锥齿轮来实现。这种结构的主要特点是结构紧凑, 易于拆卸, 传动灵活, 为了能够调整方便, 选用了手动和自动两种方式结合的形式, 压下装置上装有读数装置, 可读出轧辊开口度。还有自动化装置, 能够根据用户需要可以在压下装置上安装编码器, 自动的显示开口度。
2.3.2 传动比的设定
传动比的设定是为了满足手动进行调整时每转动一圈开口度能够调整0.2mm, 设计了传动比, 拉杆转动一圈的开启度为20mm蜗轮副的传动比为1:30, 齿轮箱的传动比为1:3.3, 总的传动比1:99。
2.4 轧机本体的设计
2.4.1 轴向调整机构的设定
在轧钢机械中主要问题是轧辊轴的轴向窜动问题。轧辊轴的窜动是影响轧制成品的合格率和精度保持的重要因素, 对于这个技术问题, 我们从影响轴向窜动部分的相关制造部件着手。
2.4.2 轴承保护装置的设定
在棒材轧机的整个系统中其保护轴承系统尤为重要, 进口轴承的价格非常昂贵, 通过对其结构进行改进, 用球面或带弧面的垫进行重新设计, 保证其轴承寿命的增加。在进行重新设计其圆弧尺寸时, 通过反复计算比较, 从中选出最优方案, 保证轧机精度和轴承寿命。
3 研制的效果
锁紧缸几个关键部件的突破, 使470棒材轧机的质量有了相当程度的提高。
设计的首批470高刚度短应力棒材轧机6架发往西宁钢厂, 进行现场安装一次过红钢轧制Φ180的圆钢成功后, 用了不到一个月的时间就转入正常的批生产, 得到了用户的好评。
齐齐哈尔钢厂也订购这种470棒材轧机4架作为意大利进口轧机的整机备件, 现在相继有几家钢厂与我们有了订购这种470棒材轧机作为钢厂的技术改造项目, 湘潭二棒材订购了4架作为整机备件。
西宁特钢的成功使用为我打开国内棒材轧机的市场打下了非常好的基础, 以前棒材都是进口轧机垄断, 现在国产轧机也能够做出优质的产品, 为此为哈飞工业的棒材市场打下了一个新天地。
总结
高刚度短应力棒材轧机具有轧制速度高、精度高、短应力的特点。轴承座采用浮动式结构, 保证载荷的正确分布, 延长了轧机的使用寿命, 轧制结构先进合理, 维护简便, 最高轧制速度18m/s, 单线生产能力为70-85万吨, 轧制出的棒材精度其公差值为0.15mm, 这是哈飞工业拥有自主知识产权的短应力棒材轧机。
摘要:近年来世界各主要产钢国均新建了一批特殊钢棒材轧机, 并对原有的轧机进行全面的技术改造。鉴于这种形势, 我们根据市场的要求, 成功研制了JD032-470型高刚度短应力棒材轧机。
关键词:高刚度短应力,棒材轧机,锁紧缸
参考文献
[1]机械零件手册.高等教育出版社.
[2]常用材料手册.江西科学技术出版社.
[3]机械制造工艺学.西工大出版社.
轧机刚度 篇2
SY高刚度轧机是一种短应力轧机, 它主要适用轧制型材、棒材和线材, SY高刚度轧机具有强度高、工作稳定、制造工艺性好等特点。
为进一步提高SY高刚度轧机的产品轧制精度, SY高刚度轧机的设计单位北京冶金设备研究院于2009年重新修订了有关SY型高刚度轧机的冶金行业标准。其中调整、细化了轧机精度允许偏差, 第五条明确规定:轧机规格在准250~850mm范围内轧辊的平行度精度小于0.1mm的具体要求, 如图1所示。
这一精度要求对轧制的产品精度起到关键作用, 尤其对轧制窄带刚的带型精度控制更是至关重要。由于我厂过去一直依靠对轴承座和支承座的加工精度来保证精度, 装配好的轧辊平行度精度经过检测只能达到0.12mm, 达不到新标准所规定的精度要求0.1mm。经过技术攻关, 在装配SY高刚度轧机时使用装配工装, 成功解决了SY高刚度轧机平行度超差的问题, 产品的质量稳定, 平行度得到了大大改善, 取得了显著的经济效益。
1.立柱2.弹簧3.平衡螺母4.压下螺母5.轴承座6.球面垫7.滑板8.支承座
2 SY高刚度轧机平行度精度超差的原因
过去我厂的装配不用工装, 直接将轧机本体装配好, 轴承座之间按装配要求放好4个等高垫。其辊系中, 4个支承座8和4个轴承座5之间的8块滑板7不装, 如图2, 把轧机本体正确安装在轧机底座上, 再测量支承座8和轴承座5之间安装滑板7位置的尺寸, 根据测量好的安装滑板7位置的尺寸修磨滑板7, 修磨好后调整压下装置, 上下轴承座分别上移和下移, 使轧机辊缝增大, 这样将支承座8上安装滑板7的位置让出来, 把滑板7用螺钉固定安装在支承座8的相应位置。
这种装配方法没有考虑SY轧机的结构特点, 轴承座5和立柱1之间是靠压下螺母4和球面垫6连接, 球面垫6和轴承座5之间留有2mm的空隙, 在未安装滑板之前轴承座没有约束能力, 轴承座5能够在一定程度内自由移动, 因此不能保证两个轧辊在垂直方向和水平方向的平行度要求。
3 提高SY高刚度轧机平行度精度的方法
对如何解决SY高刚度轧机两个轧辊的平行度超差问题, 经过分析后, 认为垂直方向的平行度精度不是问题的所在, 它可以靠分别调整SY高刚度轧机两端的压下机构获得两轧辊在垂直方向的平行度。解决两轧辊水平方向的平行度才是问题的关键。经过考虑笔者设计了一种装配用工装设备, 来保证SY高刚度轧机两个轧辊的平行度精度。
以SY高刚度轧机准320×700mm为例, 整个工装共由一块平板 (图3) 和两SY高刚度轧机本体正确安装在轧机底座上, 上下轴承座之间放好4个等高垫, 轴承座块带有V型槽的压板 (图4) 组成。
SY高刚度轧机本体安装之前测量各零部件, 保证各零部件尺寸公差和形位公差合格, 将安装好的SY高刚度轧机本体正确安装在轧机底座上, 上下轴承座之间放好4个等高垫, 轴承座5和支承座8之间的8块滑板7先不装, 将平板 (图3) 放在两个轧辊一侧, 带V型槽的压板 (图4) 安装在另一侧, 中间用M30×340mm螺栓拧紧使两个轧辊辊身贴紧平板即可, 如图5所示。
辊身依靠平板定位, 由于平板的平面度已控制在0.02mm之内, 在水平方向两轧辊已经达到平行效果。此时依次再测量SY高刚度轧机支承座8和轴承座5之间放置滑板7位置的尺寸, 再根据测量的尺寸修磨滑板7, 8块滑板依次进行修磨, 全部完成后调整压下装置装在相应的位置。
4 SY高刚度轧机平行度精度的检测
把装配完毕后的轧机放在划线平台上, 用1.5m三角直尺放在平台上靠近轧机底座的一侧, 把百分表贴近三角直尺, 分别量取三角直尺到上下轧辊之间的距离, 在轧辊长度方向最少检测3个点, 其轧辊的平行度精度均能控制在0.05mm之内, 完全符合新规定的标准中对这一精度的要求。
5 结语
我厂使用工装之后所装配的SY高刚度轧机生产出的产品精度大大提高, 彻底解决了SY高刚度轧机平行度精度超差的问题。该技术改制简单、费用低、效果显著, 为进一步提高SY轧机的轧制精度和使用范围奠定了基础。
摘要:介绍了提高SY高刚度轧机装配精度的工装设计及使用方法, 设计了一种新工装, 解决了SY高刚度轧机平行度精度超差问题, 取得了明显的效果。
关键词:SY高刚度轧机装配精度,工装,设计与使用
参考文献
[1]YB/T 027-2009, 中华人民共和国黑色冶金行业标准[S].
轧机刚度 篇3
楔横轧是一种先进的轴类零件成形技术,即是在楔横轧机的两个同向旋转的轧辊上,安装两个相同的楔横轧模具,当圆形坯料加热到1000℃~1200℃时,通过楔横轧机的轴向送料装置,将坯料送到两个楔横轧模具间,然后轧模进行旋转,当轧模旋转一周后即完成了一次轧制。轧件在楔形孔型的作用下,轧制成各种形状的台阶轴,楔横轧的变形主要是径向压缩和轴向延伸,如图1所示。图2所示的整体式楔横轧机的机身由左、右两个焊接机架和四根螺杆组合而成。下轧辊支撑在下轴承座内,支撑上轧辊的上轴承座通过碟形弹簧和旋转螺杆置于下轴承座之上。传动箱与主机安装在同一底座上,传动箱体用螺栓与左机架固紧在一起。当进行轧制时,轧制力通过模具、轧辊直接传递到机身。
因此,轧机力学行为与机身刚度直接影响轧制产品的质量和精度,它是设计楔横轧机重要技术参数之一。本文开发边界元—有限元耦合新算法计算楔横轧机整体刚度,根据其结构特点,将整个轧机工作机座分解成轧辊、轴承与轴承座多物体接触模型,压下螺杆与压下螺母两物体接触模型和机身单个计算模型,分别计算接触模型和独立模型的变形,二者耦合得到轧机的整体刚度。同时,运用ANSYS有限元分析软件,对楔横轧机的机身进行应力和变形分析,确保机身的强度和刚度满足使用要求,并给出增大机身刚度的设计方法。
2 楔横轧机机身力学行为
楔横轧机的主机部分主要由齿轮箱、左右机身、中心距调整机构以及导向板机构等组成。机身的主要作用有:①承受轧制力并在它上面平衡;②承受轧制力矩并将倾翻力矩传给基础;③中心距调整机构以及导向板机构等都安装在其上并进行工作。
机身是作为汽车半轴楔横轧机最重要的、永久性使用的部件,其安全性可以说直接决定着整个轧机,甚至整条轧制线的生产状况。此外,机身的刚度是否满足设计要求,对轧制产品的精度起着决定作用。因此,对机身在轧制状态下的强度安全性分析和刚度分析是十分必要的。
2.1 机身力学行为分析方法
对于轧机机身的设计计算和事故分析,传统方法一般采用材料力学和光测弹性力学方法为主要工具。如果按照轧机机身的实际结构及实际受力情况对其进行理论研究和故障分析,要运用结构弹性力学理论是不可能求出它的解析解的;如果将机身简化为一闭合的刚架,运用材料力学或结构力学的方法对其进行计算、分析,由于对其结构进行了过分的简化,其运算及分析的结果与实际情况相差较远。作为一种计算方法和工具,材料力学或结构力学只能给出简单结构的某些局部的应力,它无法精确地求出常见危险部位或关键部位的应力水平和应力集中状况,即采用材料力学或结构力学是很难得到真实的应力与变形分布规律的。光测弹性力学方法虽然可以给出整个机身的全场应力分布情况,但是因其成本较高、精度较差以及不便改变结构参数等而限制了它的使用。和上述材料力学、结构力学或光测弹性力学等传统研究方法相比,有限单元法则显出了不可比拟的优势。在进行机身等零部件受力分析时,它不仅能够精确完成受力后机身等零部件的变形场,而且还能够给出完整的应力场,能够真实反映一些关键部位和危险部位的应力水平;另外,它还可以方便地改变结构参数和计算方案,以其结果完整、精确、不受机身等零部件复杂程度影响且应用方便等优点得到广泛应用。
机身的有限单元法计算可简化为平面应力问题,也可按三维问题计算。这主要取决于机身的实际结构、受力特点、计算精度的要求和其他的客观情况等因素。如对于结构较简单,厚度方向尺寸基本相同且在厚度方向上受力基本均匀的机身,可以按平面应力问题处理,也能得到较高的精度。否则,须按照三维问题处理。本文采用ANSYS有限元分析软件对机身进行应力和变形分析。
2.2 机身有限元模型的建立
为了提高计算机模拟结果的精度,精确揭示机身的真实应力分布和整体变形情况,在对轧机机身的几何模型的建立上,尽可能全面考虑机身的结构特点,不对其进行过多的简化,使机身的计算模型与实物结构尺寸一致。这里机身的三维模型是在UG中建立,通过ANSYS输入接口导入ANSYS前处理器中。考虑到计算的效率,忽略了一些细节特征,机身的几何模型如图3所示。
(1)机身模型有关参数和单位的选取
长度单位mm;力单位N;应力单位MPa。机身选用材料Q235,弹性模量E=200×103MPa,泊松比v=0.3,屈服强度235MPa,σb=375~460MPa。
(2)单元类型的选取
机身采用SOLID45单元划分,单元类型八节点六面体实体单元,每个节点均具有三个方向的自由度,即沿X、Y、Z方向的位移,满足分析要求。
(3)载荷及约束的施加
在轧制过程中,机身受力很复杂,包括轧制力、摩擦力、附加力、冲击力等,但以轧制力为最大,其他力的影响远小于轧制力,因此,忽略其他力的影响,只取轧制力为外载荷。汽车半轴楔横轧机设计的最大轧制力为1200kN,在轧制过程中,轧制力由轧辊传到滚动轴承上,再经过滚动轴承传到轴承座,最后由轴承座通过压下螺丝、压下螺母传到机身上,因此,每个机身分担的轧制力应为600kN。由于轧制力是通过压下螺母上表面传递到机身上的,赋予机身载荷时,应将轧制力转化为面力赋予机身承载面上,面力大小即为轧制力除以接触面的面积。机身是通过地脚螺栓固定在底座上,地脚螺栓限制了机身不能沿X、Y、Z三个方向移动,也不能绕三个坐标轴旋转。
机身的有限元模型如图4所示,共划分29367个单元。
3 计算分析
3.1 机身应力分析
有限元模型建立后,对其施加载荷和边界条件进行分析计算,得出机身各部分具体的应力与变形值。
图5为机身的应力场分布图,从图5a中可以看出,总体应力变化趋势由机身内侧到机身外侧逐渐减小,最大Von Mises应力为43.996MPa,发生在机身上端的内拐角处。图5b为X方向应力分量分布状态,由图可知,最大压应力为46.994MPa,位于轧制力的作用部位;最大拉应力为35.439MPa,位于机身顶端。图5c为Y方向应力分量分布状态,由图可知,最大压应力为16.798MPa,位于轧制力的作用部位;最大拉应力为10.296MPa,位于机身上端内拐角处。图5d为Z方向应力分量分布状态,由图可知,最大压应力32.747MPa,位于轧制力的作用部位;最大拉应力39.114MPa,位于机身上端内拐角处。
在轧制过程中,机身主要受垂直方向(Z向)的轧制力,机身上端的内拐角处有应力集中现象,应力值较大。取强度极限最小值σb=375MPa,[σ]=(0.13~0.3)σb=56.25~1 12.5MPa,可知机身强度足够。
3.2 机身变形分析
图6是机身变形云图。从图6a中可以看出,在轧制过程中,机身主要受力是垂直方向(Z向)的轧制力,所以机身的变形主要是沿轧制力方向(Z向)变形。机身的最大变形在上横梁处,为0.336mm。
轧机在工作时,由于受轧制力作用,机身上横梁向上隆起,两侧立柱是向内收敛变形。由图6b X方向的变形分量分布状态可知,X方向变形较小,为0.166mm,且变形是对称的。由图6c Y方向的变形分量分布状态可知,Y方向变形很小,为0.01mm。由图6d Z方向的变形分量分布状态可知,Z方向变形较小,为0.336mm。
综上分析可知,在最大轧制力作用下,机身在高度方向上变长,主要表现为上横梁Z向变形;在宽度上内收,主要表现为两侧立柱X向变形。若要减小机身承载时的变形,适当增大上横梁截面积,可以有效的改善机身的变形状况,进一步提高机身刚度。
4 结论
本研究基于有限元法,对机身力学行为等进行了较系统的研究。阐明了半轴轧机机身的力学行为,轧机处于工作状态时,机身的最大受力区在上横梁与立柱的过渡圆角处,最大变形区在上横梁的中心位置处。适当增加上下横梁高度,可以有效的改善机身的变形状况,提高机身刚度。
参考文献
[1]杜朝蓬,袁文生,史宝军,王忠雷,刘波.楔横轧多楔同步轧制技术的应用及发展[J].山东建筑大学学报,2007,(5).
[2]刘彬,李娜,袁文生.辊式楔横轧机上轧辊支撑部分的设计计算[J].锻压装备与制造技术,2006,41(2):37-39.
[3]王玲军,袁文生.整体式双辊楔横轧机的设计[J].锻压装备与制造技术,2006,41(1):34-36.
轧机刚度 篇4
随着现代工业的快速发展,各行各业对轧制产品的质量和轧制速度提出了更高的要求,而轧机振动成为制约轧制产品快速发展的主要障碍之一。轧机振动的发生给轧制过程带来很大的危害,严重时可能损坏轧机设备,甚至可能造成重大的经济损失[1]。
轧机振动问题是一个世界难题,各国专家从不同角度进行了研究[2]。Bar等[3]建立了轧机振动系统的数学模型,通过分析非线性参数和轧制速度的相互关系得出,轧制速度的大小直接影响等效阻尼的大小,进而影响系统的自激振动。杨旭等[4]结合轧制工艺润滑原理和机械振动理论,建立基于辊缝动态摩擦方程的轧机垂直振动模型,分析了变形区混合摩擦状态,轧辊-轧件表面粗糙度、轧件入口厚度与系统稳定性的关系。范小彬等[5]根据轧制界面非线性黏滑摩擦特性,建立了轧辊水平方向摩擦颤振模型及由不平衡力引起的工作辊水平方向“跳振”模型,发现当外扰力幅较小时系统呈现概周期运动,外扰力幅较大时系统呈混沌状态。刘浩然等[6]考虑四辊轧机在轧制过程中液压压下缸和平衡缸的分段非线性约束作用,建立了轧机辊系的多分段非线性动力学模型,发现分段非线性因素影响下系统的振动行为是比较复杂的。Tran等[7]认为液压系统的非线性特性主要体现在由于速度变化引起的液压元件内部摩擦因数非线性,动态载荷使得液压元件等效刚度呈非线性变化。液压系统是轧机系统中非常典型的非线性系统,因此研究液压系统非线性约束下的轧机振动,对揭示液压系统动态特性影响下的轧机振动机理有重要价值。
本文考虑轧制过程中液压系统动态特性的影响,建立一种液压缸非线性刚度约束下的轧机辊系振动模型,分析各参数对系统幅频特性和分岔特性的影响,最后引入反馈控制,研究轧机辊系在引入控制前后的稳定性。
1 非线性弹簧力
本文主要考虑一种双作用单活塞液压缸约束下的轧机辊系的振动特性,图1为双作用单活塞液压缸的结构图。该种液压缸只在活塞的一侧装有活塞杆,因而两腔的有效面积不同,往返的运动速度和作用力也不相等,液压缸活塞运动改变了两腔液体的有效长度,引起了液压油的刚度的变化。
在液压系统中,液压油实际上是以与弹簧大体相同的方式压缩。液压缸系统弹簧刚度由活塞杆刚度和液压油刚度串联组成。活塞杆的体积模量是液压油体积模量的近百倍,故可以把活塞杆看作刚体处理,液压缸的非线性刚度主要由液压油的刚度决定[8],其变化规律为[9]
式中,K为液压油的体积模量;L为液压缸的有效行程;Ai为液压缸活塞两侧的有效面积,i=1,2;L1为无杆腔的初始有效长度;x为系统颤振位移;ViL为阀与缸某一侧之间液压管路中液压油的体积,i=1,2。
系统液压缸的弹簧力可以表示为
相比很小,因此液压缸的弹簧力可以表示为
由式(3)可以看出,液压缸的弹簧力随活塞位置变化呈现非线性,这为研究液压缸非线性刚度约束下的轧机辊系振动问题提供了理论基础。
2 轧机辊系振动模型
在轧机垂直振动中,液压系统的非线性约束作用不可忽略[10],因此将其等效为弹簧刚度k(x)加入到轧机辊系模型中。考虑到四辊轧机上下辊系沿轧制线对称[11],故以上辊系为研究对象,将其等效为一个质量块的单自由度集中参数模型,建立图2所示的轧机辊系动力学模型。其中,m为轧机工作辊和支撑辊的等效质量,c为轧机系统的线性阻尼系数,k为轧机系统的线性刚度系数,F为外激励幅值,τ为引入轧机系统的控制输入量。本文主要考虑双作用单活塞液压缸非线性刚度约束作用,暂不考虑液压缸和轧机系统的非线性摩擦力。根据广义耗散拉格朗日原理,建立一种双作用单活塞液压缸非线性刚度约束下的轧机系统动力学方程:
式中,α为液压缸非线性刚度的约束系数。
该模型考虑了液压缸非线性刚度k(x)的约束作用,同时引入控制输入量τ对系统进行反馈控制。
3 幅频响应求解
为便于计算,将系统动力学方程式(4)简化成如下形式:
令ω2=ω02(1+εσ),ε为系统非线性项系数,σ为频率调谐因子,将式(5)化为如下形式:
令式(6)中的ε=0,导出派生系统的解及其导数:
其中,a和θ为时间的慢变函数,并认为a和θ在一个周期内保持不变,得到平均化方程:
其中,φ=ωt-θ。将式(7)代入式(11)得到
将式(12)~式(14)代入式(10)可以得到平均化的具体方程:
当时,系统具有稳定的振幅和频率,消去式(15)中的θ可得到系统的幅频响应方程:
式(16)即为液压缸动态特性影响下的轧机辊系的幅频方程,是进一步研究轧机振动特性的基础。
4 轧机辊系的稳定性控制
将液压弹簧力的非线性动态特征归结为Duffing方程,同时系统中引入控制输入量,基于Lyapunov稳定判别法给出轧机辊系渐进稳定的条件。
以式(1)所示的液压缸动态刚度模型为例,对其在原点处进行泰勒级数展开:
弹簧弹性势能U具有对称性,可以表示为
则弹簧力可以表示为
将控制输入量引入轧机辊系模型,可得系统动力学方程
为了便于分析,将式(20)中的一次项和三次项系数用字母κ1和κ2代替,简化处理后可得
本文的控制目的是令式(21)的解为预期函数xd(t),为达到这个目的,选择控制输入为[12]
这个控制器由如下部分构成:位移误差反馈kpxe、速度反馈以及前馈
联立式(21)和式(22)可得动力系统
由式(23)可以看出,系统的误差动力瞬间行为是由增益kd和kp的大小决定的。为判定kd和kp的大小,构造如下Lyapunov函数:
其中,λ是大于0的常数。保证对于正定的充分条件是
于是的时间导数为
这表明是负定的,根据Lyapunov定理可知式(23)是渐进稳定的,即反馈控制器可以保证系统收敛到预期轨道xd(t)。当kp=λkd且0<λ<δ+kd时,系统式(21)是渐进稳定的。
5 数值分析
某厂四辊轧机实际参数为:m=1.44×105kg,c=2.04MN·s/m,k=23.5GN/m,L=0.11m,A1=0.6361m2,A2=0.3243m2,K=1.6GPa,ε=0.01,kd=1.1kN/m,λ=1.0×103,kp=1.1MN/m。对轧机辊系振动系统进行数值仿真,分析轧机系统的幅频特性、分岔特性以及加入控制后的振动特性,研究轧机辊系的振动行为。
5.1 幅频特性
考虑轧机辊系振动系统受到不同轧制参数的影响,以非线性刚度系数α、无杆腔初始位移L1和外激励幅值F为研究对象,分析这些参数对轧机辊系振动的影响规律。
由图3可以看出,α的大小直接影响轧机辊系的固有频率。随着非线性刚度系数α的增大,轧机辊系固有频率减小,系统幅频曲线向左平移,远离轧机辊系的共振频率。同时,α的增大,减小了轧机辊系的振动幅值,有效地减小了外部扰动对轧机辊系振动的影响。
从图4可以发现,系统幅频特性曲线对无杆腔初始位移L1非常敏感。L1小幅度减小,系统幅频曲线的拐弯程度明显增大,轧机辊系的幅频曲线的跳跃现象变得明显,系统更易于失稳。因此,适当地控制液压缸无杆腔初始位移L1位置,有利于轧机辊系的稳定性。
对比图5中的三条曲线可以发现,外激励幅值F的大小直接影响系统振动幅值的大小。外激励幅值F的增大将使轧机辊系振动幅值增大,同时系统的主共振频带变宽,系统的不稳定范围扩大。
对比图3~图5所示的幅频特性曲线可以看出,非线性刚度系数、无杆腔初始位移和外激励幅值等参数的变化影响着幅频特性的变化,因此可以适当地控制这些参数,有效地降低共振对轧机辊系的危害。
5.2 分岔特性
以液压缸无杆腔初始位移L1和外激励幅值F为分岔参数,分析系统分岔响应随液压缸无杆腔初始位移L1和外激励幅值F的变化规律,研究液压缸无杆腔初始位移L1和外激励幅值F对系统稳定性的影响。
图6~图9所示为液压缸无杆腔不同初始位移L1时的分岔特性。通过观察不同初始位移L1的相平面图和Poincare截面,分析液压缸非线性刚度约束系统的分岔响应随初始位移L1的变化规律。
由图6可以看出,液压缸无杆腔的初始位移位于中间区域时,非线性刚度表现为弱非线性,系统大致上处于周期运动的状态;液压缸无杆腔的初始位移位向两边靠近时,非线性刚度约束作用较强,分岔行为变得复杂而不稳定。在图7~图9中,当L1=60mm即活塞初始位置处于液压缸的中间区域时,系统相图是一封闭的曲线(图8a),Poincare截面上表现为一个孤立的点(图8b),表明此时系统为周期运动。当L1=5mm,106mm即活塞初始位置处于液压缸的两端时,系统相图不再是一个封闭的曲线,其对应的Poincare截面是一些有界离散的点,表明系统已经进入了混沌运动状态。因此,控制无杆腔的初始位移处于中间区域,能够有效地保证轧机辊系的稳定性。
图10~图13为不同外激励幅值F时的分岔特性。观察轧机辊系的分岔响应随外激励幅值F的变化规律,并通过相平面图和Poincare截面对分岔响应加以验证,分析外激励幅值对轧机辊系振动的影响。
从图10中可以发现,随着外激励幅值的变化,轧机辊系振动在周期运动、倍周期运动和混沌运动等多种运动状态之间交替变化。当F=156kN时(图11),系统相图是一个封闭的曲线,Poincare截面上表现为一个孤立的点,表明此时系统为周期运动。当F=150kN时(图12),系统相图仍是一个封闭的曲线,Poincare截面上表现为两个孤立的点,说明轧机辊系将会出现倍周期运动。当F=158kN时(图13),系统相图不再是一个封闭的曲线,其对应的Poincare截面是一些有界离散的点,表明系统已经进入了混沌运动状态。
结合图6~图13所示的分岔图、平面图和Poincare截面可以发现,无杆腔初始位移和外激励幅值的变化影响着轧机系统的动力学行为,轧机辊系可能出现周期运动、倍周期运动和混沌运动等复杂的运动状态,使轧制产品表面出现有规律的周期振纹或振痕,影响轧制产品的质量。
5.3 反馈控制研究
考虑到轧机振动的不可预测性,对此系统加入控制输入,基于Lyapunov判别法,给出系统渐进稳定的条件,通过数值仿真,对比分析加入控制前后的系统的稳定性。
图14~图17为加入控制前后的时域曲线和相平面曲线。图14和图15所示分别为振动位移曲线和振动速度曲线,为了清晰地表现加入控制后的效果,在t≥0.05s时才加入控制。从图14和图15可以看出,加入控制前,系统的运动是混乱无序的;加入控制后,经过短暂的时间,系统的运动曲线开始进行等幅振荡并且幅值有很大程度的减小。图16为t≥0时的相平面曲线,图17为t≥0.05s的相平面曲线,对比图16和图17可以发现,系统在没加入控制之前,系统的运动是非常复杂的,加入控制后系统开始进入稳定的周期运动。由图14~图17可以看出,控制输入量的加入对轧机辊系振动行为有着较为明显的作用。反馈控制的加入可减少轧机辊系剧烈振动现象的发生,保证系统的稳定运行。
6 结论
(1)考虑轧制过程中液压系统动态特性的影响,建立了一种液压缸非线性刚度约束下的轧机振动模型。在该模型基础上,求得幅频响应方程,并仿真分析非线性刚度系数、外激励幅值和无杆腔初始位移等参数对轧机振动的影响。
(2)分析了外激励幅值和无杆腔初始位移对轧机系统分岔特性的影响,发现在不同的外激励幅值和无杆腔初始位移下,轧机辊系振动在周期运动、倍周期运动和混沌运动等多种运动状态之间交替变化。因此,可以通过调节外激励幅值和无杆腔初始位移等参数改变轧机辊系的动力学行为。
(3)对比加入控制前与控制后的系统时域曲线和相平面曲线,发现系统在没加入控制之前,系统的运动是混乱无序的,加入控制后系统经过短暂的时间开始稳定地周期运动,表明了反馈控制器的有效性。这为保证轧机辊系的平稳运行提供了理论参考。
摘要:针对液压系统动态特性影响下的轧机振动问题,建立一种液压缸非线性刚度约束下的轧机辊系振动模型,采用平均法求得系统的幅频响应。在Lyapunov第二方法的基础上,设计了系统的反馈控制器。以轧机实际参数为例,仿真分析轧机辊系中非线性刚度系数、外激励和无杆腔初始位移等参数对幅频响应的影响,并研究外激励幅值和无杆腔初始位移等参数发生变化时的动态分岔特性,发现随着这些参数的变化,轧机辊系振动在周期运动、倍周期运动和混沌运动等多种运动状态之间交替变化;同时在系统中引入反馈控制,通过对比控制前后的时域曲线和相平面曲线,验证了反馈控制器的有效性。研究结果为提高轧机辊系稳定性提供了理论参考。
关键词:轧机振动,幅频响应,反馈控制器,分岔特性
参考文献
[1]Wu Shengli,Shao Yimin,Wang Liming,et al.Relationship between Vibration Marks and Rolling Force Fluctuation for Twenty-high Roll Mill[J].Engineering Failure Analysis,2015,55(1):87-99.
[2]Heidari A,Forouzan M R.Optimization of Cold Rolling Process Parameters in Order to Increasing Rolling Speed Limited by Chatter Vibrations[J].Journal of Advanced Research,2013,4(1):27-34.
[3]Bar A,Swiatoniowski A.Interdependence between the Rolling Speed and Non-linear Vibrations of the Mill System[J].Journal of Materials Processing Technology,2004,155/156:2116-2121.
[4]杨旭,李擎,童朝南,等.基于辊缝动态摩擦方程的铝板冷轧机垂振机理分析[J].北京科技大学学报,2014,36(1):104-109.Yang Xu,Li Qing,Tong Chaonan,et al.Vertical Vibration Mechanism Analysis of Aluminum Cold Rolling Mills Based on the Dynamic Friction Equation In Roll Gap[J].Journal of University of Science and Technology Beijing,2014,36(1):104-109.
[5]范小彬,臧勇,王会刚.热连轧机水平振动特性研究[J].钢铁,2010,45(9):62-66.Fan Xiaobin,Zang Yong,Wang Huigang.Research on Hot Rolling Mill Horizontal Vibration[J].Iron and Steel,2010,45(9):62-66.
[6]刘浩然,刘飞,侯东晓,等.多非线性弹性约束下轧机辊系振动特性[J].机械工程学报,2012,48(9):89-94.Liu Haoran,Liu Fei,Hou Dongxiao,et al.Vibration Characteristics of Mill Rolls under Multi-segment Nonlinear Elastic Constraints[J].Journal of Mechanical Engineering,2012,48(9):89-94.
[7]Tran X B,Hafizah N,Yanada H.Modeling of Dynamic Friction Behaviors of Hydraulic Cylinders[J].Mechatronics,2012,22(1)65-75.
[8]王林鸿,吴波,杜润生,等.液压缸运动的非线性动态特征[J].机械工程学报,2007,43(12):12-19.Wang Linhong,Wu Bo,Du Runsheng,et al.Nonlinear Dynamic Characteristics of Moving Hydraulic Cylinder[J].Journal of Mechanical Engineering,2007,43(12):12-19.
[9]朱勇,姜万录,刘思远,等.非线性液压弹簧力对电液伺服系统非线性动力学行为影响的研究[J].中国机械工程,2015,26(8):1085-1091.Zhu Yong,Jiang Wanlu,Liu Siyuan,et al.Research on Influences of Nonlinear Hydraulic Spring Force on Nonlinear Dynamic Behaviors of Electrohydraulic Servo System[J].China Mechanical Engineering,2015,26(8):1085-1091.
[10]Lorinc M,Szabolcs F,Nariman S.A Practical Method for Friction Identification in Hydraulic Actuators[J].Mechatronics,2011,21(1):350-356.
[11]Hu P H,Ehmann K F.A Dynamic Model of the Rolling Process.Part 1:Homogeneous Model;Part 2:Inhomogeneous Model[J].International Journal of Machine Tools and Manufacture,2000,40(1):1-31.