激光三角测量

2024-06-03

激光三角测量(通用10篇)

激光三角测量 篇1

0 引言

在显微图像测量时,为获得全局完整的图像,通常将检测材料在显微镜下进行二维扫描来获取图像。在显微图像的子孔径扫描及对焦获取过程中,由于导轨的平面度误差和外界环境影响,导致被检测材料在2 µm空间内产生平移和倾斜。通常,被检测材料上的检测目标以万计,直径从几微米到几十微米。由于2 µm的移动已经达到检测目标的尺寸数量级水平,并且被检测材料的倾斜,使得检测目标图像变形,对显微图像精度产生了较大影响。为保证被检测材料检测装备获取准确的显微图像,要求系统能实时测量被检测材料的移动,并且能实时探测与补偿其转动角度[1]。

为了提高图像测量的精度,研究人员提出了各种不同的图像拼接方法[2],并探讨了影响图像拼接精度的各种因素。通常采用两种显微图像拼接方法。一种是frame-to-frame方法,尽管相邻图像的拼接精度较高,但微小的配准误差会产生图像拼接的累积误差。第二种方法通过建立图像拼接的全局配准模型,同时求解所有图像的配准参数以消除累积误差。这两种方法依赖于图像本身的特征进行配准,拼接模型通常比较复杂,目标函数的求解速度较慢,对于大规模显微图像拼接效率较低[3]。并且在显微图像的扫描过程中,由于导轨等硬件的运动精度和其它外界原因,光学成像系统会出现过焦、散焦、偏转、错位和倾斜等变化,导致显微图像的质量下降,使得后续的图像分割、分类、拼接与计数等工作难以保证精度[4]。针对发生偏转、错位的显微图像拼接,有研究者提出利用硬件的检测精度来实现无特征显微图像拼接[5]。针对过焦、散焦的显微图像,主要研究利用图像清晰度评价函数来实现精确聚焦[6,7];有研究者利用特殊设计的硬件直接测量光斑的变化,并且对过焦、散焦的显微图像进行实时补偿,提高图像处理精度和速度。还有研究者利用特殊设计的双光路直接测量尺寸,以减少外部因素的影响[8]。以上研究工作主要集中解决光学成像系统过焦、散焦、偏转、错位等变化对显微图像的影响。研究工作较少涉及到倾斜对图像的影响。

为了满足显微图像测量过程中对测量精度和速度的要求,本文分析了影响显微图像获取精度的外界因素。在此基础上,针对光学成像系统倾斜所导致显微图像的质量下降和变形问题,提出了一种用平行光改进传统的激光三角法的方法,检测光学成像系统倾斜角度和方向,对显微图像偏转进行实时补偿,消除光学成像系统倾斜所带来的图像的偏差,为后期显微图像的分析打下良好的基础。

1 倾斜角测量和补偿原理

1.1 激光三角法的改进

激光三角法是最常用的测量技术之一。其基本原理是:激光光束投射在平面镜上,被平面镜反射后,通过物镜在CCD上形成点光斑。随着平面镜变化,点光斑在CCD上的成像位置也在变化。通过计算CCD上点光斑位置,就可以计算出平面镜的偏转角度[9,10]。如图1 所示。

有两个因素会同时影响CCD上光斑的位置:第一个因素是平面镜的平移距离;第二个因素是平面镜的倾斜角。这两种因素都会影响平面镜的偏转角度。要区分这两种因素对光斑在CCD位置的影响是比较困难的。为了有效的利用激光三角法测量出平面镜的倾斜角,必须考虑这两种因素同时对光斑在CCD位置的影响,并且消除平面镜的平移带来的影响。

本文使用多束平行光束改进传统的激光三角法,消除平面镜的平移带来的影响,测量了平面镜倾斜角。改进的激光三角法原理如图2 所示。它由两束平行光束组成,并在CCD上形成了两个光斑。

图2(a)表示两束平行光束在平面镜上反射后在CCD上形成了两个光斑。l是两束平行光束之间的距离。点A和B分别是两束光束在平面镜上的反射点。为了能够清楚的讨论平面镜平移和转动角对光斑位置的影响,分别讨论平移和转动单独发生时的光斑位置。图2(b)表示当平面镜仅仅发生平移时在CCD上虚拟光斑的位置,分别是a1和a2。两个光斑之间的距离为(a2–a1)。图2(c)表示平面镜仅仅发生转动时光斑的位置。当平面镜以A点为中心转动角度 β 时,两束光束在平面镜上的反射点分别是点A和B′,在CCD上形成的光斑分别是b1和b3。当平面镜以B点为中心转动是角度 β 时,反射点B处的光束在CCD上形成的光斑是b2。图2(d)表示平面镜同时发生平移和转动时在CCD上形成的实际的光斑位置。当平面镜平移Δx,并且以A点为中心转动角度 β 时,两束光束在CCD上形成的光斑分别是b1和b3。其它3 个光斑的意义如前所示。由图2 可知,平面镜的旋转角的变化使得两束激光光束在平面镜入射点发生了变化,入射点的变化又导致了在CCD上两个光斑间距离的变化。通过分析改进激光三角法对光斑的影响效果,可以获得如下两个特殊的结论。

图 2 平面镜运动及改进原理 (a) 平行光;(b) 平移;(c) 转动;(d) 平移和转动 Fig.2 Plane mirror moving and improved principle. (a) Parallel light;(b) Translation;(c) Rotation;(d) Translation and rotation

第一个是关于平面镜的平移。平面镜平移主要是使光斑整体同时平移。平面镜平移距离Δx导致了CCD上的两个光斑产生整体的位移。在这种平面镜平移的情况下,设两个光斑的整体位移量是Δh1;

第二个是关于平面镜的旋转。当平面镜以A点为中心转动角度 β 时,平面镜的旋转不仅使光斑整体同时平移,而且还影响两个光斑之间的距离变化。这是因为平面镜的旋转角的变化使得两束激光光束在平面镜入射点发生了变化。入射点的变化使得CCD上两个光斑之间距离发生变化。两个光斑之间距离的变化反映了被测平面镜倾斜角度 β 变化。在这种平面镜旋转的情况下,设两个光斑的整体位移量是Δh2,两个光斑之间的距离的变化量是Δb。

因此,只要测量两个光斑在CCD上的坐标值,就能计算出平面镜倾斜角度。

根据图2所示光学几何关系,可以得出平面镜倾斜角β和两个光斑之间的距离的变化量Δb之间关系。

当平面镜分别以反射点A和B为中心旋转同一角度β时,两束光分别获得光斑b1和b2。可以得出:

当平面镜以反射点A为中心旋转角度 β 时,两束光可获得光斑b1和b3。可以得出:

由式(1)和式(2),我们能够得到:

在此,(a2–a1)的值是平面镜产生平移时两个光斑之间的距离(即两个光斑质心坐标之差值)。如果平面镜仅仅只有平移,那么这个值是不变的。(b3-b2)的值是平面镜以点A为中心旋转角度 β 时两个光斑之间距离的偏差。可以得到如下公式:

因为平面镜旋转角 β 非常小,sinβ 可以近似等于 β。可以得到如下公式:

由以上可以知道两个光斑的整体平移距离包括两个部分:Δh1和Δh2。而且,只要计算这两个光斑在CCD上的位置,就能够计算出平面镜的倾斜角。

1.2 测量系统设计

多光斑光学测量系统检测光路主要由激光发射器、立方体分光镜、1/4 波片、扩束镜、双楔镜、聚焦镜、CCD相机等构成。多光斑检测光路如图3 所示。

多光斑激光三角法的主体是一套多光斑光学测量系统。主要是利用两块重叠的楔镜(两块楔镜一端端部部分重叠)对经过准直扩束后的光束进行分束,形成四束相对固定位置的光束,然后同时经平面镜反射,在CCD上形成四个光斑。其检测光路主要由激光发射器、立方体分光镜、1/4 波片、扩束镜、双楔镜、聚焦镜、CCD相机等构成。激光器发射的640 nm波长激光束通过立方体分光镜、1/4 玻片、扩束镜,最后透过楔镜分为四束光,分别投射在标准反射镜上。激光光束在标准反射镜表面发生反射,反射光再次通过楔镜、扩束镜和1/4 玻片后,透过分光镜转向,通过聚焦镜投射到CCD相机上,产生四个光斑。当放置在平面x′y′反射镜绕x′旋转时,CCD上光斑沿着x轴移动;当反射镜绕y′旋转时,CCD上光斑沿着y轴移动。通过测量CCD光斑沿着x轴移动位移可以计算反射镜旋转角度。在测量光路设计中利用分光镜的透过和反射光,使得四束光束能反射到CCD上。旋转1/4 波片时能消光,使得CCD上的光斑不会饱和,影响测量精度。激光器出射的光有发散角,经过扩束及准直以后才使用。

1.2.1 利用楔镜形成多光束的测量光路

光束两次通过楔镜的测量光路原理如图4 所示。因为楔镜折射棱角α很小,当光线的入射角很小时,出射角也很小,偏向角满足:

式中n为光楔的折射率。

图4 中,β 是平面镜绕X轴的转角。因为平面镜是在三维空间中运动,设平面镜绕Y轴的转角是 γ。角度 γ 的计算和 β 是基于相同的光路,计算方法是一致的。下面以 β 的计算为例推导其计算方法。

根据图中的几何关系,可以计算出出射线和水平线之间的夹角α1。

当反射镜垂直时:

当反射镜顺时针旋转角度 β 时:

为了获得四束光束,将两块楔镜的部分重叠(两块楔镜一端端部部分重叠),对经过准直扩束后的光束进行分束后,形成四束光束。这四束光束在空间位置上有微小的夹角,不完全平行。在后期的实验过程中,应该对光路推导的公式进行标定,以减少其带来的误差。

1.2.2 多光斑检测光路数学模型

扩束筒由两个薄透镜组成,设大透镜和小透镜焦距分别为f1和f2,CCD相机前安放聚焦镜,焦距为f3。设在CCD上,两个光斑之间的距离设为b,则b=b3-b1。根据光学系统的几何关系,可得:

对b和 α1求微分可得:

由式(8)和式(10)可得:

1.3 光斑图像处理流程

光斑图像处理流程如图5 所示。为了减少噪声对激光光斑质心检测的影响,使用多帧平均和PGF(Peer Group Filtering)算法滤除噪声。PGF算法先将滤波窗口中邻域像素按照与中心像素特征距离按序排列,再通过fisher判别中心像素特征值最相近的点,确定同组成员;然后用同组成员像素的加权特征值代替原来中心像素特征值。PGF能很好地滤除噪声,又保护图像的边缘信息,有利于光斑质心的求解。使用在显微图像处理中效果较好的OTSU算法进行图像分割,将光斑从背景中分割出来。由于光斑比噪声要大,所以按面积排序后,去掉杂质,得到光斑。最后,利用灰度重心法获得光斑的质心。

2 实验及结果分析

基于改进的三角测量法,设计制造了一套二维移动实验装置如图6(a)所示。在图6(b)和图6(c)中,给出了两幅运动前后的CCD上四个光斑的图像。

多光斑光学测量系统安装在二维移动台上,能实现二维运动。在运动中,因为导轨的平面度误差,光学测量系统会产生倾斜。当CCD上光斑沿着x轴移动时,计算两个x方向光斑间距偏差Δbx,由前面得到的公式计算光学测量系统倾斜 β;同理可计算在y轴方向的光斑间距偏差Δby和倾斜 γ。在二维移动台前安装一块精度为 λ/10 的光学元件作为平面反射镜。进行三组测试,每组测试移动6 次。以起始点为基准,得到6 个光斑间距偏差的测量值。测量结果如图7 所示。

由图7 中可以得出,在多次测量过程中,对同一点测量的重复度较高。当显微图像倾斜±20 μrad内的角度变化时,误差为±5 μrad。造成误差的原因主要是采用重心法提取光斑质心的时候,由于光路调整和衍射造成光斑不是圆的,有拖尾现象等问题,给光斑质心的准确提取造成了一定的误差。

结束语

针对光学成像系统倾斜所导致显微图像的质量下降和变形问题,研究并构建了基于多光斑的激光三角法光路测量系统,能够完成光学成像系统倾斜角度和方向。并建立了反射镜旋转角度 β 与在CCD上两个光斑之间的距离的变化量Δb之间的数学关系。能够在误差为±5 μrad内对显微图像偏转进行实时补偿,消除光学成像系统倾斜所带来的显微图像的偏差。该方法可以应用在固体核径迹检测、平板显示器检测、面型检测等要求检测小角度的领域。

摘要:显微测量中倾斜会导致显微图像的变形。本文利用多光束改进传统的激光三角法,提出一种多光斑激光三角法检测光学成像系统倾斜角度和方向。首先利用双楔镜分离扩束后的激光光束,形成近似平行的四束光束;然后将四束光束同时投射到平面镜上,反射后利用CCD接收到四个光斑。由于四个光斑间距的变化只与成像系统倾斜角度有关,对成像系统前后的平移不敏感,因此避免了平移带来的影响。通过计算四个光斑间距的变化可以补偿成像系统倾斜角度,减少倾斜所带来的图像变形。实验结果表明,构建的多光斑激光三角法测量光路能够准确快速的检测出倾斜角度变化。该方法可以应用在固体核径迹检测、面型检测等要求检测小角度变化的领域。

关键词:光学检测,激光三角法,光斑

参考文献

[1]苑津莎,赵振兵,高强,等.红外与可见光图像配准研究现状与展望[J].激光与红外,2009,39(7):693-698.YUAN Jinsha,ZHAO Zhenbing,GAO Qiang,et al.Review and prospect on infrared visible image registration[J].Laser&Infrared,2009,39(7):693-698.

[2]BROWN M,SZELISKI R.Multi-image matching using multi-scale oriented patches[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,USA,2005:510-517.

[3]张恒,李立春,李由,等.显著性加权最小二乘图像匹配跟踪方法[J].光电工程,2008,35(4):23-27.ZHANG Heng,LI Lichun,LI You,et al.Tracking Method Based on the Significance Weighted Least Square Image Matching[J].Opto-Electronic Engineering,2008,35(4):23-27.

[4]弟宇鸣,叶红兵,邱晓林,等.基于主成分变换的核径迹图像噪声分析及消除[J].核科学与工程,2007,27(1):37-40.DI Yuming,YE Hongbing,QIU Xiaolin,et al.The analysis and removal of the nuclear track image noise based on principal components transform[J].Chinese Journal of Nuclear Science and Engineering,2007,27(1):37-40.

[5]王生怀,徐风华,陈育荣,等.基于三维精密位移工作台的显微图像拼接测量系统[J].机械设计与制造,2012(2):70-72.WANG Shenghuai,XU Fenghua,CHEN Yurong,et al.A microscopy image stitching measurement system based on 3D displacement worktable[J].Machinery Design&Manufacture,2012(2):70-72.

[6]高潮,朱红军,郭永彩,等.一种基于边缘点计数的聚焦评价函数[J].中国激光,2009,36(s2):163-167.GAO Chao,ZHU Hongjun,GUO Yongcai,et al.A focusing criterion function based on edge point counting[J].Chinese Journal of Lasers,2009,36(s2):163-167.

[7]翟永平,周东翔,刘云辉,等.聚焦函数性能评价指标设计及最优函数选取[J].光学学报,2011,31(4):0418002.1-11.ZHAI Yongping,ZHOU Dongxiang,LIU Yunhui,et al.Design of Evaluation Index For Auto-Focusing Function And Optimal Function Selection[J].Acta Optica Sinica,2011,31(4):0418002.1-11.

[8]范富明,程良伦,王晓芬,等.一种新型光学快速自动聚焦系统[J].光电工程,2010,37(5):127-132.FAN Fuming,CHENG Lianglun,WANG Xiaofen,et al.A Fast Detection and Compensation of Microscope Defocus Method Based on Laser Triangulation Method on TFTLCD Inspection[J].Opto-Electronic Engineering,2010,37(5):127-132.

[9]CARL Ch,LIE B,Keith C,et al.Distance measurement utilizing image-based triangulation[J].IEEE Sensors Journal(S1530-437X),2013,13(1):234-244.

[10]黄战华,罗曾,李莎,等.激光三角法大量程小夹角位移测量系统的标定方法研究[J].光电工程,2012,39(7):26-30.HUANG Zhanhua,LUO Zeng,LI Sha,et al.Calibration Method of Large-arrange Small-angle Laser Triangulation Measuring System[J].Opto-Electronic Engineering,2012,39(7):26-30.

激光三角测量 篇2

新型激光跟踪测量系统的设计

基于多边法原理,设计出一种新型的.激光跟踪测量系统.该系统采用四象限光电池作传感器,准确地测量目标镜反射光线的位置,测量灵敏度为200mV/mm;以双电机驱动的双轴单转镜作跟踪机构,结构简单,运动灵巧,立体转角约±35(;模拟式PID与数字式PID相结合的控制方案,控制精度高,跟踪速度快.实验表明,系统跟踪速度优于0.7m/s,综合测量精度1.3μm.

作 者:隋修武 张国雄 赵树忠 刘丽亚 作者单位:天津大学,精密测试技术及仪器国家重点实验室,天津,300072刊 名:光电工程 ISTIC PKU英文刊名:OPTO-ELECTRONIC ENGINEERING年,卷(期):32(1)分类号:V556.7关键词:激光跟踪系统 坐标测量 数字式PID 光电位置检测器

维激光扫描测量技术的应用 篇3

一、应用背景

如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。

基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。

随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。

因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。

二、扫描原理

三维激光扫描仪按扫描原理可划分为基于相位式以及基于脉冲式的,基于相位式的三维激光扫描仪扫描速度快,精度高,点云密度高、质量好,但是相对的来说,扫描射程较短,在150米以下;基于脉冲式的三维激光扫描仪扫描射程长大于200米,最远的甚至达到6,000米,但是扫描速度慢,精度较差,点云较少。由于相位式及脉冲式的不同特点,其适用于的行业领域也有所不同,相位式的三维激光扫描仪适用于数字工厂(石油、天然气、化工、汽车、重工业、等工厂,轮船、飞机)的生成,交通事故和犯罪现场重建、铁路轨道扫描和隧道扫描;而脉冲式的三维激光扫描仪适用于室外应用,如滑坡监测、河水和海水对港口码头和堤坝的侵蚀变化,公路测量等。

三、应用范围

三维激光扫描测量技术有着广泛的应用。激光扫描技术与惯性导航系统(INS)、全球定位系统(GPS)、电荷耦合(CCD)等技术相结合,在大范围数字高程模型的高精度实时获取、城市三维模型重建、局部区域的地理信息获取等方面表现出强大的优势,成为摄影测量与遥感技术的一个重要补充。

现在在工程、环境检测和城市建设方面等均有成功的应用实例,如断面三维测绘、绘制大比例尺地形图、灾害评估、建立3D城市模型、复杂建筑物施工、大型建筑的变形监测等。随着三维激光扫描测量技术、三维建模的研究以及计算机硬件环境的不断发展,其应用领域日益广泛,如制造业、文物保护、逆向工程、电脑游戏业、电影特技等,逐步从科学研究发展到进入了人们日常生活的领域。

四、文物保护

在三维激光扫描技术出现之前,考古勘察需要使用全站仪记录主观选择的三维位置、此后又在CAD中使用“连接点”方法产生正视图和二维图纸。

三维激光技术从根本上改变了这一切。按预先确定的分辨率在所选区域记录三维位置,产生数百万个高精度坐标。经扫描构造的表面用点云来表示,可以利用三维方式表示它的形状。点云还包括因高度或安全原因不可能进入的区域,从而考古学家不在受传统全站仪骨骼测量的限制,其进入的是整个“虚拟”环境,而不仅仅依赖图纸。

五,数字工厂

三维激光扫描系统可以提供真三维、真尺寸的工厂改造数据模型。加快设计的进度,在真实尺寸下得到最佳设计方案。

工厂改建:早期的工厂后经过了多次技术,现要进行扩大产能的改扩建,需要拆除、更换、新增大量的设备和管线。现有的比较完整的图纸只有当年的最原始装置的管道轴测图,厂里的多次技改和多年工厂运营维护的相关资料并不完整,并且也与实际有较大出入。而改扩建设计质量的关键取决于对现状的了解程度,而已有图纸与现状不符,现场情况复杂,给设计带来了很大难度,所以如何获取到准确的工厂现状资料就是第一个要解决的问题。

虚拟安装:从点云生成的竣工模型与原设计的对比,进行碰撞检测,查找出冲突,尽早发现施工中发生的问题。

六,隧道测量

隧道与采矿工程师现在遇到的问题是怎样准确验证隧道方向、评估隧道剖面超挖/欠挖以及准备却计算喷混凝土的厚度以便加固。

考虑到地下矿刚刚完工采矿场存在的潜在危险以及对勘察人员产生的风险,有必要拥有一件能让他们在最少时间内获得最多信息的工作。

三维激光扫描仪以更快的速度和更广的扫描范围可以保证在短时间内获得隧道墙面的3D数据,极其复杂的表面依然可以毫不费力的制作成表面模型,可进行开挖土方量计算,开挖隧洞壁平整度分析,隧洞的断面分析,超/欠挖分析,隧道掘进方向效验等。

七、灾难和事故现场测量

在犯罪现场评估前期,法医调查员很少能够确定哪些信息重要,经常对哪些东西需要测量和记录以及哪些不需要测量和记录做出主观决定。尸体、蛋壳、枪支和血滴都是明显东西,很容易定位,但是却遗漏一些不明显但是对破案关键的物体。

三维激光扫描技术获取所有光線能到的地方,捕获犯罪现场或者事故现场详细信息,可以在任何时候还原成三维情景。模型可以在计算机中模拟灾难事故的现场,便于分析、推理案情。

事实上,三维激光扫描仪的应用还远远不止本文所罗列的这些,水土保持,概念汽车设计,森林计测……以及各种你想象不到的领域。因此,有业内人士曾指出,三维激光扫描技术的应用,只局限于你的想象!

资料链接:

如何选择三维激光扫描仪

目前市场上生产基于相位式三维激光扫描仪的厂家有美国的Faro、德国的z&F,德国的Callidus;生产基于脉冲式三维激光扫描仪的厂家有奥地利的Reigl,瑞士的Leica,加拿大的Optech等。面对市场上如此多款的三维激光扫描仪,用户如何选择呢?

工作效率是选择三维激光扫描仪的重要因素,影响扫描仪工作效率主要因素有:

1.便携性:直接影响设备的携带、工程施工速度及人员投入;

2.扫描速度:直接影响单测站扫描时间;

3.扫描视窗:直接室内及全景扫描的站点数,节省扫描时间;

4.设备架设:三维激光工程大部分时间浪费在架站过程中,架设简便性直接影响外业时间;

5.设备操作:设备操作简单与否对效率的影响等同速度因素;

6.扫描范围:最短距离分辨率、最长距离分辨率。

浅析激光振动测量技术 篇4

目前振动测量在材料探伤、机械系统的故障诊断、噪声消除、结构件的动态特性分析及振动的有限元计算结果验证等方面都得到了广泛的应用,所以激光振动测量技术有着广阔的应用与发展前景。

1 激光振动测量技术的测量原理及现状

目前,常用的激光振动测量方法有激光三角法、散斑法、全息法、激光多普勒效应法、光纤与微机电(MEMS)法和干涉法等。由于这些技术的使用,使得激光振动测量的分辨率或精度在很大程度上得到了提高。下面分别介绍几种常用的光学振动测量方法:

1.1 激光三角测振法

激光三角法[1,2]是利用几何光学成像原理,将激光器发出的光经发射透镜汇聚于被测物体表面形成入射光点,该光点通过接收透镜汇聚于光电探测器上,形成像点,使用对位置敏感的传感器就可接收到这一信息。当入射光点与该光学结构产生相对入射光轴方向的振动或位移时,引起像光点在感光面上发生位移,从而引起光电探测器输出电信号的变化,根据电信号的变化量可求出像点唯一的变化量,通过信号处理可得到被测目标位移或振动信号。

该方法对于振动的测量是非接触形式的。激光三角测振法具有结构简单,发展比较成熟等优点,适用于工业现场安装使用。但是该方法的不利之处一方面是光电探测器的灵敏度和尺寸限制了该方法的分辨率和测量范围,另一方面是发射透镜的焦距限制了该方法的工作距离,不适于远距离处的微小振动测量。

1.2 光强测振法

光强测振法[1,2]是利用被测目标相对投射光束,或反射光束相对探测光路的位置变化导致探测光强的变化来探测振动。

该方法对于振动的测量既可以是接触式的,也可以是非接触式的。光强测振法具有信号处理方便、结构简单、成本较低等优点,可以广泛应用于各种场合。而且光强法与光纤的紧密结合,使得光强测振法的应用领域得到进一步拓展。该方法的不利之处在于光强易受外界环境和光源干扰的影响,使得测量结果精度不高,所以一般采用多波长、多光束等方法来改进光强测振法的不利之处,提高光强测振法的抗干扰能力。

1.3 全息测振法

全息法[1,2]是将相干光束的一部分作为参考光波,其余部分投射到物体上并被其反射作为物光波,两光波相遇产生干涉,所形成的干涉场反映了被测物体的振动情况,该干涉场由照相底片记录经过适当显影形成全息图。全息干涉测振可以对整个振动面上的点位置进行测量,通过比较不同时刻的全息干涉图,就能够描绘出被测振动面上各点的振动情况。

该方法对于振动的测量是非接触形式的全场同时测量。全息测振法具有可以进行面测量,同时获得多点数据的优点。该方法的不利之处在于须用银盐干板作记录介质,全息图需要进行照相及冲洗等处理,操作过程复杂,处理条纹图极其费时,无法实现实时测量,实际应用较困难。

1.4 激光多普勒效应测振法

多普勒测量[4,5,6,7]中的多普勒信号通常都是从被测物体的散射光中获得的,信噪比低,且包含有运动速度、光源、接收器之间的角度因素,由于这些因素会引入较大的测量误差。对振动特性的计算方法为信号中的每一个差拍波对应一个位移当量值,被测振幅的获得是经过对相邻两个翻转点之间的差拍波的个数进行计数而得到的。

该方法的测量不需要干涉仪组件,可精密装配。激光多普勒效应测振法具有被测速度矢量与多普勒频移呈线性关系,对于任何复杂的物体运动都适合研究的优点。因此,激光多普勒技术是一种高精度动态测量方法。该方法的不利之处在于得不到小于当量值的位移,测量分辨率很低。激光光栅多普勒效应的微振动测量系统的提出改变了以上不足。

1.5 光纤与MEMS测振法

光纤与MEMS技术相结合的振动传感器[1,2,8]在振动传感领域中一军突起。在微光机电传感器中,光纤可作为传光介质,为传感器提供光连接,传感器内部的电信号经由发光二极管转变为光信号,再输送到外部设备,这样可以使测量结果大大免受外界电磁干扰。光纤也可用来构造光路,成为集成传感器的一部分,作为悬臂梁感受外界振动,通过测量经过光纤的光强变化来实现振动传感。

光纤与MEMS技术相结合的振动传感器的优点是可免疫外界电磁干扰,可应用于避免使用电信号的场合,结构布置灵活,适合应用于复杂结构环境和复杂结构空间下的振动传感测量,适用于微型化和集成化产品。

1.6 干涉测振法

干涉测振法是将光束正入射于物体表面,其反射回来的检测光与参考光相遇形成干涉场,此后再对干涉场进行处理便得到所要测量的振动信息。

该方法对于振动的测量是非接触精密测量。干涉测振法具有应用范围广、重复性极高、可以对微小振动进行高精度测量的优点。但是该方法的不利之处一方面是由于干涉测振法具有高灵敏性,环境扰动对其影响非常突出,当光程质量不理想时,测量将无法进行。另一方面是在实际应用中很难保证入射光垂直于被测物体表面,以及目标物体表面的不平整性,使得由目标物返回的检测光与参考光将不能很好的重合,尤其当两束光偏差太大就不能形成干涉,这将使测量无法进行。因此,人们先后发明了光波频率调制补偿法、机械式位相调制补偿法以及将机械补偿和光调制相结合的方法来解决这一问题。

1.7 激光散斑测振法

激光散斑振动测量技术[1,2,3]是利用激光的高相干性,当激光照射到物体粗糙光学表面时将产生散斑场,该散斑场是被测物体表面信息的载体,记录下该散斑场并利用数字图像处理技术,就能以干涉条纹的形式得出被测信息的等高线,通过条纹判断便能得出振动物体的位移。

该方法一般采用多帧干涉图取平均的方法来减少环境扰动的影响,但并不能从根本上解决扰动问题。散斑干涉法适用于对频率已知的振动信号进行测量,从而实现对物体振动特性的分析,该方法的不利之处是精度和测量应用范围有限。

2 激光振动测量的展望

激光振动测量技术发展前景非常广阔,对于激光振动测量技术的研究工作也是研究人员为之做出不懈努力的工作方向。关于激光振动测量的展望有如下几个方面:

2.1 改善测量环境

随着我国科技水平的不断发展与提高,人类对于振动测量精度的需求已经达到了纳米量级。目前的分辨率已经不能实现人们对于某些研究领域项目的精度要求,对于纳米精度目标的实现是人类在科研领域的新突破。环境是影响系统实现纳米精度的一方面问题,像空气温湿度的变化、环境的振动和声学扰动等都会影响测量精度。因此,可以采用隔离措施和建立确保稳定环境温度的恒温室的方法来实现纳米测量精度。

2.2 结合多技术于测量

现代的激光振动测量系统广泛采用的是光、机、电与计算机技术相结合的方式来进行高精度、实时动态测量,大系统的概念、模糊理论、人机工程学的概念、自适应原则、调频技术、调制技术、反馈原理这一系列相关理论都广泛的应用在现代测量仪器的设计中,促使测量与控制技术成为一个完整的有机整体。鉴于以上广博知识,更需要多知识、高技术人才团结、协作完成由知识理论到仪器设计的实现。

2.3 进行科研创新

新的测量原理和方法是指导创新研究成果的理论依据,传统的振动测量方法已经不适用于纳米级振动测量的研究,要解决纳米级振动测量需要寻求新的测量原理和方法。将微观物理和量子物理的最新研究成果应用于测量系统中以及对现有技术进行创新性应用是可行的。

2.4 多领域应用

随着科技的发展以及性价比高、质量优良的激光振动测量仪问世,激光振动测量技术不仅可以应用于机械制造的检测中,还可以应用于生物医学、材料检测、航空航天等领域。

3 结束语

当今社会激光振动测量技术与人类的生产、生活是息息相关的,此项技术促使人类的生产、生活质量向着更好、更完善的方向发展。随着激光振动测量方法的成熟与完善,高精度、高效率、低成本的测量方案必将实现并走向成熟。

参考文献

[1]张书练,张毅.光电振动传感技术新进展[J].激光技术,2001,25(3):161-165.

[2]王小芳.四波耦合微振动光学测量的研究[D].南京:南京师范大学,2006:1-4.

[3]Tan Yushan,Jia shuhai,Le Kaiduan.The development of ESPI for vibration measurement[J].Appl.Opt,1999,120(14):41-45.

[4]李淑清,杜振辉,蒋诚志.激光光栅多普勒效应微小振动测量[J].光学学报,2004,24(6):835-837.

[5]Emilia G D.Evaluation of measurement characteristics of a laser Doppler vibrometer with fiber optic components[C].Proc.SPIE,1994,2358:240-247.

[6]Jiang Chengzhi,He Shunzhong,Liu Yanyu,et al.Study on signal of Inplane displacement measurement utilizing laser Doppler effect[J].Acta Optica Sinica,2003,23(1):71-74(in Chinese).

用钢尺测量氦氖激光的波长 篇5

关键词:钢尺 激光波长 光栅

中图分类号:G421文献标识码:A文章编号:1673-9795(2012)04(a)-0093-01

Abstract:This paper introduces the method of measuring He-Ne laser wavelength accurately and handily by using a steel ruler as a diffraction grating model. In addition, it compares the result with normal He-Ne laser wavelength.It is found that this method also has better accuracy,thus a new way to measure laserg laser wavelength is discovered.

Key words:steel ruler;laser wavelength;grating

自從1960年世界上第一台激光器发明以来,激光以其独特的优点,如单色性、方向性、相干性好,在现代科学技术和实践中得到了广泛的应用[1~2]。在实际应用中,一般都需要预先知道激光的波长。因此,测量激光的波长就显的尤为重要。测量激光波长的方法有许多种,本文巧妙地将一把普通的钢尺(最小刻度为)抽象为反射光栅的模型,将教科书中对光栅的概念—— 周期性结构—— 更加具体、形象化,拓展了学生思维;有趣、较准确地测量出氦氖激光的波长。

1 原理简述

基于钢尺上等间距这一周期性的结构,将钢尺作为一反射光栅。最小分度值为光栅常数,当激光以掠入射到钢尺刻度上,就会发生衍射现象。实验光路图如图1所示。

图中为衍射角,光束2和光束1的光程差为:

(1)

当时,即,对应于0级衍射斑点,即激光的几何反射斑点。各级衍射斑点满足:

(衍射级次…) (2)

通过式(2)可知,只要测出和,就可计算出波长。

下面主要测量和角度:

实验装置如图2所示,激光沿水平方向射出,垂直观察屏于S。将钢尺放置在升降台上,调节升降台使激光以一定角度入射到钢尺上刻度处,并在观察屏上有明显的衍射图象。

设激光入射钢尺处到观察屏的水平距离为,0级衍射斑点(稍微平移一下钢尺,让激光照到钢尺上没有刻度的地方,找到其反射点,即找到0级衍射斑点)到位置距离为,1级斑点到的距离为,2级斑点到的距离为,等等。由几何关系可知:

入射角: (3)

衍射角:

()

() (4)

最后,在白纸屏(观察屏)上画出个衍射点的位置,测量相关数据,由式(2)(3)(4)就求出激光波长。

2 数据记录及处理(如表1)

一级衍射:

二级衍射:

(He-Ne激光的标准波长为。)

3 结语

用钢尺测量氦氖激光波长看似实验方法比较粗糙,但从实验结果看还是比较准确,相对误差小于。作为一个设计性实验,在实际教学中,收到了良好的教学效果。有同学在报告中写到:“日常生活中我们常用钢尺测量书本的厚度以及纸张的宽度、长度等,所测物体的数量级为米。而现在要用钢尺测量数量级只有的激光波长,看起来似乎不可思议,但用光学知识,我们做到了!”还有同学写到:“用一把最小刻度值为的钢尺来测数量级为微米的激光波长,看似很困难,但巧妙的利用光的波动性质,确实可以实现!”

参考文献

[1]阎吉祥.激光原理技术与应用[M].北京:高等教育出版社,2006:233~305.

[2]俞宽新,江铁良.激光原理与激光技术[M].北京:北京工业大学出版社,2001:232~268.

[3]赵凯华,钟锡华.光学下册[M].北京:北京大学出版社,2002:2~31.

激光三角测量 篇6

三角高程测量是指由测站向照准目标观测垂直角和它们之间的水平距离或者斜距, 计算测站点与照准点间高差的一种方法。这种方法以它的测量时间、生产效率、经济效益优于几何水准测量得以广泛应用, 尤其在山区作业, 几何水准测量非常困难, 三角高程测量发挥了很大优势, 解决了几何水准测量难以解决的高程传递问题[1-6]。随着测绘仪器的不断更新, 测量机器人的出现使得三角高程测量精度得到了很大的提高, 通过一些特殊的观测方法, 精密三角高程测量在山区可以代替二等水准测量, 从而进行精密高程控制测量。

1 精密三角高程测量的原理

如图1 所示, 为了测量点A到点B的高差, 在O处安置全站仪、A处安置棱镜, 测得OA的距离SA和垂直角 αA, 从而计算O点处全站仪中心的高程HO:

然后再在过渡点I1处安置棱镜, 测得OI1的距离S1和垂直角 α1, 从而计算I1点处高程H1:

点A和点I1高差为hO1:

然后在下一个转点IO1处架设仪器, 将原A点的棱镜架设到I2, I1处的棱镜旋转与O1处的全站仪对准。同理可计算出I1和2两点高差h12

同理可得第I点与B点的高差hiB为:

点A和点B高差 ΔHAB为:

从式 (6) 可看出, 在求得点A和点B高差的过程中已消去了转点棱镜高, 并且与仪器高无关, 也就不存在量取仪器高的问题, 只需精确量取起点和终点的棱镜高, 从而大大减小了量取仪器高和棱镜高而引起的误差和工作量。

2 精密三角高程测量的精度分析[7-12]

单向观测三角高程测量精度分析高差的计算公式如式 (7) 所示:

式中:

Δh—三角高程测量的高差;

s—仪器到棱镜的斜距;

α—垂直角;

k—大气垂直折光系数, k=1.14;

R—地球平均曲率半径, R=6370km;

i—仪器高;

v—棱镜高。

单向观测三角高程测量高差的误差公式如式 (8) 所示:

从式 (8) 可知, 单向观测三角高程测量高差的误差与距离、垂直角的误差, 大气折光误差和量测仪器高、棱镜高误差有关。其中:

①测距误差对高差的影响与垂直角 α 有关, 一般中短程全站仪的测距精度为mD= (5+5×10-6D) mm, 它对高差精度的影响很小。

②测角误差mα对高差影响随着水平距离的增加成正比例增大, 其影响远远超过测距误差, 是制约高差精度的主要误差来源。

③从大气垂直折光误差mk2的公式可以看出在距离不大时, 其对高差精度的影响很小。

④对于改进的三角高程测量方法, 由于只在起始点量测仪器高、棱镜高, 故只考虑起点和终点的量高误差, 所以式 (8) 中认为可去掉mi2和mv2两项。

故点A与点B之间高差的计算公式为:

点A到点B高差中误差mΔhAB的计算

3 棱镜改进

改进后的觇标如图2 所示。

改进原理如图3 所示。

由几何知识可得:

展开并合并:

令l=100m, β=10°, a=0.04m。求得 Δ≤2″。因此在实际测量中, 在一定条件下可不计 Δ, 认为 (β+v) /2= α, 所以在一个测站中测角中误差为:

由于

因此可以通过对棱镜的改进, 提高测角的精度。

4 应用实例

采用GTS-602AF全站仪和改进后的棱镜。GTS-602AF全站仪的测角精度为2″, 测距精度为± (2mm+2ppmD) 。按照表1的技术要求对一个闭合路线进行观测。

在河南理工大学新校区, 笔者测了1.3km的一个闭合环, 测段数为6, 最后结算的闭合差为0.4mm, 符合二等水准测量的限差要求4.65mm (±D1/2) 。

5 结论

这种精密三角高程测量的新方法, 其优点是仪器可以任意设站, 只需量取始终两点的目标高, 减少了误差来源, 提高了精度, 还提高了工作效率。其和传统的水准测量相比, 在交通不便的山区, 具有便于布设测线和提高施测速度的优越性。因此, 在一定条件下, 精密三角高程测量可以替代二等水准测量。

参考文献

[1]周水渠.精密三角高程测量代替二等水准测量的尝试[J].测绘信息与工程, 1999 (3) :25-29.

[2]李方彦.精密三角高程测量代替三等水准测量的研究[J].科技传播, 2011 (6) :91-92.

[3]杨跃青.用精密三角高程测量代替二等水准测量方法的探讨[J].西北水电, 2011 (3) :21-23.

[4]韩昀, 程新文, 刘成, 等.精密三角高程代替二等水准测量在山区铁路勘测中的运用[J].测绘科学, 2011 (36) :106-107.

[5]韩军生, 顾和和.短视距精密三角高程测量代替二等水准的探讨[J].地理空间信息, 2011 (9) :141-143.

[6]贾中甫, 杨郁, 冯启俊.精密三角高程代替二等水准测量的研究与实践[J].测绘信息与工程, 2012 (37) :15-17.

[7]刘燕青, 温超.精密三角高程代替二等水准测试方案[J].西部资源, 2012 (3) :162-163.

[8]白雪含.探讨三角高程测量代替二等水准测量的方法[J].山西建筑, 2008 (21) :346-348.

[9]杨珂.全站仪精密三角高程法对二等水准测量的技术探究[J].科技资讯, 2012 (26) :49.

[10]李凯, 石力, 朱清海.应用精密三角高程测量替代二等水准测量[J].城市勘测, 2012 (5) :89-93.

[11]葛忠土.精密三角高程在大瑶山隧道二等水准测量中的应用[J].铁道勘察, 2009 (35) :22-25.

激光雷达散射截面测量误差分析 篇7

关键词:LRCS,测量数学模型,测量误差分析,测量记录要求

激光雷达目标散射特性信息对激光探测系统设计、鉴定及应用具有重要作用。激光探测系统基于激光雷达目标散射特性获得区别于背景的目标强度、距离和速度等信息[1]。激光雷达散射截面(LRCS)是激光雷达目标散射特性的量度。LRCS的测量结果与激光波长、目标材质与结构、辐射测量与标定原理、激光照射与探测系统、背景与大气环境等因素相关。对激光雷达散射截面测量误差进行理论分析与研究,是提高测量精度与测量结果可信性、可用性和可交换性的前提。文中依据辐射传输和光电探测原理,推导LRCS测量数学模型,对测量误差进行多角度分析,绘制误差树和编制数据记录表,提出误差修正与提高方法。

1 LRCS测量数学模型

当以无损耗各向同性球作标定标准时,LRCS的定义与雷达散射截面的定义相同。雷达散射截面(RCS)定义为4π乘以单位立体角内目标朝接收方向远区散射功率和从给定方向入射到该目标单位面积平面波功率密度之比,常用符号σ,以平方米为度量单位。可见,LRCS是一个对比测量结果,对比的标准是无损耗各向同性球;是一个主动测量结果,激光照射系统和激光探测系统配套工作;是一个远场测量结果,要求入射到目标上的波为平面波;是一个与入射与散射方向相关的量,定义为4π乘以目标朝接收方向远区散射的激光辐射强度Jr和给定方向入射到该目标的激光辐射照度Ei之比,即

由于被测目标截面积与照射激光光斑相比有大目标、小目标、线目标的不同情况,对激光光斑的拦截与散射作用有不同的影响,采用目标系数δ表示。设激光光束中心瞄准目标几何中心,瞄准误差ϕ。当目标截面积大于等于πR2 sin2(ω+ϕ)时,为大目标,δ=1;当目标截面积小于πR2 sin2(ω-ϕ)时,为小目标,δ为目标面积与光斑面积之比;当目标某一方向尺度大于等于R sin(ω+ϕ),另一方向尺度小于R sin(ω-ϕ),为线目标,δ1,为实际被照射到的目标面积与光斑面积之比。

设测量系统双站位工作,满足远场照射与测量条件。试验参数设定与记录如表1。根据辐射及传输原理[2,3]、光电探测原理及LRCS定义可得

将式(2)和式(3)代入式(1)得

根据辐射探测原理,探测器响应的是辐射照度值,输出响应电压值。当采用标准球标定测量时,在假定标准球为点目标时有

将式(5)代入式(4)得LRCS测量数学模型为

2 LRCS测量误差分析

由式(6)可见,比对测量在保证相同的入射与探测条件时,LRCS仅与目标表面材料及其粗糙度、目标几何结构及大小、标定标准及光电探测系统影响等因素相关。然而,实际测量中很难保证相同条件,必然引入多种测量误差,且采用标准球标定时散射辐射强度的计算也引入测量误差。由测量数学模型推导过程绘制测量误差树,如图1所示。图1中大气环境参数与标定和测量过程中的大气透过率直接相关,为了图的清晰没有给出全部连线。

2.1 标定标准引入的误差

LRCS测量结构是通过激光功率/能量信息的间接测量获得的。激光功率/能量的定量/比对测量需要有传递标准。采用标准球进行标定测量时,是假定标准球将接收到的入射激光均匀散射在全部空间中计算得出的标准球散射的辐射强度。而标准球往往不可能将接收到的入射激光均匀散射到全部空间中,从而引入误差。实际工作中通常采用朗伯体制作的标准板(聚四氟乙烯板)进行标定测量。标准板将接收到的入射激光按照余弦定律散射在半球空间中[4],其标定计算相对准确。此时,LRCS测量数学模型为式(6)再乘上2cos2βo项。

2.2 激光照射系统参数变化的影响

(1)激光输出功率稳定性的影响

激光输出功率稳定时,可认为pi=poi,式(6)中可直接约去,然而,实际脉冲激光功率总会有起伏,是测量误差的重要来源。

(2)激光远场发散角的影响

设激光束沿z轴传输,束宽为w(z),激光远场发散角定义[2]为。由于激光发射光学系统像差、以及大气等因素的影响,实际光束的远场发散角要大于理想光束的远场发散角。另外,激光远场发散角可以通过扩束或聚焦来改变,且与束宽直接相关。而激光光束束宽的定义通常有三种,即1 e2,环围功率(能量)86.5%和二阶矩定义[5]。对于基模高斯光束,上述三种定义完全一致。但对于高阶高斯光束和其他光束,不同的定义会得出不同的结果。当用激光远场发散角作为参数计算时,必须将激光束宽取为某一确定值进行比较才有意义。

(3)激光光斑场强分布不均匀的影响

通常情况下,测量所用的照射激光束是非均匀的基模或低阶模高斯光束,给入射辐射照度的计算带来误差。如目标上入射的高斯光束光斑内辐射照度不是一固定值,在光斑中心处最大,沿着光斑半径方向逐渐减小。而通常采用平均值的方法计算,待测目标和标准球大小形状不同,从而导致测量与标定时入射辐射照度分布不同;另外,当目标或标准球为小目标时,其上的辐射照度值大于平均值,从而给标定和测量带来误差。目标系数值越小,影响越大。当瞄准误差为零,且已知目标形状与尺寸及光斑特性时可以进行修正[6]。

(4)激光照射系统瞄准误差ϕ的影响

激光照射系统瞄准误差影响照射光斑中心与目标几何中心的重叠程度,从而影响目标或标准球上辐射照度的分布情况,给标定和测量带来误差。且目标或标准球为小目标或线目标时,直接给激光辐射照度计算与修正带来困难。应当依据实际数据进行修正与计算。

(5)同一材料对不同波长的激光、以及同一波长不同偏振状态的激光或波束形状不同的激光,其散射特性不同[7]和造成的回波信号的脉冲展宽也不同[6]。

2.3 激光探测系统的影响

(1)探测系统响应噪声的影响

由于系统噪声的影响,系统输出电压将有一定的起伏,对测量输出电压带来误差。可采用标准激光源对测量系统进行标定,用多次采样求平均值及其方差,得出系统响应噪声和引入的相对测量不确定度分量。分别用v-Δv系和vo-Δv系替代式(6)中的v和vo项修正。

(2)探测光学系统的影响

探测系统光学镜头的二次反射以及散射光斑中心和边缘返回探测系统的光程差不同会导致散射回波脉冲展宽,使探测系统所得到的散射光峰值功率密度下降。

(3)探测器响应率线性范围的影响

LRCS测量的基本原理是对比测量,对比的基础建立在探测器响应的线性工作范围内。当被测雷达目标与标准球/板对激光的散射能力相差较大时,如果超出探测器响应线性范围,其对比的基础就不成立了。可通过改变测量或标定距离、加装激光衰减片、改变激光远场发散角等方法使其满足线性测量范围要求。

(4)探测机理的影响

激光探测分为成像探测与非成像探测。成像探测从扫描方式上分为扫描成像探测和非扫描成像探测;从探测体制方式上分为相干探测和直接探测;从照射源上分为CO2激光、二极管泵浦固体、半导体激光等。按激光工作波长可分为可见光及短波红外、中波红外和长波红外激光成像雷达。不同的激光探测系统探测机理不同,影响其测量误差的因素不同,对目标激光散射特性的关注点也有所不同。对距离探测系统而言,有脉冲测距和相位测距。对于脉冲调制测距的激光探测系统,照射激光光斑强度分布、测量背景与支架散射回波的散斑作用、大气效应等都对激光回波脉冲上升时间与峰值响应产生影响。对于激光相干探测而言,本振信号频率与回波信号频率直接影响到其距离测量精度与距离成像分辨率等。对能量探测系统而言,不同的探测器其响应波长范围不同,激光波长的宽度与探测器波长响应的匹配度等也不同。对于检偏探测系统而言,由于目标的起偏作用不同,使不同的检偏探测系统有不同的响应等。需要依据实际测量条件进行记录与分析,或依据实际需要建立测量系统进行测量。

2.4 目标尺度与结构、背景与大气环境的影响

(1)目标尺度与表面结构的影响

目标或标准球/板的尺度与结构,一是影响拦截与散射光斑大小的能力,二是影响目标上辐射照度的分布与计算,三是在有瞄准误差时,在目标为小目标时,给辐射照度的修正带来困难。在相同条件下,由目标与标准球/板表面结构不同,从而导致散射波的脉冲展宽不同与峰值的下降,对采用峰值探测方法进行测量的系统带来测量误差。在式(6)中应当乘上ττo项。

(2)背景散射的影响

在实际外场测量中,待测目标尺度远大于标准球/板的尺度,而通常选择激光发散角与大尺寸待测目标匹配。而测量标定时,由于照射光斑面积大于标准球/板载面积,使架设支撑架与地面等背景对激光散射后进入探测系统,造成对标准球/板散射回波信号的非相干迭加干扰[8]。减小背景和支架的散射干扰方法有几种,一是采用低反射率的材料对支架或背景进行敷设消光;二是采用尺寸匹配法,对目标和标准球/板的尺寸进行估算,对发射系统的束散角进行控制;三是采用背景减去法,对标准球/板的背景进行多次测量,得到其回波电压Δvo,用vo-Δvo替代式(6)中的vo项进行修正。

(3)大气效应的影响

大气效应主要有三方面影响。一是大气的消光效应。当激光光束在大气中传播时,受到大气吸收和散射作用而衰减。激光波长宽度内的平均透过率为分子吸收平均透过率、分子散射平均透过率、气溶胶吸收平均透过率和气溶胶散射平均透过率之积,即T(λ)=T1(λ)⋅T2(λ)⋅T3(λ)⋅T4(λ);二是大气湍流引起的光束漂移,影响入射辐射照度与接收辐射照度的空间分布,造成强度图像噪声增大、相位畸变;三是大气产生的波前畸变至使回波信号时间延迟,造成距离图像噪声增大。在实际测量时应尽量缩短标定与测量时间、以满足相同的大气条件,消除大气传输影响,但必须保证两次测量有相同的入射和探测条件。可以采用双光路测量方法来减少/修正类似朗伯面目标LRCS测量时,因大气气溶胶变化引起的测量与标定时透过率变化引入的测量误差[9]。

3 结束语

引起LRCS测量误差的因素很多,包括激光发射系统参数变化的影响、目标与标准球/板尺度、结构与性能的影响、背景与大气环境的影响、激光探测系统探测机理与系统性能的影响等。不同的激光探测系统对激光目标散射特性的关注点不同。从测量数据可信性、可交换性和可用性原则出发,在进行LRCS测量与研究时,应当详细记录测量相关条件(见表1)进行综合分析处理,并将测量结果与测量条件同时记录保存才具有使用性与交换性。

参考文献

[1]孙志慧,邓家浩,闫晓伟.国外激光成像探测系统的发展现状及其关键技术[J].科技导报,2008,26(3):74-79.

[2]R D.小哈得逊.红外系统原理[M].北京:国防工业出版社,1975.

[3]李景镇.光学手册[M].陕西:陕西科学技术出版社出版,1986.

[4]陈玉丹,张维安,陈玉程,等.多类目标样片激光散射特性研究[J].应用光学,2011(5):1253-1256.

[5]吕百达.强激光的传输与控制[M].北京:国防工业出社,1999:65-67.

[6]包学志,高卫,李威,等.两种非理想条件下LRCS测量结果的校正方法[J].红外与激光工程,2008(1):61-63.

[7]韩香娥.大粗糙度表面激光散射特性实验研究[J].光散射学报,1995,7(2)(3).

[8]包学志,高卫,贾养玉,等.背景散射对LRCS测量精度的影响分析[J].应用光学,2008(4):590-594.

三角高程测量新方法探讨 篇8

目前全站仪已广泛应用于道路工程测量中。全站仪集电子经纬仪、光电测距仪和数据记录于一体, 其测距和测角精度大大提高, 这使全站仪用于道路高程测量成为可能;同时, 全站仪进行道路高程测量观测速度快, 效益高;并且以不同的观测方法观测分别能满足不同的道路高程测量的精度。

经过长期摸索, 笔者总结出一种新的方法进行三角高程测量。这种方法融合了水准测量和三角高程测量的优势, 施测过程结合了水准测量任意置站的特点, 减少了测量时引入仪器高、棱镜高所带来的误差来源, 使三角高程测量精度进一步提高, 同时使得施测过程更为简单、方便、快捷, 对一些工程测量有重要意义。

1 三角高程测量原理

如图1所示, 为了测量A、B两点的高差, 在O处设置全站仪, V为棱镜高, I为仪器高, 设测站点处高程为H0, 而计算得A点处的高程HA为:

不改变棱镜的高度, 重新将棱镜安置于B点处测得测站至B点棱镜到全站仪视准轴的高差为H2, 而可以测得B点高程HB为:

根据三角形的几何关系可知

式中:S为测站到棱镜的斜距;a2为竖直角。根据式 (1) 、式 (2) 和式 (3) , 可得点A和点B的高差为:

因此可得, A, B两点高差HAB与两点之间的竖直角大小有关, 与仪器高和棱镜高无关, 所以可以通过这种多余观测的原理消除在三角高程法测量高差时因仪器高和棱镜高测量的误差所带来的高程测量误差, 从而提高高程测量的精度。

当两点间距离大于400m时, 应考虑地球曲率和大气折光对高差的影响。设地球半径为R (R=6 371km) , 两点间的水平距离为D, 则两项综合影响的改正数f及改正后的高差h′AB可按下式计算:

式中:f=0.43D2/R, 为地球曲率和大气折光对高差的影响系数。

2 三角高程测量新方法的操作过程

(1) 全站仪置于任意一点, 但所选点位要求能与已知高程点和待测高程点上的固定高度的棱镜通视。

(2) 先用仪器照准已知高程点, 测出平距和垂直角, 计算出水平视线高程值。

(3) 用同样的方法照准待测点, 测出平距和垂直角。

(4) 将所得数据代入公式 (4) 或公式 (5) 中, 计算待测点的高程。

3 三角高程测量新方法的理论分析

理论上讲影响三角高程测量精度的误差来源主要有:垂直角观测误差、已知高程点和待测高程点之间的边长误差、大气折光误差、仪器高和棱镜高的测量误差。

从新、旧三角高程测量的方法对比分析可知, 边长误差、垂直角观测误差影响近似相等。大气折光误差, 当两点之间的距离越远, 误差越大。而新三角高程测量则是将全站仪安置与于两点之间, 分别进行瞄准, 使大气折光误差的视线距离缩短, 提高了测量精度。仪器高和棱镜高量取时产生的粗差, 是使观测高差出现大误差的主要原因, 而应用三角高程测量新方法在整个测量过程中, 不必量取仪器高和棱镜高, 不必要求已知高程点和待测高程点之间通视, 减少了粗差, 使测量的精度进一步提高。

4 三角高程测量新方法与传统测量方法的比较分析

4.1 新方法与传统三角测量误差比较

使用同一台全站仪, 采用传统的三角高程测量和三角高程测量新方法对不同的5个已知高程点进行观测, 其中误差见表1。

(±mm)

综上分析, 基于视线三角高程测量的新方法同传统三角高程测量法在误差方面比较, 精度平均可以提高50%左右。

4.2 新方法与传统三角测量高差精度比较

在只考虑水准仪置平、瞄准和读数3项主要误差的情况下, 三等水准测量一个测站的高差测量精度为:

根据等级水准测量对视距长度的要求, 为保证新方法能替代相应等级水准测量, 当竖直角不超过25°时, 用2″全站仪使用新方法进行三角高程测量, 当前视或者后视距离不超过350m时, 其一个测站的高差测量精度可以达到三等水准测量精度要求;考虑到距离太长时地球曲率与折光的影响以及通信联系与搬站、跑尺等时间问题, 前、后视距离以不超过300m为宜。

5 小结

三角高程测量新方法在测量上要求丝毫不改变仪器高和棱镜高, 并且前后测量的花杆和棱镜必须是同一套, 这样才可以做到免仪器高和免棱镜高的测量, 测出待测点的高程。测出的结果从理论上分析比传统的三角高程测量精度更高, 因为它减少了误差来源。整个过程不必用钢尺量取仪器高与棱镜高, 也就减少了这方面造成的误差。同时需要指出的是, 在实际测量中, 棱镜高还可以根据实际情况改变, 只要记录相对于初值增大或减小的数值, 就可在测量的基础上计算出待测点的实际高程。

摘要:三角高程测量是一种常用的高程测量方法, 但在测量过程中, 由于要量取仪器高、棱镜高, 测量误差加大。为满足工程需要, 通过对三角高程原理进行分析, 提出三角高程测量的新方法, 分析了其测量原理、使用过程以及优势, 该方法对三角高程测量在工程测量中的应用将起到一定推进作用。

关键词:三角高程测量,原理,操作过程,理论分析

参考文献

[1]王晓涛, 张志恒.全站仪高程测量方法的探讨[J].内蒙古科技与经济, 2006, (9X) :156-157.

[2]张前勇, 常胜.全站仪水准法三角高程测量的探讨[J].湖北民族学院学报, 2007 (1) :42-45.

[3]李祥武, 李俊锋.一种三角高程测量新方法[J].海洋测绘.2009, 29 (1) :73-75.

[4]贺春梅, 明祖涛.利用三角高程代替一等跨河水准的可行性研究[J].海洋测绘, 2006 (6) :25-27.

[5]何习平.全站仪中间法与水准测量的精度比较[J].水电自动化与大坝监测, 2004 (4) :37-39.

[6]孔凡文, 林峰.应用三角高程测量替代水准测量的可行性分析与实践[J].采矿技术, 2009, 9 (4) :38-39.

在线式激光极板厚度测量系统 篇9

本系统主要由扫描机构、测量激光传感器、参考激光传感器、扫描驱动电机、控制器、管理显示计算机及接口、相应的辅助电器系统等组成。

该技术与现有的GAMA射线测量方法相比, 具有环保、无核辐射污染的特点, 同时还可消除长期漂移和极片褶皱对测量精度的影响。

为了消除薄板运动过程中产生的波动给测量结果带来的影响, 本方案采用两个传感器双面测量, 即在薄板上下两侧各安装一个激光测量头, 分别测出上下两个传感器到薄板表面的距离, 由于两个激光传感器间的距离是固定的, 所以通过对测量值的计算就可得出薄板的厚度。

单位:哈尔滨工业大学

地址:黑龙江哈尔滨南岗区92号

激光探测灵敏度精确测量技术 篇10

激光探测灵敏度检测手段一般采用激光测距机 (或固体激光器) 配套激光衰减片的组合方式。激光探测设备的光学组件主要由前向截止滤光片和视场光栏组成, 探测窗口一般比较大, 而实际有效通光孔径为光电探测器光敏面直径, 直径一般不到1 mm, 因此检测激光探测灵敏度的测试激光功率稳定性和能量密度分布均匀性是决定检测准确性的主要因素。而一般激光器的基模激光主光斑能量分布为准高斯分布, 光斑能量随机起伏较大, 分布不均匀, 能量密度分布起伏约5倍左右, 对激光探测灵敏度的测量会产生数倍的随机偏差, 不能定量的准确测定灵敏度最小值, 对灵敏度的动态范围更是很难标定。实测激光光斑能量分布如图1所示。

由此可见, 检测激光光斑功率稳定性和能量密度分布均匀性直接决定着检测结果的可信度和准确性, 而检测激光光斑非均匀性分布造成的测量误差要远远大于激光脉冲功率稳定性所造成的误差。

2 激光探测灵敏度精确测量设计

2.1 技术路线

为提高检测激光脉冲功率稳定性和光斑能量密度分布均匀性, 同时尽可能地增大检测激光功率精确调节范围, 并保障检测设备使用便捷, 采取了以下5种技术措施。

(1) 激光光束均匀整形技术。为精确模拟远场平行光, 确保能量分布的均匀性, 主要采用积分球式能量均化方式、微透镜阵列式能量均化光学装置等对检测激光光束进行均匀整形, 保证输出激光能量分布的均匀性。

(2) 超小型激光器功率稳定设计技术。为尽可能使激光器输出功率时刻保持高稳定状态, 不但要尽可能降低激光器本身的输出激光功率起伏, 同时还要严格控制激光器输出激光光束的能量密度分布起伏。开发超低功率高稳定YAG激光器, 采用精确温控制措施和主动电光调Q方式, 确保激光器输出功率的稳定性。同时, 采用高集成、超小型化设计, 尽最大可能减小体积和质量, 以满足手持式使用要求。

(3) 激光精确衰减数控调整技术。为了适应对不同激光探测设备检测需要, 同时具备精确测量和标定探测灵敏度动态范围的能力, 采用激光精确衰减数控调整技术, 利用嵌入的大量激光衰减片组和自动解算数控调整机构, 可实时显示检测激光的功率密度值, 实现对检测激光的精确衰减和调整能力。

(4) 激光远场平行光准直模拟技术。根据激光探测设备作战使用环境, 需要在近场模拟远场平行光特性, 采用光束准直技术, 利用离轴扩束和消球差设计等方式, 提高光束质量和平行度, 模拟出远场平行光。

(5) 激光功率密度自动解算处理技术。一般激光探测设备具有多个激光探测单元, 测试时需对每一个探测单元进行多次测量, 测试工作量较大。为方便使用, 采用激光功率密度自动解算处理技术, 经程序设定后, 按设定频率和次数自动工作, 对测量结果统一记录并提供检测结论, 自动生成检测数据文档, 方便调用和查阅。

对激光能量均匀化光学处理技术, 经试验验证, 处理后的激光光束近似为激光远场平行光光束效果, 激光能量密度分布起伏小于10%, 确保了激光光斑能量空间均匀性, 能较好满足激光探测灵敏度测量要求。激光能量均匀化后实测的光斑能量分布如图2所示。

2.2 样机及工作原理

激光探测灵敏度检测设备原理样机主要由稳压电源模块、冷却装置、检测信号驱动模块、超小型高稳定激光器、激光能量均化光学装置、数控衰减光学装置、扩束准直光学装置、激光功率密度解算处理模块和综合数据处理模块组成。组成框图见图3所示。

图3中稳压电源模块负责为各单元提供稳定的直流源;冷却装置根据驱动模块信号和温控设备反馈数据自动调整开关和制冷强度, 使激光器在运行期间环境温度始终保持在一定温度范围内, 确保激光输出功率稳定;检测信号驱动模块为激光器提供驱动信号, 控制激光器开关;数控衰减光学装置可以实现以1 dB为步长精确调整激光输出功率密度;激光功率密度解算处理模块可根据需要计算衰减装置的组合方式, 并自动解算和显示当前激光输出功率密度值;激光能量均化光学装置把能量分布为抖动起伏较大的激光光束整形为能量均匀分布的匀场光束;扩束准直光学装置对激光光束进行整形, 使输出近似远场匀场激光光束;综合数据处理模块可自动设置测试方式, 记录并保存测试数据, 所有数据可通过USB接口自动传输。

3 验证试验

3.1 试验方法

(1) 将激光探测灵敏度检测设备和激光空间能量密度检测设备分别放置在光具座导轨上。

(2) 调整激光探测灵敏度检测设备和激光空间能量密度检测设备使其准直并使激光探测灵敏度检测设备出光孔径中心对准激光空间能量密度检测设备探测光学系统孔径中心, 同时DELIXI单相接触调压器接市电, 用UT53万用表监测调整单相接触调压器至220 V。

(3) 在激光探测灵敏度检测设备不同档位上发射单脉冲激光, 与其同时调整激光空间能量密度检测设备测量档位, 分别测试激光探测灵敏度检测设备1~63 dB不同档位的激光功率密度。

3.2 试验条件

(1) 激光空间能量密度检测设备:2 f J/mm2;

(2) 光具座:1 500 mm;

(3) UT53万用表;

(4) DELIXI单相接触调压器。

3.3 试验结论

激光探测灵敏度检测设备输出激光功率密度最小值为0.32×10-6W/mm2。激光探测灵敏度检测设备激光功率不确定度变化范围为2.0%~9.1%, 与通常使用的激光探测灵敏度检测方式所造成的灵敏度检测最大偏差数倍相比, 大大提高了激光探测灵敏度测量准确性, 确保了检测结果的可信性。激光探测灵敏度检测设备输出激光功率密度范围为0.32×10-6~1.43 W/mm2, 动态范围为66 d B。

4 结论

上一篇:规模化养猪的疫病控制下一篇:城市社区卫生服务中心