比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册)

2024-06-07

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册)(精选10篇)

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇1

导学内容:P32--34页例1,完成做一做及练习六1--6题

导学目标:

1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

3、使学生初步感知事物间是相互联系、变化发展的。

导学重点:比例的意义和基本性质。

导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

预习学案

1、什么是比?

2、 口算下面各比的值,哪些比的比值相等?

12:16   34 :18    5:3   10:6    6:10

导学案

探究比例的意义

例1  一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下

时间(时) 2 5

路程(千米) 80 200

80:2=200:5    5:3=10:6      6:10=9:15    802 =

像这样由两个相等的比组成的式子我们把它叫做比例。

练习:

应用比例的意义判断下面的比例是否正确

1、20:5=1:4        2、12 :13       3、0.6:0.2=34 :14

先独立完成,再在小组内交流。

我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?

四人小组讨论,老师巡视,给予指导。

请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。

老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的 值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。

二、比例的基本性质

板书:

80  :  2  =  200:  5    5  :   3=10  :   6    6  :  10=9  :   15

内项

外项

观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。www.xkb1.com

802 =2005               80×5=2×200

53 =106                  5×6=3×10

610 =915                 6×15=10×9

小组合作,举几个这样的例子验证一下。

从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。

练习

应用比例的基本性质判断下面的比例是否正确

1、6:3=8:5            2、0.2:2.5=4:50

3、2:3=12 :13           4、1.2:0.6=10:5

课堂检测新课标第一网

1、 应用比例的意义判断下面的比例是否正确:

(1)3:5=9:15

(2)2.5:5=25:0.5

(3)1002 =

(4)13 :2=16 :4

2、应用比例的基本性质判断下面的比例是否正确

(1)   6  : 9  =  9  :  12

(2)  1.4  : 2 =  7  :10

(3)  5 : 2   =58 :14

(4)34 :110 =7.5:1

3.选择题(把正确答案的序号填入括号内)

(1)(  )与  3  :  5  能组成比例。A.  10:6   B. 13  :15   C. 30 : 50

(2)(  )与  5  :  8  能组成比例。A.15 :18  B.  10:16   C.  3  :  5

(3) 4  :  5  与(  ) 能组成比例。A. 14 :15  B.   8:10   C.  15 : 12

(4) 7  :  9  与(  ) 能组成比例。A.  70 : 90   B. 17 :19 C. 3 : 4

课后拓展xkb1.com

你能比较一下“比”与“比例”有什么联系与区别吗?

板书设计

比例的意义和基本性质

一、比例的意义                        二、比例的基本性质

表示两个比相等的式子叫做比例。         两个外项的积等于两个内项的积。

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇2

导学目标

使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

导学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

导学难点:设未知数时长度单位的使用。

预习学案

一、什么叫比例尺?怎样求比例尺?

二、填空。

1、( ):( )=比例尺

2、甲、乙两地相距45千米,在图上用3厘米长的线段表示甲乙两地的距离,这幅地图的比例尺是()。

3、如果实际距离是图上距离的1000000倍,那么这幅地图的比例尺是(),图上1厘米实际表示()千米。

4、图上距离是实际距离的10倍,这幅图的比例尺是(),如果在图上量得20厘米的距离,实际长度是()厘米。

导学案

同学们见过地图吗?中国地图实际上是把实际距离按一定比例缩小画在地图上的。在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上,这时就要确定图上距离和相对应的实际距离的比。

一幅图的图上距离和实际距离的比,叫做比例尺。

图上距离:实际距离=比例尺

或图上距离实际距离=比例尺

看课本48页两幅图,你发现了什么?

(1)比例尺有两种:数值比例尺和线段比例尺

(2)数值比例尺和线段比例尺可以互化。

(3)在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后,再画在图纸上。

你知道比例尺2:1表示什么吗?

为了计算方便,通常把比例尺写成前项或后项是1的比。

学习例1

把线段比例尺改成数值比例尺。

1cm:1km=1cm:5000000km=1:5000000

练习

考考你

篮球场长28米,宽15米。把它画在比例尺是的图纸上,长和宽各应画多长?(计算后画出平面图来。)

独立完成,然后小组交流。

课堂检测

填空

一幅地图的比例尺是1:20000,它表示实际距离是图上距离的(),图上距离是实际距离的()它还表示图上1厘米的距离代表实际的()千米。

判断。新课标第一网

1、图上距离一定比实际距离小。()

2、实际距离和图上距离的比,叫做比例尺。()

3、图上距离5厘米表示实际距离5千米,这幅图的比例尺是1:1000.()

4、比例尺的前项总是1。()

5、比例尺的用途和直尺一样。()

课后拓展

张华家在学校正北方向,距学校450m;王红家在学校正东方向,距学校400m;李明家在王红家正西方向,距王红家600m。先确定比例尺,再画出上述地点的平面图。

板书设计

比例尺

比例尺:图上距离与实际距离的比。

图上距离:实际距离=比例尺

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇3

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第59-60页例5、6及做一做。

【教学目标】

1、进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能正确运用正、反比例知识解决有关问题。

2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。

【教学重点】用比例知识解决实际问题。

【教学难点】正确分析题中的数量关系,列出方程。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、今天的学习从一个简单的图形开始,(如图)。每个小长方形完全相同,紫色部分表示多少?

2、预设:

(1)60÷2×3=90(用总数除以份数,可以求出每份是多少;用每份数乘份数,可以求出总数是多少。)

(2)解:设紫色部分表示。

÷3=60÷2

(3)解:设紫色部分表示。(板书)

(4)解:设紫色部分表示。

3、这节课,我们就一起用比例的知识来解决问题。

二、关键点拨

1、指着解法(3),你是怎么想的?

生:都表示一个小长方形是多少。每个小长方形完全相同,说明比值一定,所以大长方形表示的数和小长方形的个数成正比例。

【若冷场,可提示:分别表示什么?大长方形和小长方形表示的数成什么比例?】

2、汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要几小时到达?

(1)学生独立用比例解答。

(2)汇报交流,说说你的想法。

3、你认为用比例解决生活中的问题,关键是什么?

(1)找出题目中的一定量;

(2)根据一定的量,判断相关联的两个量成什么比例。

三、巩固练习

1、一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?

2、对比练习

(1)小明读一本书,每天读25页,16天可以完成。如果每天读20页,多少天可以读完?

(2)小明读一本书,每天读25页,16天可以完成。如果每天少读5页,多少天可以读完?

3、一根木料,锯3段需要9分钟,如果锯5段,需要多少分钟?(用比例知识解)

四、分享收获畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《练习九》的教学设计

张鸿森供稿

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第61-62页练习九。

【教学目标】

使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。

【教学重点】用比例知识解决实际问题。

【教学难点】正确分析题中的数量关系,列出方程。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、基础练习

1、判断下面各题中相关联的量成什么比例。

(1)三角形面积一定,底和高。

(2)水池的容积一定,水管每小时注水量和所用时间。

(3)总面积一定,每块砖的面积和砖的块数。

(4)在一定的时间里,加工每个零件所用时间和加工零件个数。

2、说一说。

(1)判断两种量成正比例还是成反比例的关键是什么?

(2)用比例解决问题的步骤。

二、综合练习

1、用比例解决下面两个问题。

(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?

(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?

过程要求:找出相关联的量,判断成什么比例;写出关系式;列式解答,指名两位学生板演。

2、引导比较。

(1)说出题中数量关系,写关系式。

每本页数×本数=总页数

(2)说一说哪一种量一定,另外两种量成什么比例。

(3)针对以上两题,说一说思维过程和解题步骤

① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。

② 根据等量关系列比例式、解比例、检验。

三、巩固练习

完成课文练习九第6、7题。

四、分享收获畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《比例的整理和复习》的教学设计

张鸿森供稿

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第63页整理和复习。

【教学目标】

1、使学生进一步理解比例的意义和性质,明确比和比例的联系与区别。

2、使学生能正确地、熟练地解比例。

3、使学生进一步理解、掌握正、反比例的意义,能正确进行判断。

【教学重点】用比例知识解决实际问题。

【教学难点】根据实际情况运用比例的知识解决问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、关于比例的知识,通过你自己的整理和复习,谁愿意来说说,比例单元有哪些知识?

2、哪些是你学得很精彩的?哪些知识你还有遗憾?

二、比和比例的意义

1、什么是比?

2、什么是比例?比例的基本性质是什么?

3、比和比例有什么联系和区别?

指名口答,出示表格填空。

意义 项数 基本性质 举例

比例

三、解比例

1、什么叫解比例?

2、解比例是解方程吗?解方程也是解比例吗?为什么?

3、解比例。

完成课文“整理与复习”第2题。

过程要求:

(1) 学生独立练习活动。

(2) 说一说解比例的步骤,每一步运算的根据是什么?

(3) 请学生上台板书。新课标第一网

(4) 师生共同评价,并强调书写格式。

四、正(反)比例的意义

1、什么叫成正比例的量和正比例关系?

2、什么叫成反比例的量和反比例关系?

3、比较正、反比例的相同点和不同点。

相同点 不同点 关系式

正比例

反比例

4、你是如何判断两种量是否成正比例或反比例的?

学生通过交流,概括出“一找、二想、三判断”。

一找:哪两种上关联的量。

二想:两种相关联的量的变化情况,写出关系式。

三判断:联系关系式,看商一定还是积一定,判断成什么比例。

5、完成课文“整理与复习”第3题。

过程要求:

按复习中概括“一找二想三判断”三步骤进行练习。

(1)找出两种相关联的量。

(2)说一说两种量的变化情况,写出关系式。

(3)这里哪一种量一定,两种量成什么比例。

五、巩固练习

1、判断下列关系式中,两种变化的量成不成比例?若成比例,成什么比例?

(1)被除数÷除数=商(2)被除数÷除数=商

(3)因数×因数=积(4)因数×因数=积

2、完成课文练习十第1~3题。

六、分享收获畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇4

【教学内容】人教版六年级下册P35例2、例3及做一做。

【教学目标】

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做解比例

2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?

(1)你会解答吗?独立解答后,同桌间相互说说想法。

(2)反馈交流

①240÷3×2=160(厘米)

②解:设我们学校国旗的宽是厘米。

240:=3:2

3=240×2

=240×2÷3

=160

答:我们学校国旗的宽是160厘米。

(3)你是怎么想的?

二、关键点拨

1、用比例解决实际问题

(1)你明白第二种解法的意思吗?

(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为厘米,建立比例240:=3:2,再通过解比例求出的值。

(3)小结:这种方法叫做用比例解决实际问题。

2、解比例的方法

(1)你是怎样解比例240:=3:2的?

(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求的值。

(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出的值。

(4)怎样才可以确定的值是正确的?(检验)

(5)你更喜欢哪种解法?为什么?

三、巩固练习

1、解下面的比例

:10=:0.4:=1.2:2=

2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)

学生独立完成,汇报交流。

3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。

(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。

(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?

学生回答第一个问题,板书。再让学生观察是否能成比例。

分析:第一个问题应该说比较简单,比分别是25:200和30:250。

四、分享收获畅谈感想

这节课,你有什么收获?

听课随想

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇5

知识点来源

人教版数学六年级下册第四单元第二课时

课程名称

比例的基本性质

教学目标

了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例。

教学重点

探索并掌握比例的基本性质。

教学难点

判断两个比能否组成比例。

教学方法

讲授法

知识点描述

全面了解比例各部分的名称,并探索、讲解比例的基本性质的核心内容:详细讲授如何应用比例的基本性质来判断两个比能否组成比例。

适用对象[来源:学科网ZXXK]

六年级学生

设计思路

本节课通过观察、猜测、举例验证、归纳等数学活动,让学生经历探究比例的基本性质的过程,渗透有序思考,体验探索中的数学乐趣,培养学生的推理、归纳能力和探索精神,发展学生的思维能力。

教学过程[来源:Zxxk.Com]

内容

导入

一、复习导入

1.什么是比例?

表示两个比相等的式子叫做比例。

2.填空:15:()=5:3

预设:根据比例的意义:在比例中,两个的比值相等。

我们知道,5:3=5/3,根据分数的意义,把5/3化成分子为15的分数,得到15/9,利用分数与除法的关系,15/9=15:9,所以,15:(9)=5:3。你们做对了吗?同学们真棒!

设计意图:简单的问答,既复习巩固了上节课的知识比例的意义,又为这节课做了铺垫。尤其是第2题,先利用比例的意义求出有一个未知项的比例,为后面的猜一猜做伏笔,能让本节课探索比例的基本性质更顺利的进行。

探究新知

二、认识比例各部分的名称

课件出示比例:2.4

:

1.6

=

:

师:在2.4:1.6=60:40这个比例中,组成比例的四个数“2.4、1.6、60、40”,叫做比例的项。中间的两项“1.6”和“60”叫做比例的内项。两端的两项“2.4”和“40”叫做比例的外项。

如果把这个比例写成分数的形式:

2.4:1.6=60:40→2.4/1.6=60/40,1.6和60仍然是内项,2.4和40仍然是外项。

提问:你记住比例各部分的名称了吗?

三、牛刀小试

1.指出下面比例的外项和内项。

4.5:2.7=10:6

1/2:1/3=12:8

师:在比例4.5:2.7=10:6中,2.7和10是它的内项,4.5和6是它的外项;

在比例1/2:1/3=12:8中,1/3和12是它的内项,1/2和8是它的外项。

2.填空。

在3:8=0.6:1.6中,()和()是内项,()和()是外项。

师:在3:8=0.6:1.6中,8和0.6是内项,3和1.6是外项。同学们,你们都写对了吗?同学们真聪明!

设计意图:直截了当的介绍比例各部分的名称,先准确的定位教学的起点,引导学生比较两种形式的比例,明确四个项及每个项的位置都相同,只是形式不同而已,因而两个内项和两个外项是不变的。[来源:Z。xx。k.Com]

四、探究比例的基本性质

1.课件出示:猜一猜

24:()=():1

师:同学们,请你们看看这个比例的外项是什么?

预设:这个比例的外项是24和1。

师:那么,它的内项是多少呢?你们知道吗?它有多少种写法?请同学们在练习本上猜一猜,填一填,写一写。

预设:

假设第一个内项为1,根据比例的意义求出另一个项为24;

假设第一个内项为2,根据比例的意义求出另一个项为12;

假设第一个内项为3,根据比例的意义求出另一个项为8;

假设第一个内项为4,根据比例的意义求出另一个项为6;

......从这里可以看出,这个比例有无数种填法。

思考:观察上面的内项,你有什么发现?

内项:1×24=24,2×12=24,3×8=24,4×6=24。

外项:24×1=24。

猜想:在比例里,两个外项的积等于两个内项的积。

师:是不是所有的比例都有这样的规律呢?

2.验证猜想。

4.5

:

2.7

=

:

内项:2.7×10=27,外项:4.5×6=27.1/2

:

1/3

=

:

内项:1/3×12=4,外项:1/2×8=4.3.归纳比例的基本性质

师:通过举例验证,你得出什么结论?

预设:在比例里,两个外项的积等于两个内项的积。

师:这句话呀,其实就是我们今天学习的内容:比例的基本性质。

大家一起来读一读吧。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

4.用字母表示比例的基本性质。

师:如果

a:b=c:d(b、d≠0),则ad

=

bc.或

设计意图:设计“猜一猜”,这个问题简单而开放,激发学生的学习兴趣,答案不唯一,为学生的思考打开了空间。让学生经历“计算——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学生用不同的对这个猜想进行验证,抓住关键词“积”。

巩固练习

五、练一练。

应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

6:3和8:5

0.2:2.5和4:50

1/3:1/6和1/2:1/4

1.2:3/4和4/5:5

预设1:6×5=30,3×8=24,30≠24,不能组成比例。

预设2:0.2×50=10,2.5×4=10,能组成比例。[来源:学#科#网]

预设3:1/3×1/4=1/12,1/6×1/2=1/12,能组成比例。

预设4:1.2×5=6,3/4×4/5=3/5,6≠3/5,不能组成比例。

课堂小结

师:通过这节课你有什么收获?

教学反思

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇6

1、通过教学使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:认真审题,分辨求周长或求面积。

教学过程:

一、复习。

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

C=πd                             S=πr2

3.14×7                           3.14×32

=21.98(厘米)                      =3.14×9

=28.26(平方厘米)

2、分辨面积与周长有什么不同?

(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。

(2)计算公式

求圆的周长公式:C=πd 或 C=2πr

求圆的面积公式:S=πr2

(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习。

1、判断下面各题是否正确,对的打“√”,错的打“”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。         (  )

(2)半径为2厘米的圆的周长和面积相等。                             (  )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)                                    (  )

(4)             面积:3.14×62=3.14×12=37.68                      (   )

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

⑴半圆的周长是多少厘米?                 (2)半圆的面积:

3.14×22                       3.14×2+2×2

r=2cm        =3.14×4                 =6.28+4

=12.56(平方厘米)         =10.28(cm)

3、一个圆的周长是25.12米,它的面积是多少:

已知:C=25.12米      求:S=?

r=25.12÷(2×3.14)       S=πr2

=4(米)                   =3.14×42

=50.24(平方米)

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

已知:R=7厘米=0.7分米  r=0.5分米   求:S=?

S环=π×(R2-r2)

3.14×(0.72-0.52)

=3.14×0.24

=0.7536(平方分米)

三、巩固发展.

1、思考题p71 (8)

一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形:   31.4÷2=15.7(m)(长和宽的和)

长 × 宽 = 面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

(2)围成圆形

直径:31.4÷3.14=10(m)

半径:10÷2=5(m)

面积:3.14× 52=78.5(m2 )

(3)比较:长方形面积:61.6 m2    正方形面积:61.6225 m2   圆面积:78.5 m2

围成圆的面积最大。

2、思考题 p71 (9)、(10)

四、作业。

课本P71第6、7题。

教学追记:

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇7

教学目标:1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

教学重点:学会解比例。

教学难点:掌握解比例的书写格式。

设计理念:在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。

在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。

教学步骤 教师活动 学生活动

一、练习引入

1、小练笔:

在()里填上合适的数。

5:4=():12

4:()=():6

2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。 学生练习

学生回顾比例的基本性质

二、探索新知

出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

(1)读题审题,理解题意

老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

(2)引导分析,写出比例

如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

师介绍:“像上面这样求比例中的未知项,叫做解比例。

(3)找到依据,变形解答

讨论:怎样解比例?根据是什么?

思考:“根据比例的基本性质可以把比例变成什么形式?”

教师板书:6x=13.5×4。“这变成了什么?”(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。

(4)、板书过程,总结思路

师生把解比例的过程完整地写出来。指名板书。

师问:第一步计算的依据是什么?

师生总结解比例的过程。

提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

(5)、练习提高,再说思路

做“试一试”,学生独立完成,再说说解题思路。

学生读题,分析题意

学生写出含有未知数的比例式

学生小组交流,大组汇报

学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。

学生独立练习,小组说明思路。

三、巩固练习

11、做“练一练”

2、做练习十第6、7题。

3、做练习十第8题

学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。

学生独立审题并解题。讲评时重点指导学生解决第(2)问。

四、比较提高。 1、通过本课的学习,你有哪些收获?

2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇8

课题NO.3-4

班级姓名小组小组评价

学习目标:

1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。

2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。

3、极度热情,全力以赴,精彩展示,做最好的自己。

重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。

难点:根据分数乘法的意义,找到等量关系,正确列出方程。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:xkb1.com

1、自学课本P37-P39页

思考:1)、列方程解应用题的关键。

2)、用算术法解除法应用题的关键。

2、填空。

1)、米是米的();米相当于()米。

2)、自行车的速度是汽车的,把()看作单位“1”。

3)、一个数的是,这个数是()。

4)、一根卅绳长54米,剪去,还剩()米,把()看作单位“1”。

3、解方程。

二、合作探究:

例1、根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,小明体内有28千克的水分,小明的体重是爸爸的。

1)、小明的体重是多少千克?

2)、小明爸爸的体重是多少千克?

要求:(1)、用两种方法解答。

(2)、画出线段图表示题中的数量关系。新课标第一网

小结:(1)、列方程解应用题的关键:

(2)、用算术法解分数除法应用题的关键:

例2、小伟买了一枝钢笔,一枝圆珠笔和一枝铅笔,一枝圆珠笔的价钱是一枝钢笔,一枝铅笔的价钱是一枝圆珠笔的,买一枝铅笔花了2元钱,买一枝钢笔花多少元钱?

要求:1)、用两种方法解答。

2)、画线段图表示题中的数量关系。

小结:1)、分数连除应用题的解题关键:

2)、分数连除应用题的解题方法:

方程解法:

算术解法:

三、学以致用:

1、画线段图表示下面各数量关系。

1)、鸡的只数是鸭的。

2)、女生人数占全班的。

2、列式计算新课标第一网

1)、一个数的是64,求这个数。

2)、12的与什么数的2倍相等?

3)、加上一个数的,和是1,求这个数。

四、解决问题:

1、小红看一本书,已看了76页,是未看页数的,这本书小红还有多少页未看?

2)、修一条公路,施工方工作3天,每天修千米,已知3天修了这条路的,这条路一共有多长?

比例的意义和基本性质及教学教案 篇9

教学目标:

1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:

理解比例的意义基本性质。

教学难点:

应用比例的意义和性质判断两个比是否成比例。

教学过程

一、导入新课

1、什么叫比?

2、求出下面各比的比值(小黑板)

12:16 1/4:1/3 和9:12 4.5:2.7 10:6

二、教学新课

1、教学比例的意义

(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

(2)归纳比例的意义

(3)2:5和80:200能组成比例吗?你是怎样判断的?

(4)完成第45页“做一做”

2、教学比例的基本性质

(1)在一个比例里,有四个数,这四个数分别叫什么名字?

(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

(4)指导学生归纳后,在比例里,两个外项的`积等于两个内项的积。这就是比例的基本性质。

(5)指导学生完成第一46页“做一做”第1题。

三、巩固练习

四、课堂小结

这节课你学到了哪些知识?

创意作业:

比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇10

思考并回答:

1、在小学里我们学过哪些数?

2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?

3、小数又可以怎样分类?

4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?

5、读数时应注意什么?读出下面各数:36000、24050000、500900000、40.57、4.057、0.4057、15000300比较40.57、4.057、0.4057的大小,从中可以得到什么规律?

6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、

三亿零五十万六千、零点零四零六

练习:

1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。

2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。

3、5830070420读作()。“8”在()位上,表示( );“7”在( )位上,表示( )。

4、有一个四位数,加上“1”就变成五位数,这个四位数是( );有一个四位数,减去“1”就变成三位数,这个四位数( )。

5、地球有多大?请读出下面数据。

地球的半径 6378.14千米赤道长 40073.92千米

地球表面积 510067860平方千米地球海洋面积 361745300平方千米

思考并回答:

1、3.150=3.15、7.8=7.8000,这是根据什么?

2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?

3、1÷3、70.7÷33,商的小数部分的数字有什么规律?

4、把453.647分别精确到十位、个位、十分位(保留一位小数)、百分位(保留两位小数)各是多少?

5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....

0.720.33.150

6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?

7、下面各数省略万后面的尾数怎么写?改写成以万为单位的数又该怎么写?34820、408000、7136300、19800

8、三个连续的自然数的和是45,这三个数分别是()、()、()。

练习:

1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。

2、7.85353……写作(),0.346346……写作()。

3、0.04×1000就是将0.04的小数点向()移动()位。

4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。

5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。

数的整除

思考并回答:

1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?

32÷4、45÷7、12÷0.3、720÷90、2÷4

2、根据35、4、60、24、105、7、56、12这些数:(1)写出整除关系的除式,并分别说出谁是谁的因数,谁是谁的倍数。(2)这些数中,60的因数有哪几个?7的倍数有哪几个?(3)这些数中哪些能分别被2、3、5整除?

3、怎样判别一个自然数是质数还是合数?一个自然数不是质数,就一定是合数吗?质数是不是都是奇数?

4、什么叫质因数?什么叫分解质因数?

5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?

18=2×3×3、2×3×7=42、120=2×2×5×6、150=2×3×5×5×1

6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18

7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?

练习:

1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。

2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。

3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。

4、把下面的数填在图内。6、8、9、10、12、15、18、20、21、25、30、32、35

能被3整除的数

能被5整除的数能被2整除的数

5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15

6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。

7、判断题:

(1) 没有约数2的自然数一定是奇数。

(2) 一个自然数的约数总比它的倍数小。

(3) 两个质数相乘,积一定是合数。

(4) 一个奇数加上7,一定能被2整除。

(5) 2、3、5都是质因数。

(6) 两个合数不能成为互质数。

(7) 17的约数都是质数。

(8) 因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。

分数和百分数

思考并回答:xkb1.com

1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷

什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?

2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?

3、什么是分数的基本性质?分数的基本性质与

商不变的性质、比的基本性质有什么联系?

4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?

5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?

24/40=()/20=48/()=()/5=()/15=36/()

6、举例说明分数、小数、百分数的互化方法。

7、下面的分数哪些能化成有限小数?哪些不能化成有限小数?为什么?2/3、3/4、4/5、5/7、3/10、7/12、11/16、9/20、12/25、6/15

8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。

练习:

1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。

2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。

3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。

4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。

5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。

6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。

量和计量

思考并回答:

1、在小学里已经学过哪些量?它们各有哪些计量单位?

各种量 基本单位 各单位之间的关系

长度 1米 1千米=()米

1米=()分米

1分米=()厘米

1厘米=()毫米

面积 1平方米 1平方千米=()公顷

1平方千米=()平方米

1公顷=()平方米

1平方米=()平方分米

1平方分米=()平方厘米

体积 1立方米

1升 1立方米=()立方分米

1立方分米=()立方厘米

1升=()毫升

质量 1千克 1吨=()千克

1千克=()克

时间 1秒 1日=()时

1时=()分

1分=()秒

2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?

练习:

1、填空:

(1)5米=()分米3.2分米=()厘米5平方米=()平方分米

3.2平方分米=()平方厘米52700平方米=()公顷

(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米

(3)4.2公顷=()平方米0.8平方千米=()公顷

1.05立方米=()立方分米1.45吨=()千克

(4)210秒=()分1/6日=()时1时20分=()分

2、选择:

(1)下列年份中,不是闰年的年份是()A1980年BC21

(2)25厘米×()=1米A1/2B4C40

(3)面积是1平方米的正方形的边长是()A10厘米B100厘米C10000厘米

(4)将1立方米的大立方体锯成体积是1立方厘米的小立方体,然后将它们一个一个地连接起来,总长度是()。A1千米B10千米C100千米

3、判断题:xkb1.com

(1) 第一季度有91天的这一年是闰年。

上一篇:小学警校共建制度下一篇:泥南初中总务处工作计划