比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册)(精选10篇)
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇1
导学内容:P32--34页例1,完成做一做及练习六1--6题
导学目标:
1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
导学重点:比例的意义和基本性质。
导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
预习学案
1、什么是比?
2、 口算下面各比的值,哪些比的比值相等?
12:16 34 :18 5:3 10:6 6:10
导学案
探究比例的意义
例1 一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下
时间(时) 2 5
路程(千米) 80 200
80:2=200:5 5:3=10:6 6:10=9:15 802 =
像这样由两个相等的比组成的式子我们把它叫做比例。
练习:
应用比例的意义判断下面的比例是否正确
1、20:5=1:4 2、12 :13 3、0.6:0.2=34 :14
先独立完成,再在小组内交流。
我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?
四人小组讨论,老师巡视,给予指导。
请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。
老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的 值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。
二、比例的基本性质
板书:
80 : 2 = 200: 5 5 : 3=10 : 6 6 : 10=9 : 15
内项
外项
观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。www.xkb1.com
802 =2005 80×5=2×200
53 =106 5×6=3×10
610 =915 6×15=10×9
小组合作,举几个这样的例子验证一下。
从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。
练习
应用比例的基本性质判断下面的比例是否正确
1、6:3=8:5 2、0.2:2.5=4:50
3、2:3=12 :13 4、1.2:0.6=10:5
课堂检测新课标第一网
1、 应用比例的意义判断下面的比例是否正确:
(1)3:5=9:15
(2)2.5:5=25:0.5
(3)1002 =
(4)13 :2=16 :4
2、应用比例的基本性质判断下面的比例是否正确
(1) 6 : 9 = 9 : 12
(2) 1.4 : 2 = 7 :10
(3) 5 : 2 =58 :14
(4)34 :110 =7.5:1
3.选择题(把正确答案的序号填入括号内)
(1)( )与 3 : 5 能组成比例。A. 10:6 B. 13 :15 C. 30 : 50
(2)( )与 5 : 8 能组成比例。A.15 :18 B. 10:16 C. 3 : 5
(3) 4 : 5 与( ) 能组成比例。A. 14 :15 B. 8:10 C. 15 : 12
(4) 7 : 9 与( ) 能组成比例。A. 70 : 90 B. 17 :19 C. 3 : 4
课后拓展xkb1.com
你能比较一下“比”与“比例”有什么联系与区别吗?
板书设计
比例的意义和基本性质
一、比例的意义 二、比例的基本性质
表示两个比相等的式子叫做比例。 两个外项的积等于两个内项的积。
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇2
导学目标
使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
导学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
导学难点:设未知数时长度单位的使用。
预习学案
一、什么叫比例尺?怎样求比例尺?
二、填空。
1、( ):( )=比例尺
2、甲、乙两地相距45千米,在图上用3厘米长的线段表示甲乙两地的距离,这幅地图的比例尺是()。
3、如果实际距离是图上距离的1000000倍,那么这幅地图的比例尺是(),图上1厘米实际表示()千米。
4、图上距离是实际距离的10倍,这幅图的比例尺是(),如果在图上量得20厘米的距离,实际长度是()厘米。
导学案
同学们见过地图吗?中国地图实际上是把实际距离按一定比例缩小画在地图上的。在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上,这时就要确定图上距离和相对应的实际距离的比。
一幅图的图上距离和实际距离的比,叫做比例尺。
图上距离:实际距离=比例尺
或图上距离实际距离=比例尺
看课本48页两幅图,你发现了什么?
(1)比例尺有两种:数值比例尺和线段比例尺
(2)数值比例尺和线段比例尺可以互化。
(3)在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后,再画在图纸上。
你知道比例尺2:1表示什么吗?
为了计算方便,通常把比例尺写成前项或后项是1的比。
学习例1
把线段比例尺改成数值比例尺。
1cm:1km=1cm:5000000km=1:5000000
练习
考考你
篮球场长28米,宽15米。把它画在比例尺是的图纸上,长和宽各应画多长?(计算后画出平面图来。)
独立完成,然后小组交流。
课堂检测
填空
一幅地图的比例尺是1:20000,它表示实际距离是图上距离的(),图上距离是实际距离的()它还表示图上1厘米的距离代表实际的()千米。
判断。新课标第一网
1、图上距离一定比实际距离小。()
2、实际距离和图上距离的比,叫做比例尺。()
3、图上距离5厘米表示实际距离5千米,这幅图的比例尺是1:1000.()
4、比例尺的前项总是1。()
5、比例尺的用途和直尺一样。()
课后拓展
张华家在学校正北方向,距学校450m;王红家在学校正东方向,距学校400m;李明家在王红家正西方向,距王红家600m。先确定比例尺,再画出上述地点的平面图。
板书设计
比例尺
比例尺:图上距离与实际距离的比。
图上距离:实际距离=比例尺
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇3
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第59-60页例5、6及做一做。
【教学目标】
1、进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能正确运用正、反比例知识解决有关问题。
2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。
【教学重点】用比例知识解决实际问题。
【教学难点】正确分析题中的数量关系,列出方程。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、今天的学习从一个简单的图形开始,(如图)。每个小长方形完全相同,紫色部分表示多少?
2、预设:
(1)60÷2×3=90(用总数除以份数,可以求出每份是多少;用每份数乘份数,可以求出总数是多少。)
(2)解:设紫色部分表示。
÷3=60÷2
(3)解:设紫色部分表示。(板书)
(4)解:设紫色部分表示。
3、这节课,我们就一起用比例的知识来解决问题。
二、关键点拨
1、指着解法(3),你是怎么想的?
生:都表示一个小长方形是多少。每个小长方形完全相同,说明比值一定,所以大长方形表示的数和小长方形的个数成正比例。
【若冷场,可提示:分别表示什么?大长方形和小长方形表示的数成什么比例?】
2、汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要几小时到达?
(1)学生独立用比例解答。
(2)汇报交流,说说你的想法。
3、你认为用比例解决生活中的问题,关键是什么?
(1)找出题目中的一定量;
(2)根据一定的量,判断相关联的两个量成什么比例。
三、巩固练习
1、一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?
2、对比练习
(1)小明读一本书,每天读25页,16天可以完成。如果每天读20页,多少天可以读完?
(2)小明读一本书,每天读25页,16天可以完成。如果每天少读5页,多少天可以读完?
3、一根木料,锯3段需要9分钟,如果锯5段,需要多少分钟?(用比例知识解)
四、分享收获畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
《练习九》的教学设计
张鸿森供稿
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第61-62页练习九。
【教学目标】
使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。
【教学重点】用比例知识解决实际问题。
【教学难点】正确分析题中的数量关系,列出方程。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、基础练习
1、判断下面各题中相关联的量成什么比例。
(1)三角形面积一定,底和高。
(2)水池的容积一定,水管每小时注水量和所用时间。
(3)总面积一定,每块砖的面积和砖的块数。
(4)在一定的时间里,加工每个零件所用时间和加工零件个数。
2、说一说。
(1)判断两种量成正比例还是成反比例的关键是什么?
(2)用比例解决问题的步骤。
二、综合练习
1、用比例解决下面两个问题。
(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?
(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?
过程要求:找出相关联的量,判断成什么比例;写出关系式;列式解答,指名两位学生板演。
2、引导比较。
(1)说出题中数量关系,写关系式。
每本页数×本数=总页数
(2)说一说哪一种量一定,另外两种量成什么比例。
(3)针对以上两题,说一说思维过程和解题步骤
① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。
② 根据等量关系列比例式、解比例、检验。
三、巩固练习
完成课文练习九第6、7题。
四、分享收获畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
《比例的整理和复习》的教学设计
张鸿森供稿
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第63页整理和复习。
【教学目标】
1、使学生进一步理解比例的意义和性质,明确比和比例的联系与区别。
2、使学生能正确地、熟练地解比例。
3、使学生进一步理解、掌握正、反比例的意义,能正确进行判断。
【教学重点】用比例知识解决实际问题。
【教学难点】根据实际情况运用比例的知识解决问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、关于比例的知识,通过你自己的整理和复习,谁愿意来说说,比例单元有哪些知识?
2、哪些是你学得很精彩的?哪些知识你还有遗憾?
二、比和比例的意义
1、什么是比?
2、什么是比例?比例的基本性质是什么?
3、比和比例有什么联系和区别?
指名口答,出示表格填空。
意义 项数 基本性质 举例
比
比例
三、解比例
1、什么叫解比例?
2、解比例是解方程吗?解方程也是解比例吗?为什么?
3、解比例。
完成课文“整理与复习”第2题。
过程要求:
(1) 学生独立练习活动。
(2) 说一说解比例的步骤,每一步运算的根据是什么?
(3) 请学生上台板书。新课标第一网
(4) 师生共同评价,并强调书写格式。
四、正(反)比例的意义
1、什么叫成正比例的量和正比例关系?
2、什么叫成反比例的量和反比例关系?
3、比较正、反比例的相同点和不同点。
相同点 不同点 关系式
正比例
反比例
4、你是如何判断两种量是否成正比例或反比例的?
学生通过交流,概括出“一找、二想、三判断”。
一找:哪两种上关联的量。
二想:两种相关联的量的变化情况,写出关系式。
三判断:联系关系式,看商一定还是积一定,判断成什么比例。
5、完成课文“整理与复习”第3题。
过程要求:
按复习中概括“一找二想三判断”三步骤进行练习。
(1)找出两种相关联的量。
(2)说一说两种量的变化情况,写出关系式。
(3)这里哪一种量一定,两种量成什么比例。
五、巩固练习
1、判断下列关系式中,两种变化的量成不成比例?若成比例,成什么比例?
(1)被除数÷除数=商(2)被除数÷除数=商
(3)因数×因数=积(4)因数×因数=积
2、完成课文练习十第1~3题。
六、分享收获畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇4
【教学内容】人教版六年级下册P35例2、例3及做一做。
【教学目标】
1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。
2、学会应用比例的意义和基本性质解决实际问题。
【教学重点】掌握解比例的方法,会解比例。
【教学难点】应用比例的意义和基本性质解决生活中的实际问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做解比例
2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?
(1)你会解答吗?独立解答后,同桌间相互说说想法。
(2)反馈交流
①240÷3×2=160(厘米)
②解:设我们学校国旗的宽是厘米。
240:=3:2
3=240×2
=240×2÷3
=160
答:我们学校国旗的宽是160厘米。
(3)你是怎么想的?
二、关键点拨
1、用比例解决实际问题
(1)你明白第二种解法的意思吗?
(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为厘米,建立比例240:=3:2,再通过解比例求出的值。
(3)小结:这种方法叫做用比例解决实际问题。
2、解比例的方法
(1)你是怎样解比例240:=3:2的?
(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求的值。
(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出的值。
(4)怎样才可以确定的值是正确的?(检验)
(5)你更喜欢哪种解法?为什么?
三、巩固练习
1、解下面的比例
:10=:0.4:=1.2:2=
2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)
学生独立完成,汇报交流。
3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。
(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。
(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?
学生回答第一个问题,板书。再让学生观察是否能成比例。
分析:第一个问题应该说比较简单,比分别是25:200和30:250。
四、分享收获畅谈感想
这节课,你有什么收获?
听课随想
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇5
知识点来源
人教版数学六年级下册第四单元第二课时
课程名称
比例的基本性质
教学目标
了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例。
教学重点
探索并掌握比例的基本性质。
教学难点
判断两个比能否组成比例。
教学方法
讲授法
知识点描述
全面了解比例各部分的名称,并探索、讲解比例的基本性质的核心内容:详细讲授如何应用比例的基本性质来判断两个比能否组成比例。
适用对象[来源:学科网ZXXK]
六年级学生
设计思路
本节课通过观察、猜测、举例验证、归纳等数学活动,让学生经历探究比例的基本性质的过程,渗透有序思考,体验探索中的数学乐趣,培养学生的推理、归纳能力和探索精神,发展学生的思维能力。
教学过程[来源:Zxxk.Com]
内容
导入
一、复习导入
1.什么是比例?
表示两个比相等的式子叫做比例。
2.填空:15:()=5:3
预设:根据比例的意义:在比例中,两个的比值相等。
我们知道,5:3=5/3,根据分数的意义,把5/3化成分子为15的分数,得到15/9,利用分数与除法的关系,15/9=15:9,所以,15:(9)=5:3。你们做对了吗?同学们真棒!
设计意图:简单的问答,既复习巩固了上节课的知识比例的意义,又为这节课做了铺垫。尤其是第2题,先利用比例的意义求出有一个未知项的比例,为后面的猜一猜做伏笔,能让本节课探索比例的基本性质更顺利的进行。
探究新知
二、认识比例各部分的名称
课件出示比例:2.4
:
1.6
=
:
师:在2.4:1.6=60:40这个比例中,组成比例的四个数“2.4、1.6、60、40”,叫做比例的项。中间的两项“1.6”和“60”叫做比例的内项。两端的两项“2.4”和“40”叫做比例的外项。
如果把这个比例写成分数的形式:
2.4:1.6=60:40→2.4/1.6=60/40,1.6和60仍然是内项,2.4和40仍然是外项。
提问:你记住比例各部分的名称了吗?
三、牛刀小试
1.指出下面比例的外项和内项。
4.5:2.7=10:6
1/2:1/3=12:8
师:在比例4.5:2.7=10:6中,2.7和10是它的内项,4.5和6是它的外项;
在比例1/2:1/3=12:8中,1/3和12是它的内项,1/2和8是它的外项。
2.填空。
在3:8=0.6:1.6中,()和()是内项,()和()是外项。
师:在3:8=0.6:1.6中,8和0.6是内项,3和1.6是外项。同学们,你们都写对了吗?同学们真聪明!
设计意图:直截了当的介绍比例各部分的名称,先准确的定位教学的起点,引导学生比较两种形式的比例,明确四个项及每个项的位置都相同,只是形式不同而已,因而两个内项和两个外项是不变的。[来源:Z。xx。k.Com]
四、探究比例的基本性质
1.课件出示:猜一猜
24:()=():1
师:同学们,请你们看看这个比例的外项是什么?
预设:这个比例的外项是24和1。
师:那么,它的内项是多少呢?你们知道吗?它有多少种写法?请同学们在练习本上猜一猜,填一填,写一写。
预设:
假设第一个内项为1,根据比例的意义求出另一个项为24;
假设第一个内项为2,根据比例的意义求出另一个项为12;
假设第一个内项为3,根据比例的意义求出另一个项为8;
假设第一个内项为4,根据比例的意义求出另一个项为6;
......从这里可以看出,这个比例有无数种填法。
思考:观察上面的内项,你有什么发现?
内项:1×24=24,2×12=24,3×8=24,4×6=24。
外项:24×1=24。
猜想:在比例里,两个外项的积等于两个内项的积。
师:是不是所有的比例都有这样的规律呢?
2.验证猜想。
4.5
:
2.7
=
:
内项:2.7×10=27,外项:4.5×6=27.1/2
:
1/3
=
:
内项:1/3×12=4,外项:1/2×8=4.3.归纳比例的基本性质
师:通过举例验证,你得出什么结论?
预设:在比例里,两个外项的积等于两个内项的积。
师:这句话呀,其实就是我们今天学习的内容:比例的基本性质。
大家一起来读一读吧。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
4.用字母表示比例的基本性质。
师:如果
a:b=c:d(b、d≠0),则ad
=
bc.或
设计意图:设计“猜一猜”,这个问题简单而开放,激发学生的学习兴趣,答案不唯一,为学生的思考打开了空间。让学生经历“计算——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学生用不同的对这个猜想进行验证,抓住关键词“积”。
巩固练习
五、练一练。
应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6:3和8:5
0.2:2.5和4:50
1/3:1/6和1/2:1/4
1.2:3/4和4/5:5
预设1:6×5=30,3×8=24,30≠24,不能组成比例。
预设2:0.2×50=10,2.5×4=10,能组成比例。[来源:学#科#网]
预设3:1/3×1/4=1/12,1/6×1/2=1/12,能组成比例。
预设4:1.2×5=6,3/4×4/5=3/5,6≠3/5,不能组成比例。
课堂小结
师:通过这节课你有什么收获?
教学反思
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇6
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=πd S=πr2
3.14×7 3.14×32
=21.98(厘米) =3.14×9
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=πd 或 C=2πr
求圆的面积公式:S=πr2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打“√”,错的打“”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
(4) 面积:3.14×62=3.14×12=37.68 ( )
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米? (2)半圆的面积:
3.14×22 3.14×2+2×2
r=2cm =3.14×4 =6.28+4
=12.56(平方厘米) =10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米 求:S=?
r=25.12÷(2×3.14) S=πr2
=4(米) =3.14×42
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米 r=0.5分米 求:S=?
S环=π×(R2-r2)
3.14×(0.72-0.52)
=3.14×0.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71 (8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)
长 × 宽 = 面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.4÷3.14=10(m)
半径:10÷2=5(m)
面积:3.14× 52=78.5(m2 )
(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2
围成圆的面积最大。
2、思考题 p71 (9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇7
教学目标:1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。
2、让学生在经历探究的过程中,体验学习数学的快乐。
教学重点:学会解比例。
教学难点:掌握解比例的书写格式。
设计理念:在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。
在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。
教学步骤 教师活动 学生活动
一、练习引入
1、小练笔:
在()里填上合适的数。
5:4=():12
4:()=():6
2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?
3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。 学生练习
学生回顾比例的基本性质
二、探索新知
出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?
(1)读题审题,理解题意
老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例
(2)引导分析,写出比例
如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。
师介绍:“像上面这样求比例中的未知项,叫做解比例。
(3)找到依据,变形解答
讨论:怎样解比例?根据是什么?
思考:“根据比例的基本性质可以把比例变成什么形式?”
教师板书:6x=13.5×4。“这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
(4)、板书过程,总结思路
师生把解比例的过程完整地写出来。指名板书。
师问:第一步计算的依据是什么?
师生总结解比例的过程。
提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
(5)、练习提高,再说思路
做“试一试”,学生独立完成,再说说解题思路。
学生读题,分析题意
学生写出含有未知数的比例式
学生小组交流,大组汇报
学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。
学生独立练习,小组说明思路。
三、巩固练习
11、做“练一练”
2、做练习十第6、7题。
3、做练习十第8题
学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。
学生独立审题并解题。讲评时重点指导学生解决第(2)问。
四、比较提高。 1、通过本课的学习,你有哪些收获?
2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇8
课题NO.3-4
班级姓名小组小组评价
学习目标:
1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。
2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。
难点:根据分数乘法的意义,找到等量关系,正确列出方程。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:xkb1.com
1、自学课本P37-P39页
思考:1)、列方程解应用题的关键。
2)、用算术法解除法应用题的关键。
2、填空。
1)、米是米的();米相当于()米。
2)、自行车的速度是汽车的,把()看作单位“1”。
3)、一个数的是,这个数是()。
4)、一根卅绳长54米,剪去,还剩()米,把()看作单位“1”。
3、解方程。
二、合作探究:
例1、根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,小明体内有28千克的水分,小明的体重是爸爸的。
1)、小明的体重是多少千克?
2)、小明爸爸的体重是多少千克?
要求:(1)、用两种方法解答。
(2)、画出线段图表示题中的数量关系。新课标第一网
小结:(1)、列方程解应用题的关键:
(2)、用算术法解分数除法应用题的关键:
例2、小伟买了一枝钢笔,一枝圆珠笔和一枝铅笔,一枝圆珠笔的价钱是一枝钢笔,一枝铅笔的价钱是一枝圆珠笔的,买一枝铅笔花了2元钱,买一枝钢笔花多少元钱?
要求:1)、用两种方法解答。
2)、画线段图表示题中的数量关系。
小结:1)、分数连除应用题的解题关键:
2)、分数连除应用题的解题方法:
方程解法:
算术解法:
三、学以致用:
1、画线段图表示下面各数量关系。
1)、鸡的只数是鸭的。
2)、女生人数占全班的。
2、列式计算新课标第一网
1)、一个数的是64,求这个数。
2)、12的与什么数的2倍相等?
3)、加上一个数的,和是1,求这个数。
四、解决问题:
1、小红看一本书,已看了76页,是未看页数的,这本书小红还有多少页未看?
2)、修一条公路,施工方工作3天,每天修千米,已知3天修了这条路的,这条路一共有多长?
比例的意义和基本性质及教学教案 篇9
教学目标:
1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。
2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:
理解比例的意义基本性质。
教学难点:
应用比例的意义和性质判断两个比是否成比例。
教学过程
一、导入新课
1、什么叫比?
2、求出下面各比的比值(小黑板)
12:16 1/4:1/3 和9:12 4.5:2.7 10:6
二、教学新课
1、教学比例的意义
(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?
(2)归纳比例的意义
(3)2:5和80:200能组成比例吗?你是怎样判断的?
(4)完成第45页“做一做”
2、教学比例的基本性质
(1)在一个比例里,有四个数,这四个数分别叫什么名字?
(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。
(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?
(4)指导学生归纳后,在比例里,两个外项的`积等于两个内项的积。这就是比例的基本性质。
(5)指导学生完成第一46页“做一做”第1题。
三、巩固练习
四、课堂小结
这节课你学到了哪些知识?
创意作业:
比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册) 篇10
思考并回答:
1、在小学里我们学过哪些数?
2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?
3、小数又可以怎样分类?
4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?
5、读数时应注意什么?读出下面各数:36000、24050000、500900000、40.57、4.057、0.4057、15000300比较40.57、4.057、0.4057的大小,从中可以得到什么规律?
6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、
三亿零五十万六千、零点零四零六
练习:
1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。
2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。
3、5830070420读作()。“8”在()位上,表示( );“7”在( )位上,表示( )。
4、有一个四位数,加上“1”就变成五位数,这个四位数是( );有一个四位数,减去“1”就变成三位数,这个四位数( )。
5、地球有多大?请读出下面数据。
地球的半径 6378.14千米赤道长 40073.92千米
地球表面积 510067860平方千米地球海洋面积 361745300平方千米
思考并回答:
1、3.150=3.15、7.8=7.8000,这是根据什么?
2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?
3、1÷3、70.7÷33,商的小数部分的数字有什么规律?
4、把453.647分别精确到十位、个位、十分位(保留一位小数)、百分位(保留两位小数)各是多少?
5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....
0.720.33.150
6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?
7、下面各数省略万后面的尾数怎么写?改写成以万为单位的数又该怎么写?34820、408000、7136300、19800
8、三个连续的自然数的和是45,这三个数分别是()、()、()。
练习:
1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。
2、7.85353……写作(),0.346346……写作()。
3、0.04×1000就是将0.04的小数点向()移动()位。
4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。
5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。
数的整除
思考并回答:
1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?
32÷4、45÷7、12÷0.3、720÷90、2÷4
2、根据35、4、60、24、105、7、56、12这些数:(1)写出整除关系的除式,并分别说出谁是谁的因数,谁是谁的倍数。(2)这些数中,60的因数有哪几个?7的倍数有哪几个?(3)这些数中哪些能分别被2、3、5整除?
3、怎样判别一个自然数是质数还是合数?一个自然数不是质数,就一定是合数吗?质数是不是都是奇数?
4、什么叫质因数?什么叫分解质因数?
5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?
18=2×3×3、2×3×7=42、120=2×2×5×6、150=2×3×5×5×1
6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18
7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?
练习:
1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。
2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。
3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。
4、把下面的数填在图内。6、8、9、10、12、15、18、20、21、25、30、32、35
能被3整除的数
能被5整除的数能被2整除的数
5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15
6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。
7、判断题:
(1) 没有约数2的自然数一定是奇数。
(2) 一个自然数的约数总比它的倍数小。
(3) 两个质数相乘,积一定是合数。
(4) 一个奇数加上7,一定能被2整除。
(5) 2、3、5都是质因数。
(6) 两个合数不能成为互质数。
(7) 17的约数都是质数。
(8) 因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。
分数和百分数
思考并回答:xkb1.com
1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷
什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?
2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?
3、什么是分数的基本性质?分数的基本性质与
商不变的性质、比的基本性质有什么联系?
4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?
5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?
24/40=()/20=48/()=()/5=()/15=36/()
6、举例说明分数、小数、百分数的互化方法。
7、下面的分数哪些能化成有限小数?哪些不能化成有限小数?为什么?2/3、3/4、4/5、5/7、3/10、7/12、11/16、9/20、12/25、6/15
8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。
练习:
1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。
2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。
3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。
4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。
5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。
6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。
量和计量
思考并回答:
1、在小学里已经学过哪些量?它们各有哪些计量单位?
各种量 基本单位 各单位之间的关系
长度 1米 1千米=()米
1米=()分米
1分米=()厘米
1厘米=()毫米
面积 1平方米 1平方千米=()公顷
1平方千米=()平方米
1公顷=()平方米
1平方米=()平方分米
1平方分米=()平方厘米
体积 1立方米
1升 1立方米=()立方分米
1立方分米=()立方厘米
1升=()毫升
质量 1千克 1吨=()千克
1千克=()克
时间 1秒 1日=()时
1时=()分
1分=()秒
2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?
练习:
1、填空:
(1)5米=()分米3.2分米=()厘米5平方米=()平方分米
3.2平方分米=()平方厘米52700平方米=()公顷
(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米
(3)4.2公顷=()平方米0.8平方千米=()公顷
1.05立方米=()立方分米1.45吨=()千克
(4)210秒=()分1/6日=()时1时20分=()分
2、选择:
(1)下列年份中,不是闰年的年份是()A1980年BC21
(2)25厘米×()=1米A1/2B4C40
(3)面积是1平方米的正方形的边长是()A10厘米B100厘米C10000厘米
(4)将1立方米的大立方体锯成体积是1立方厘米的小立方体,然后将它们一个一个地连接起来,总长度是()。A1千米B10千米C100千米
3、判断题:xkb1.com
(1) 第一季度有91天的这一年是闰年。
【比例的意义和基本性质,能区分比和比例 教案教学设计(人教新课标六年级下册)】推荐阅读:
P35~37解比例 教案教学设计(人教新课标六年级下册)06-28
比和比例教案六下10-25
《比例的基本性质》教案05-30
六年级数学下比例的基本性质教学反思07-09
六年级上数学比和比例08-24
六年级数学《比例的基本性质》评课稿05-16
比和比例导学案05-25
《正比例和反比例的意义》教学反思08-26
人教版六年级下册《正比例》教学设计10-26
成反比例的量(人教版六年级教案设计)06-26