比和比例导学案

2024-05-25

比和比例导学案(共8篇)

比和比例导学案 篇1

《比和比例》整理和复习导学案

课题 比和比例 科目 数学 课型 新授课

年级 六年级下册 单元 6 课时 第1课时

学习

目标 复习比和比例的相关知识

学习

重难点 1、掌握比和比例的意义、比例的基本性质;会解比例。

2、应用比例的知识解决实际问题。

学案自学

学案自学

一、 复习引入

1、什么叫做比?

2、什么叫做比例?

二、自学课本89页。

1写出李阿姨平时和节日期间剪纸张数及相应工作时间的比。

平时:节日期间:

2这两个比能否组成比例。为什么?

3、那么相似的,两个比6:42和5:35能否组成比例?请作出判断。

4、如果李阿姨要剪120张纸,需要多少小时?

三.比和比例的相关知识:

比 比例

意义

各部分名称 90:60=1.5

()()()() 9:6=3:2

()

()

基本性质

化简比的根据 解比例的根据

四.比和分数、除法有什么关系?

比 前项

分数 分数线

除法 除数 商

小组合作 小组合作要求:

组长负责组织和分工,人人能发表,人人有见解,自学中出现的错误在组内交流解决。发言要有顺序,当一人发言时其他成员要认真倾听。小组内解决不了的问题划下来,在班级展示时,交流觖决。(兵教兵)

班内展示 小组合作交流后,组长整理,展示自学体会、好的见解和方法,展示存在的问题和困惑,教师适时点拨。

(教师注意适时引导点拨、规范引领)

质疑探究 通过学案自学、小组合作、班内展示,你还有什么不明白的地方或新的疑问吗?请提出来,我们共同解决。

(学生如提不出来,教师提出预设的问题让学生讨论)

悟自得 谈谈自己的学习收获及感悟:

1、本节课我学了:

2、掌握不太好的是:

达标测评 一填空

1、3:8=():()==15:()=()%

2、写出比值是2的两个比:( )∶( ),( )和( );组成比例是( ).

3、甲数×4/5=乙数×6/7,甲乙两数的比是()。

4、时间一定,速度和路程成()比例,如果两车的速度比是3:4,那么两车的路程比是()

5、一个三角形三个内角的比是2:1:1,这个三角形是()三角形。

二、判断

1、分子一定,分数的大小与分母成反比例()

2、百分数可以说是后项为100的比。()

3、因为5a=6b,所以a∶b=6∶5.( )

4、的比例尺是用1厘米代表0米。( )

5、圆锥的体积一定,它的底面积和高成反比例。()

三、计算:

化简比:2:4.21.8千米:240米

求比值:3.5:81小时45分:40分

解比例:0.65:13=X:2X:14.5=6:5

课后 课后反思

今天这节课上,我的表现及改进的措施

《比和比例》教学反思 篇2

问题:在备课时觉得例3在解比例的步骤上有些不好。写成2.5×6/1.5这样的形式,学生在遇到了分数的时候会出现繁分数,所以把这个步骤舍掉了,让学生先算出乘积后再除以1.5。可是做一做中的题却出现了始料未及的问题,结果学生再除的时候除不尽,个别学生选择约数而不是用分数表示结果。后来反思例题在这一步的编排上的用意。可以让学生先约掉一部分数后再进行计算,会降低计算的难度。

《正比例的意义》教学反思

小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的`本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:在教学例题时,让学生先观察这两个表格,然后思考下面的问题:

(1)表1、表2中有哪两种量?它们相关联吗?

(2)哪个表中的两种量的变化更有规律?有什么规律?

上面思考题中“更有”两个字对学生的思维有一定定向作用,让学生着重去寻找表1中的规律。在学生深入观察、独立思考、合作交流后,必会发现表1中的两个量变化的规律。

《反比例的意义》教学反思

有了前节课的学习,这节课总体来说孩子是比较积极活跃的,反比例知识掌握的也够扎实。

《比和比例》教学设计 篇3

教学目标:

1、进一步巩固比和比例的意义,能正确求比值、化简比、解比例。

2、通过整理,提高归纳、概括知识的能力,加强对知识系统性的认识。

3、培养学生应用数学的意识。

教学重点:理解比和比例之间的联系和区别。教学难点:理清知识间的联系。教学流程:

一、创设情境,初步感知知识点。

谈话:我们班有多少名同学?多少男同学?多少女同学? 提问:哪位同学能用“比的知识”说说男生人数和女生人数的关系,男生人数和全班人数的关系。

追问:你能再说一个比和刚才的比组成比例吗? 组内交流一下方法。

二、梳理知识点。

同学们,今天我们就来复习和整理比和比例的知识。

1、请打开书,填写84页例1的表格。(1)引导学生逐步梳理比和比例的知识。

(2)刚才我们复习了比的基本性质,那同学们还记得分数的基本性质吗?商不变的性质呢?

(3)说说这三个性质的共同点。

看来,比、分数、除法是有互通性的,那么我们来看一看比、分数、除法的区别以及它们的联系。

2、请同学们填写84页例2的表格。(1)小组合作学习,梳理表格。(2)指名学生汇报。(3)提问:你能用字母表示三者之间的关系吗?

a : b=a÷b=

(强调b≠0)

三、做一做

1、求比值。

45∶72

∶2

4∶

我们根据什么求比值?最后结果是什么?(可以是整数、分数或小数)

2、化简比。

0.7∶0.25

4∶

我们化简比的依据是什么?结果是什么?(一个比,前项和后项都是整数)

3、解比例。

∶X = ∶2 解比例的依据是什么?(比例的基本性质)

四、巩固应用

1、餐馆给餐具消毒,要用100mL消毒液配成消毒水,如果消毒液与水的比例是1:150,应加入水多少毫升?

2、一个长方形操场的周长是420米,长与宽的比是4:3。这个操场的面积是多少平方米?

五、总结收获。

(温仁小学

比和比例复习课教学反思 篇4

复习课不能等同于练习课。很多粗心的老师都把复习课上成单调的练习课,一节课下来从头到尾只注重练习,而忽略了对知识的整理及学生整理知识能力的培养,每节课如此反复地进行,学生练得多觉得累,老师评讲多了也累,到头来师生双方都弄得疲惫不堪,从而对复习课感到厌烦。我个人认为,复习课既要帮助学生系统整理过去的知识,也要教给学生复习的方法,提高学生整理知识、构建知识网络的能力;同时结合相关的实际应用,达到加深理解、巩固旧知、灵活运用的最佳效果。

复习课既要让优生“吃得饱”,也要让中下生“吃得消”。每个班都有优生和差生,我常常听到一些成绩好的同学抱怨:“老师,上复习课真的.很无聊,上课讲的内容我们都学过了,都会了。”可是,对于成绩差的同学却不一样,虽然都是学过的知识,但他们却有很多知识都没掌握好,甚至有些知早已忘得一干二净了,复习的时候,部分中下生还是“一头雾水”,一个问题反复习问了好几个同学还是回答不出来。这样一来,成绩好的同学就觉得不耐烦了,他们上课无精打采,大大降低了他们的学习兴趣,打击了他们的学习积极性。

六年级数学比和比例教案 篇5

教材第84页例1---3题,练习十七第1、3题。

教学目标:

1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:

掌握比和比例的意义与基本性质。

教学难点:

根据比例尺求图上距离和实际距离。

教具准备:

多媒体课件

教学过程:

一、导言引入课题

比和比例(一)

二、教学例1

先在下表中写比和比例的一些知识,再举例说明。

比 比例

意义

各部分名称

基本性质

三、教学例2

比和分数、除法有什么联系?先填写下来,说一说它们的区别。

联系 例子

各部分名称

分数 分子 分数线 分母 分数值

除法

做一做:5:6=( )( )

四、教学例3

比的基本性质、分数的基本性质、商不变规律之间有什么联系?

1、学生交流

2、化简比。

3、化简比与求比值有什么不同之处?

一般方法 结果

求比值

化简比

五、解比例

X= :2【说一说思路和方法】

六、比例尺

1、什么叫做比例尺?

2、说出下面各比例尺的具体意义。

①比例尺1:3000000表示_____________

②比例尺20:1表示 _____________

3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?

5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

七、知识应用

练习十七第1、3题。

八、总结梳理

回顾本节课的学习,说一说你有哪些收获?

板书设计:

比和比例(一)

比和比例的意义与性质。

比和分数、除法的关系。 比和比例(一)

比、比例的基本性质的`用途。

比例尺。

比例尺的应用。

教学反思:

六年级数学教案《比和比例一》 篇6

课前准备:

教师准备:PPT课件

教学过程:

⊙谈话揭题

1.谈话。

师:我们学过了关于比的哪些知识?(结合学生回答,板书知识网络)

预设

生1:比的意义。

生2:比和分数、除法的关系。

生3:比的基本性质。

生4:求比值和化简比。

生5:比例尺。

生6:按比分配。

2.揭题。

同学们说得很全面,这节课我们就来复习有关比的知识。[板书课题:比和比例(一)]

⊙回顾与整理

1.比的意义。

(1)什么叫比?比的各部分名称是怎样规定的?

①两个数相除又叫做两个数的比。

②“∶”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(2)比和分数、除法有怎样的关系?

预设

生1:同除法比较,比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。

生2:比值通常用分数表示,也可以用小数表示,有时也可能是整数。

生3:根据分数与比的关系可知,比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。

2.比的基本性质。

比的前项和后项同时乘或者除以相同的`数(0除外),比值不变,这叫做比的基本性质。

3.求比值和化简比。

(1)求比值的方法。

用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。

(2)化简比的方法。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前项和后项是互质数。

(3)求比值与化简比的不同点。

学生讨论后汇报:

预设

生1:方法不同,求比值是根据比值的意义,用比的前项除以比的后项;化简比是根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外)。

生2:求比值的结果是一个数;化简比的结果是一个最简比。

4.按比分配。

(1)按比分配的意义。

把一个数量按照一定的比分成几部分,叫做按比分配。

(2)按比分配的方法。

首先求出各部分数量占总量的几分之几,然后分别求出总量的几分之几是多少。

⊙典型例题解析

1.课件出示例1。

求下面各比的比值。

(1)24∶36(2)0.25∶(3)2吨∶450千克

解析本题考查的是学生求比值的能力。用比的前项除以后项可求出各比的比值,求比值时应注意比的前项与后项的单位要统一,且比值可以是整数、小数或分数,但不能是一个比。

解答(1)24∶36=24÷36=

(2)0.25∶=÷=

比和比例导学案 篇7

横江中心小学陈炜

《比和比例总复习》属于概念课,但是比的知识分布在第十一册,比例的知识分布在第十二册,为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识对比复习,深化基本概念。当问学生“关于比和比例我们已经知道了些什么时?”同学们讲了很多,同时也深深感到这些知识点如果这样处理的话会显得零乱、无序

缺乏系统我决定把这个过程放在课堂上去完成。

复习课不能等同于练习课。不能只通过题海战术来枯燥、机械的让学生接受知识,从而对复习课感到厌烦。我个人认为,复习课既要帮助学生系统整理过去的知识,也要教给学生复习的方法,提高学生整理知识、构建知识网络的能力;同时结合相关的实际应用,达到加深理解、巩固旧知、灵活运用的最佳效果。这才是学生一生都受用的。因此我觉得这“浪费”的时间是值得的,学生经过自己的努力而整理出来的知识体系,学生理解得更深刻,记忆得特别牢固,而且能有效地锻炼和培养学生的自学能力。通过列表的方式使学习的知识系统化,也明确了各知识点的共性和个性,表示了学生对知识的理解,更重要的是渗透了学生对各类信息的整合、梳理,培养了科学的学习方法,让学生终生受益。

比和比例导学案 篇8

一、创设情境,再现知识

前面我们学习了关于比和比例的知识,你都知道那些?

我校六(1)班有男生20人,女生25人,请写出该班男女生的人数比。    (20 :25或4 :5)

(1)回顾:看到20 :25你能回忆起那些有关比的知识?

(2)小组交流:引导全员参与。

(3)在以前的学习中这部分你什么知识学得最好?什么知识学得不太好,或者觉得还有疑问呢?    (板书课题:比和比例总复习)

【设计意图】引导学生初步回顾有关知识,激发复习的欲望。为后面借助组题,回顾梳理有关知识做准备。

二、梳理归网,主体内化

1.回顾比的意义

出示:根据信息写出比,并思考比的含义。〔复习比的意义〕

我校六(1)班有男生20人,女生25人。

(2)某人骑自行车,15千米的路程,用去30分钟。

2.回顾比、分数、除法的联系与区别

4 ∶7=(  )(  ) =(  )÷(  )〔比较比、分数、除法〕

根据学生回答多出示下列表格:

联系 区别

比 前项 :(比号) 后项 比是两个数之间的倍数关系

除法 被除数 ÷(除号) 除数 除法是一种运算

分数 分子 -(分数线) 分母 分数是一个数

练习:

(1)比的前项和后项都乘或除以相同的数,比值不变。( )

(2)同一段路程,甲车行完要3小时,乙车行完要2小时,甲乙两车的速度比是3 :2。                ( )

(3)两个圆的半径比是1 :2,它们的面积比是1 :4,周长比是1 :2。( )

(4)为什么足球比赛中的比分可以是“2 :0”呢?x kb 1.co m

3.复习比的基本性质,比较求比值与化简比,并整理成下表

回顾情景,该班男女生的人数比。(20 :25或4 :5)

20 : 25的比值是(   ),化成最简比是(    )。

一般方法 结果

求比值 根据比值的意义,用前项除以后项。 是一个数。可以是整数、小数或分数。

化简比 根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外) 是一个比。它的前项和后项都是整数,并且是互质数。

练习:

(1)按要求填表

求比值    化简比

200 :25

25分钟 :1/3小时

35% :1.4

(2)2:6的比值是(  ),如果前项乘上3,要使比值不变,后项应该(  );如果前项和后项都除以2,比值是(  )。

4.复习比例的意义和比例的基本性质,区分比和比例

(1)20∶25=( ) :( )

(2)如果A×3=B×5,那么A :B=(   ) :(   )

(3)小组合作,把我们学过的比和比例这部分知识用自己喜欢的方式整理成框架图。展示学生成果,并说出如此整理的理由。

比和比例的意义与性质:

比 比例

意义 两个数的比表示两个数相除。

或两个数相除又叫做这两个数的比. 表示两个比相等的式子叫做比例。

基本

性质 比的前项和后项都乘或除以相同的数

(0除外),比值不变。xkb1.com 在比例里,两个外项的积等于两个内项的积。

练习

(1)含盐率是10%的盐水中,盐和盐水的比是

(2) 如果a :4= 0.2 :7,那么a =(   )

(3)从36的因数中选4个数,组成一个比例:(            )并用比例的性质检验(               )。

(4)解比例   X15 = 1.87.5                     1225 :X = 34 :56

通过我们刚才的整理,使老师和大家一起对比和比例这部分知识认识更有条理,印象也更深刻了。

【设计意图】通过借助系列组题,引导学生系统的、有条理的对比和比例的有关知识进行回顾、整合,形成完整的知识网络,为后面的综合应用做知识储备。

三、综合应用,整体提高

1.说一说,议一议。

(1)通常情况下,12周岁的儿童头发与身高的比是2 :15。

黄豆中的蛋白质与脂肪含量的比是2 :1。

一种混凝土中水泥  :沙子  :石子质量的比为2 :3 :5。

人造地球卫星与宇宙飞船速度的比是40 :57。

(2)一幅中国地图的比例尺是1 :6000000。

一幅军事地图的比例尺是1 :500000。

一幅青蛙解剖图的比例尺是10 :1。

一种微型电子元件平面图的比例尺是100 :1。

(可联系实际,改编一些实际应用的题目,让学生感受数学就在身边。)

【设计意图】复习巩固比和比例尺所表示的实际意义,感受比和比例尺在实际生活中的广泛应用。

2.你能想办法测量一棵大树的高度吗?说说你是运用了那些知识来解决这个问题的?(独立探究,汇报交流。)  ⑴利用影子 ⑵利用反射 ⑶利用标杆

【设计意图】本题旨在引导学生运用多方法解决正反比例的实际问题。体会比例知识在生活中的应用。

3.(1)一种盐水,盐的质量是水的25%。现有5克盐,要配置这种盐水,需加入多少克水?

(2)一种盐水,盐与水的质量比是1 :4。现有5克盐,要配置这种盐水,需加入多少克水?

【设计意图】理解比和百分数意义的区别,使学生清楚在通常情况下,表示各部分的关系时,用比更清楚,表示部分与总数之间的关系时,用百分数更合适一些。

4.加工一批帽子,已加工10000顶,占总数的20%。还有多少顶没有加工?

选择你喜欢的方法解答此题,并说出你的想法。

【设计意图】让学生体会在解决实际问题时,可选用不同的方法。拓展思路,一题多解。新课标第一网

四、课堂总结,评价自己

今天这节课我们一起复习了“比和比例”的知识,通过复习,你有什么新收获?

【课后反思】

本节课的教学,注意加强对数学思维方法的渗透,关注学生对策略的选择,注重提升学生的认知水平,加强了知识间的纵横联系,通过对问题的分析、讨论、交流,综合复习了比和比例的有关知识,理清了知识间的联系和区别,形成了完整的知识网络,增强了综合运用有关知识解决实际问题的能力。

上一篇:《歌唱祖国》演讲稿下一篇:1次难忘的劳动400字作文范文