欧拉公式的证明

2024-06-04

欧拉公式的证明(共6篇)

欧拉公式的证明 篇1

欧拉公式

eicosisin的证明方法和应用

i摘要:在复数域内用几种不同的方法证明欧拉公式ecosisin,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。关键词:欧拉公式、微分中值定理、证明、应用、三角函数

1.欧拉公式意义简说

在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被ecosisin这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当时,有e1,即e10,这个等式将数学中的最富有特色的五个数0、1、i、e、联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5]。它们在数学中各自都有发展的方面。因是圆周率在公园前就被定义为“周长与直径的比”

此e+1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。

iiii

2.欧拉公式的证明简述

在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。

2.1幂级数展开式的证明法

引用三角函数和指数函数“幂级数展开式”证明欧拉公式ecosisin,2.2复指数定义法

用复指数定义ee

2.3类比法求导法

通过实函数的性质来对复函数进行求导运算(附件①),通过构造f(x)

ixzxiyie(cosyisiny),证明欧拉公ecosisin xiixcosxisinx,f(x)0用lagrange微分中值定理推论[3],从而证明f(x)1,使得ecosxisinx

2.4分离变量积分法

假设zcosxisinx,求导得dzdziz,通过分离变量得idx,,然后两边取积分得dxz

Lnzix,所以得ecosxisinx.3.欧拉公式的证明方法

3.1幂级数展开式的证明方法:

3.1.1三角函数的“麦克劳林级数”[1] : ix

sin(z)z3!355!

4(1)n12n2n1(zn1)!n, cos(z)122!24!(1)(2n)!, 3.1.2指数函数的“麦克劳林级数”:[1]

e

ez1z2!nn!, 当用iz代替 z时,那么 iz(iz)1iz2!2(iz)n!n

(12

2!4

4!)i(z3!355!)

coszisinz

当z时,得到ecosisin。

3.2复指数定义法:

对于任何复数zxiy(x,yR),有

ii(证完)ezexiye(cosyisiny)[2],当x=0时,另xy,有ecosisin(证完)

3.3类比求导法:

3.3.1构造函数f(x)

3.3.2计算导数

f(x)

i(cosxisinx)(sinxicosx)(cosxisinx)2ixixixcosxisinx xR,i为虚数 ix(icosxsinxsinxicosx)

cos2xisin2x

3.3.3lagrange微分中值定理的推论 0

若函数f(x)在区间I上可导,且f(x)的导数恒等于0,x属于I,则f(x)为I上的一个常量函数[3]。根据这推论,所以有f(x)c,c为常量,又因为f(0)1, 所以f(x)1,有

eixcosxisinx.(附件②)(证完)

3.4分离变量积分法

dzicosxsinxi(cosxisinx)iz,分离变量得: dx

dz1idx, 所以两边同时积分得idx,即Lnzixc,当取x=0时,zz假设zcosxisinx, 难么

zco0sisin01,Lzl1i0c0nn,所以c0,所以Lzixn,Lnzzcosxisinxix,所以ixcosxisinx。(证完)eee

4.欧拉公式在数学中的应用

在对一些较难以证明和计算的题上,直接使用欧拉公式很容易就证明了,在高等数学中很广泛的应用,比如棣莫弗公式的证明,复变函数的求解等。

4.1公式证明和应用

4.1.1 证明棣莫弗(de Moivre)公式[4]cosnxisinnx(cosxisin

证明:由欧拉公式ecosxisinx可知:ixx)n; ix(cosxisinenx)即n

einxcosnxisinnx,所以有cosnxisinnx(cosxisinx)n

4.2.2用欧拉公式和棣弗公式证明[4]:e

e

zxcosacos(xsina)cosna;n0n!nxcosasin(xsina)sinnanon!n; 证明:令zcosaisina,由欧拉公式可知 ee

xz(cosaisina)ecosaeisinaecosa(cos(sina)isin(sina))xcosa即ee

ex(cosaisina)excosaeixsinae(cos(xsina)isin(xsina))xcosacos(xsina)e

nnxcosaisin(xsina))又由于:

exzn0(xz)n!(cosnaisinna)

n0

n!cosnansinnanin!xn!xn0n0

比较实部和虚部的到 

e

excosacos(xsina)cosna;n0n!nn

sin(xsina)sinna

non!

4.2定义证明和应用

4.2.1证明复数z 的正弦函数和余弦函数 xcosa

sinziz2iiz,coszixiz2iiz.[2] 证明:由欧拉公式eixecosxisinxcosxisinx可得,,ixecosxisinx

ixixcosx2从而得到.对于任意的实数x成立,这两个公式中的x代以任意复数z后,ixixsinx2i

由eezxiye(cosyisiny),右端有意义,而左端尚无意义,因而有:

izx

sinziz2i,cosziz2iiz.4.2.2求sin(12i)的值[2]:

解:

sin(12i)

i(12i)2ii(12i)2(cos1isin1)(cos1isin1)2i

22 222

cosh2sin1isinh2cos1

此式为复数解正弦函数(附件③)sin1i22cos1

5.综合总结

ix对于欧拉公式ecosxisinx,在这里用了四种不同的方法证明其的成立,也举了几个

列子说明了欧拉公式在高等数学中的重要性,在这里,主要是提供给学生一种多方面学习和看问题的思想,比如在证明欧拉公式的方法中,都还有许多不同的证明方法,我所列举的这几种方法中,类比求导法是一种很好的证明方法,其的构造思想很巧妙,对于幂级数的展开证明方法,较容易弄懂,并且在实际的题目中,幂级数的展开用得比较多。我在下面所举的两类应用中,都是用到欧拉公式,且欧拉定理在这当中就像桥梁一样,如果不用到欧拉公式,这类问题也能求,但不是那么容易了。通过对欧拉公式的证明和应用的了解,我们对于e1i

也就不那么陌生了。

6.考文献

[1] 数学分析 下册 第三版 华东师范大学数学系 编 第十四章 幂级数 2001

[2] 复变函数论 第三版 钟玉泉 编 第二章 解析函数 2004

[3] 数学分析 上册 第三版 华东师范大学数学系 编 第六章微分中值定理及应用 2001

[4] 数学分析 下册 华东师大第三版 同步辅导及习题全解 2006

[5] 生活与科学文库 e的奥秘 1991

7.附件

7.1附件① 因为对于实函数ae,dxaxaxd(cosxasinx)sinxacosxdxa为常数,所以对于复函数有ie,dxixixd(cosxisinx)i(cosxisinx)dx

7.2附件②对于构造的函数f(x)ix

cosxisinx是有意义的,因为

|cosxisinx|

有意义的。因为f(x)

ixcos2xsinx1所以cosxisinx0。因此,函数f(x)2ixcosxisinx是ixcosxisinx所以 ix

f(x)

i(cosxisinx)(sinxicosx)(cosxisinx)2ix(icosxsinxsinxicosx)

cos2xisin2x0

又根据lagrange中值定理可得 f(x)cc 为实常数,又因为f(0)i0

cos0isin0=1则有

f(x)1,所以有f(x)ix

cosxisinx1,所以ecosxisinx

7.3附件③复函中规定:sinhz

zix2z,coshzz2z

欧拉公式在三角函数中的应用 篇2

注:此论文系云南省应用基础研究计划青年项目(编号:2012FD060)与国家自然科学基金项目(编号:11426037)的成果.

摘要:欧拉公式形式众多,在数学方面的应用很广,但是教材中较少涉及,本文总结了欧拉公式在证明三角恒等式、求解三角表达式的值、求解三角方程、解决一些方程根的问题的应用,从而避免了复杂的三角变换简化证明和计算。

关键字:欧拉公式;;三角函数 ;三角级数

【中图分類号】G642

参考文献:

[1] 裴礼文.《数学分析中的典型问题与方法》[M].北京:高等教育出版社.

1984,135-140.

[2] 辛华.欧拉公式在三角恒等变换中的推广应用[J].雁北师范学院院报.2000,

16(2):94-96.

[3] 钟玉泉.复变函数论[M].北京:高等教育出版社.2003:10-15.

[4] 王玉华.欧拉公式的推论与应用[J].辽宁广播电视大学报.2009,

3(13):236-237.

[5] 薛金星.高中数学五星级题库[M].北京:北京教育出版社.2011:387-389.

作者简介:1、杨国翠(1984-),女(汉族),云南临沧人,硕士研究生,讲师,主要从事基础数学方面的研究

2、李自美(1984-),女(汉族),云南保山人,硕士研究生,讲师,

Taylor公式的证明及应用 篇3

数学与信息科学学院数学与应用数学专业

指导教师李文明

作者张彦莉

摘要:文章简要介绍了泰勒公式的证明方法及几个常见函数的展开式,针对泰

勒公式的应用讨论了九个问题,即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等幂级数展开式,进行近似计算,求高阶导数在某些点的数值求行列式的值.关键词: 泰勒公式;极限;不等式;级数;根的唯一存在性;极值;展开式;近似计算;行

不等式的证明规律及重要公式总结 篇4

几个常应用的不等式

221、ab2ab,ab(ab2)a2b2c2abbcca 2222、ababab2(a,bR)

1122ab3、a3b3c33abc(abc0)

4、abc33abc,abc(abc3);(a,b,cR)

35、|a||b||ab||a||b|,(a,b,cR)

n226、aibiaibi(柯西不等式)

i1i1i1nn2

法一:作差:

证明方法

例一:abc1,求证:a2b2c21。

31的代换11222222

2证:左-右=(3a3b3c1)[3a3b3c(abc)]

331[(ab)2(bc)2(ca)2]0 32a2b2cbccaab法二:作商;设a、b、cR,且abc,求证:abcabc

左a2ab2bc2cabc

证:bccaabaabaacbbcbbaccaccb()ab()bc()ca

右abcbcaaa1,ab0()ab1 bbaaab1

当0

∴ 不论a>b还是a

当a>b>0时法三:公式法:例二:a>0,b>0,且a+b=1,求证:

①ab1121225

②(a)(b) 8ab2A2B2ABA2B2AB2

证①由公式:()得:

2222a4b4a2b22ab2211()[()]a4b4

222168A2B2AB2(AB)222()AB

证②由 2221111ab211[(a)(b)]2[ab](1)2

(*)2ab2ab2abab211)4

∵ ab(24ab1252

∴(*)(14)

斯宾诺莎用数学公式证明伦理学 篇5

定义:

(1)自因:它的本质包含着存在或只能被设想为存在着。

(2)凡是可以为同性质的另一事物所限制的东西,叫作在本类中有限。一个物体被成为有限,是因为除了这个物体之外,可以设想另一个更大的物体。同样,一个思想可以被另一个思想限制。但形体不能限制思想,思想也不能限制形体。

(3)实体:在自身内并通过自身而被认识的东西。即,形成实体的概念无须借助于别的事物的概念。

(4)属性:在理智看来,构成实体本质的东西。

(5)样式:实体的特殊形态,即在别的事物内通过他物而被认识的东西。

(6)神:绝对无限的存在。即具有无限多属性的实体,其中每一属性都各自表现无限永恒的本质。

公则:

(1)一切事物,如果不是在自身内,就必定是在别的事物内。

(2)一切事物,如果不能通过别的事物而被认识,就必定通过自身而被认识。

(3)如果有确定的原因,则必定有结果相随,反之,如果无确定的原因,则绝无结果相随。

(4)认识结果有赖于认识原因,并且也包含了认识原因。

(5)两物间如果没有相互共同之点,则一件事物不能借另一件事物而被理解,换言,就是一件事物的概念不包含另一件事物的概念。

(6)真观念必定符合它的对象。

(7)凡是可以被设想为不存在的东西,它的本质就不包含存在。

命题

命题一:实体按它的本性说必定先于它的特殊状态。

证明如下:

实体是在自身内并通过自身而被认识的东西,样式是实体的特殊状态。而样式是在别的事物内并通过他物而被认识的东西。实体在自身中并通过自身而被认识,而实体的特殊状态在他物中并通过他物而被认识。从逻辑上将,先有自身后又自身的特殊状态。先有自身而后有他物。

命题二:具有不同属性的两个实体,彼此之间没有共同之点。

证明如下:根据定义(3),实体在自身中并通过自身而得到认识,因此这一实体的概念不包含另一实体的概念。

命题三:凡是彼此之间没有共同之点的事物,这一事物不能是另一事物的原因。

证明如下:如果两件事物没有共同之点,根据公则(5),则一件事物不鞥年借另一事物而被理解,即,一件事物的概念不包含另一事物的概念。所以,根据公则(4)--即认识结果有赖于认识原因,并且也包含认识原因--一件事物不能是另一事物的原因。

命题四: 两个或多数不同的事物,区别的所在不是由于实体的属性不同,就是由于实体的特殊状态各异。

证明如下:

一切存在的事物不是在自身内,就是在别的事物内(公则1),而根据实体和样式的概念,这就是说在理智的外面,除了实体和它的特殊状态之外,没有别的东西。所以在理智的外面,除了实体之外,或者说,(根据定义4)除了实体的属性和特殊状态之外,没有任何东西可以用来区别重大事物之间的异同。

命题五:按事物的本性来说,不能有两个或更多具有相同性质或属性的实体。

用数学归纳法证明泰勒公式 篇6

1 引言

一般的高等数学教材中[1]都介绍了关于泰勒公式的如下两个命题:

命题1 带皮亚诺(Peano)余项的泰勒(Talor) 公式:

f(x)在[a,b]上具有n阶导数,则衳∈[a,b]有

f(x)=f(a)+f ′(a)(x-a)+f(2)(a)2!(x-a)2+…+f(n)(a)n!(x-a)琻+Rn(x)(1)

其中Rn(x)=o((x-a)琻),

即﹍imx→x0Rn(x)(x-x0)琻=0.

命题2 带拉格朗日(Langrange)余项的泰勒公式:

函数f(x)在x0的邻域内x∈U(x0)内n+1阶可导,对衳∈U(x0),靓巍剩踴0,x]使得f(x)=f(a)+f′(a)(x-a)+f(2)(a)2!(x-a)2+…+f(n)(a)n!(x-a)琻+Rn(x)(2)

其中Rn(x)=f(n+1)(ξ)(n+1)!(x-x0)n+1

两种余项的泰勒公式所表达的根本思想就是怎样用多项式来逼近函数

公式(1)非普通的等式,而是反映了极限性质的渐进等式,因此公式(1)在求极限时很有用处,对余项可以提供充分小量的估计

公式(2)的余项有确定表达式,当然也有不确定因素,即有中值,但不妨碍定理的使用,为近似计算的误差估计提供了理论依据

这两个命题的证明都需要多次使用柯西(cauchy)中值定理或者罗比达(LHospital)法则,非常繁琐本文给出泰勒公式的一个简洁的证明,给出的余项既可以进行误差的阶的估计,又可以进行近似计算

2 主要结果

引理1 f(x)在[a,b]上可导,且f ′(x)≥0,则f(x)≥f(a),x∈[a,b]

证明:由于f ′(x)≥0,所以f(x)在[a,b]上递增,f(x)≥f(a)

推论1 f(x)和g(x)在[a,b]上可导,且ゝ ′(x)≥g ′(x),

则f(x)-f(a)≥g(x)-g(a),x∈[a,b]

特别地f(a)=g(a)=0,则有f(x)≥g(x),

x∈[a,b]

证明:令h(x)=f(x)-g(x),对h(x)使用引理1

引理2 H(x)在[a,b]上可导,且有

(1)H(k)(a)=0,k=0,1,2,…,n-1,

(2)m≤H(n)(a)≤M,x∈[a,b],

则有 m(x-a)琻n!≤H(x)≤M(x-a)琻n!.

证明:对n用数学归纳法证明

n=0时,显然成立

若已有m(x-a)琻n!′≤H ′(x)≤M(x-a)琻n!′,

由推论1得到m(x-a)琻n!≤H(x)≤M(x-a)琻n!

定理 若函数f(x)在[a,b]上n+1阶连续可导,则存在A和B,使得[a,b]中的任意x0和x,有下式成立

f(x)=f(x0)+f ′(x0)(x-x0)+f(2)(x0)2!(x-x0)2+…+

f(n)(x0)n!(x-x0)琻+Rn(x) (3)

其中Rn(x)介于A(x-x0)n+1(n+1)!和B(x-x0)n+1(n+1)!之间

特别地,若记M=max{|A|,|B|},

则﹟Rn(x)|≤M|x-x0|n+1(n+1)!

证明:由于f(n+1)(x)连续,必有A≤f(n+1)(x)≤B

令Rn(x)=f(x)-f(x0)+f ′(x0)(x-x0)

+f(2)(x0)2!(x-x0)2+…+f(n)(x0)n!(x-x0)琻,

则有:

(1)R(k)n(x0)=0,k=0,1,2,…,n

(2)A≤R(n+1)n(x)=f(n+1)(x)≤B

由引理2,有|Rn(x)|≤M|x-x0|n+1(n+1)!,M=max{|A|,|B|}

注:由|Rn(x)|≤M|x-x0|n+1(n+1)!,有Rn(x)=o((x-x0)琻),(x→x0)

因此,命题2可以看成定理的一个推论,但比较而言,定理的证明不需要较多的中值定理的知识,证明简单

由定理, 可以直接写出以下几个基本初等函数的泰勒公式:

1)e瑇=1+x+x22!+…+x琻n!+Rn(x)

2)sinx=x-x33!+x55!+…+(-1)n-1x2n-1(2n-1)!+R2n(x)

3)cosx=1-x22!+x44!+…+(-1)nx2n(2n)!+R2n(x)

4)ln(1+x)=x-x22+x33+…+(-1)n-1x琻n+Rn(x)

5)(1+x)α=1+αx+α(α-1)2!x2+…+α(α-1)…(α-n+1)n!x琻+Rn(x)

6)11-x=1+x+x2+…+x琻+Rn(x)

3 应用举例

例1 求e的近似值,使得其误差<10-6

解 取f(x)=e瑇

由于e瑇在[0,1]上具有任意阶连续导数,且

|(e瑇)n+1|=|e瑇|≤e,所以M≤e,由公式(3)

e瑇=1+x+…+1n!x琻+Rn(x),

取x=1,有e≈1+1+12!+13!+…+1n!

|Rn(1)|≤M(n+1)!≤e(n+1)!<3(n+1)!取n=9,可得3(n+1)!<10-6,此时e≈2.718282即为所求

例2 求极限﹍imx→0sinx-xx3

解 由于sinx=x-x33!+R4(x),因为﹟sin(n)x|=|sin(x+nπ2)|≤1

所以|R4(x)|≤x44!,因此R4(x)=o(x3),所以

﹍imx→0sinx-xx3=﹍imx→0-x33!+o(x3)x3=-16

例3 证明二项式展开定理:(a+b)琻=∑nk=0C琸na琸bn-k.

证明:设函数f(x)=(x+b)琻,则函数f(x)存在任意阶的导函数

f(k)(x)=n(n-1)…(n-k+1)(x+b)n-k (k=0,1,…,n),

f(k)(0)=n(n-1)…(n-k+1)bn-k (k=0,1,…,n)

且f(n+1)(x)=0,由定理得

f(x)=f(0)+f ′(0)x+f ″(0)2!x2+…+f (n)(0)n!x琻

=∑nk=0f (k)(0)k!x琸

=∑nk=0n(n-1)…(n-k+1)bn-kk!x琸

=∑nk=0C琸nbn-kx琸

所以f(a)=∑nk=0C琸nbn-kx琸

又f(a)=(a+b)琻,所以(a+b)琻=∑nk=0C琸na琸bn-k.

参考文献

[1] 高等数学第四版上册,同济大学数学教研室主编,高等教育出版社

[2] 数学分析第三版上册,华东师范大学数学系编,高等教育出版社

作者简介 迟炳荣(1972—),女,潍坊工商职业学院建筑工程系讲师,鲁东大学数学与信息学院教育硕士,主要从事高等数学教学研究

上一篇:五张热门通信专业技能资格证考取下一篇:商务调查