《概率论与随机过程》课程自学内容小结
《概率论与随机过程》课程自学内容小结 篇1
上海大学2015~2016学年秋季学期本科生
课程自学报告
课程名称:《概率论与随机过程》
课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用
学生姓名:
学
号:
任课教师:
成绩:
评阅日期:随机序列在通信加密的应用
2015年10月10日
摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用范围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。
1.引言
在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。
本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。
2.自学内容小结与分析
2.1 随机变量的特征函数
在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X的特征函数定义为:
定义1 C(ju)p(x)ejuxdxE[ejuX]
(1)性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。
性质2 求矩公式:E[Xn](j)ndnCx(u)(du)n|u0
(2)
ndnC(u)unn(ju)性质3 级数展开式:CX(u)
(3)|n0E[X]n(du)n!n!n0n02.2 大数定律与中心极限定理
定义2 大数定律:设随机变量相互独立,且具有相同的E(Xk)和D(Xk)2,k1,2,...,则0,有
1n
limPXk
1(4)
nnk1这验证了人们的猜想:大量随机现象的平均结果一般也具有稳定性。定义3 中心极限定理:设随机变量相互独立,服从同一分布,且E(Xk)和D(Xk)20,k1,2,...,则随机变量Ynnk1Xknn的分布函数Fn(x)满足:
nt2XnX1k
limFn(x)limPk1xe2dt
(5)
nnn2要求随机变量之和落在某个区间上的概率,只要把它标准化,用正态分布作近似计算即可。2.3 随机序列及其统计特性
随机序列是对随机信号采样得到的结果,按信号的时间和状态可以分为连续型随机序列(时间离散、幅度连续)和离散型随机序列(时间和幅度都离散)。其中,后者在计算机处理中得到了广泛的应用。
将连续随机过程X(t)以ts为间隔进行等间隔抽样(记录),即得随机序列,表示为:
XjX(t)(tjts),j,...,1,0,1,...,
(6)由此可以看出一个N点的随机序列可以看成是一个N维的随机向量。均值向量为:
mx0mx
MxE[X]1mx0mxN1mx1mxN1
(7)
T自相关矩阵:
r00r10T
RXE[XX]rN1,0协方差矩阵:
r01r11rN1,1r0,N1r1,N1
(8)
rN1,N1c00c10T
CXE[(XMX)(XMX)]cN1,0c01c11cN1,1c0,N1c1,N1
(9)
cN1,N1容易证明,协方差矩阵与自相关矩阵有如下的关系:
CXRXMXMX
(10)性质1 对称性:RXRX
性质2 半正定性:对任意N维(非随机)向量F,成立 FRXF0
TTT值得注意的是,协方差矩阵的每一个元素反映的是随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差。2.4 随机序列的功率谱密度
由于随机序列X(n)的自相关函数是一离散函数,故由离散傅立叶变换可得:
GX()由此推得:
GY()2.5 随机序列通过离散线性系统
kRX(k)ejk
(11)
kRY(k)ejkH()GX()
(12)
2对于在区间[0,1]上均匀分布的独立随即序列Xj,通过q阶FIR滤波器有:
Yjb0Xjb1Xj1bqXjq其自相关函数满足
qk2bb,|k|0,1,...,qxi0iik
RY(k)
(14)
0,|k|qbXii0qji
(13)3.伪随机序列在通信加密中的应用
加密的基本思想是:用m序列将携带信息的数字信号在统计结构上随机化,即“白化”,以达到隐藏信息的目的,对于0,1序列,在实现时只要用m序列与元信号进行异或,得到的密文是类似于白噪声的伪随机序列。将这种加密序列在信道里传输,被他人窃听也无法理解其内容。解密时只有用完全相同的m序列对密文再次进行异或,才能还原出原信号。
图1 加密的原理框图
3.1 m序列产生器
用线性反馈移位寄存器构成m序列产生器,关键是由特征多项式来确定反馈线的状态。图2为4级m序列产生的逻辑框图。图2 m序列产生器 对应的本原多项式为:
给寄存器赋除全零外的任何二进制序列作为初始值,当移位时钟脉冲上升沿到来时,每级寄存器的输出作为近邻寄存器的输入,实现数值的右移。其中,第4级与第3级的输出模二加(异或)后移入第1级寄存器。产生一个长度为15个时钟脉冲周期的二进制伪随机序列。3.1.3利用中心极限定理确定投注号码数字和的范围
统计上海市体育彩票中间号数据,得到0到9各数字出现的次数和频率,除数字9外,各数字出现的频率有向0.1靠近的趋势,为方便起见,不妨设0到9各数字出现的概率均为0.1。记随机变量Xi,i1,2,为第i次确定的数字,易见Xi,i1,2,相互独立同分布,Xi,i1,2,的数学期望和方差为EXi4.5,DX8.25,令7nX1X7n是连续n期中奖号各位数字总和,由和式和独立性,可得E(7n)31.5n,D(7n)57.75n,由中心极限定理,当7n充分大时,有
7n31.5n57.75n~N(0,1),那么7n的保证概率为0.6827的估计区间是(31.5n57.75n,31.5n57.75n),在第n+1期投注时,应考虑把区间[24.39]的上下限增大。
策略三: 若连续n期中奖号的7n个数字之和7n靠近31.5n57.75n或31.5n57.75n,就适当下调或上调区间[24,39]的上下限,所得区间作为第n+1期投注号码的七个数字之和的范围。3.2 结果说明
文中用极限定理观察中奖号码的运动趋势,要求观察次数足够多。在策略二中,n的范围以30n50为宜;在策略三中,最好5n7,即连续观察5至7期中奖号的数字。由于煤气彩票特等奖号码只有一个,备选数字配置的所有号码有可能不包括特等奖号码,不过它覆盖部分中奖号码的概率非常大,对于仅期望能中奖的彩民,可以按文中介绍的三个策略有节制地购买彩票。
参考文献
[1] 王永德,王军 随机信号分析基础,北京,电子工业出版社,2013:11-110 [2] 封希媛,大数定律与中心极限定理在实际中的应用[J],青海师范大学学报第二版,2006 [3] 沈恒范,概率论与数理统计教程,高等教育出版社,2010:111-115 [4] 唐莉,李雁如,大数定律与中心极限定理的实际应用,广东,广东技术师范学院学报,2005-08-20
【《概率论与随机过程》课程自学内容小结】推荐阅读:
随机事件的概率教学设计09-23
随机事件的概率说课稿03-22
第1课时 随机事件的概率教案08-14
概率统计课程07-28
概率论与数学统计12-01
概率论与数理统计03-24
第25章概率初步单元小结教案05-29
概率论与数理统计教学03-10
概率论与数理统计心得05-29
概率论与数理统计教材06-26