抽屉原理练习题一

2024-10-21

抽屉原理练习题一(共10篇)

抽屉原理练习题一 篇1

抽屉原理练习题

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出球?

解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9

=5……5

由抽屉原理2k=[m/n

]+1可得,至少有6人,他们所拿的球类是完全一致的。

6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。

解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)

7、证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。

解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。

8.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。

解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。

9.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。

解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。

10.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。

11.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍.证明:把前25个自然数分成下面6组:

1;

2,3;

4,5,6;

7,8,9,10;

11,12,13,14,15,16;

17,18,19,20,21,22,23,⑥

因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍.12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?

解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。

13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?

【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

15.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

16.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?

分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

17.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?

分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。

18.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。

81÷10=8……1(个)。

根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。

19.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?

分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生 7×(5-1)+1=29(名)。

20.在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。

分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。

解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。

21.任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。

分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉。

解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。

22.在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8.解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4

。把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。显然,以这三个点为顶点的三角形的面积不超过1/8。

反思:将边长为1的正方形分成4个面积均为1/4的小正方形,从而构造出4个抽屉,是解决本题的关键。我们知道。将正方形分成面积均为1/4的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4,但这样构造抽屉不能证到结论。可见,如何构造抽屉是利用抽屉原理解决问题的关键。

23.班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本.24.

在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果,即至少有一段有两棵或两棵以上的树

.25.

有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜.试证明:一定有两个运动员积分相同

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分

则一定有两名运动员得分相同

.26.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:

{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}

以这9种配组方式制造9个抽屉,将这50个同学看作苹果=5.5……5

由抽屉原理2k=〔

〕+1可得,至少有6人,他们所拿的球类是完全一致的。

【欢迎你来解】

1.某班37名同学,至少有几个同学在同一个月过生日?

2.42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?

3.口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有4个颜色相同的球?

4.饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?

5.从13个自然数中,一定可以找到两个数,它们的差是12的倍数。

抽屉原理练习题一 篇2

高密市第一实验小学 孙 兵

预习学案

1、将3根小棒放到2个杯中,可以怎么放?

2、将4根小棒放到3个杯中,又有哪些放法?

3、分析两个问题中的不同放法,你能得到什么结论?

师:我们在课前作了预习,现在汇报一下预习成果。(学生台前演示分法,教师课件展示,并记录在黑板上。)分析两个问题的不同种分法,你能从中得到什么结论?同桌互相说一说。

学生汇报:不管怎么分,总有一个杯里至少有2根小棒。课件展示

猜测:将5根小棒放到4个杯里呢?如何来验证你的结论呢?小组内讨论。小组汇报

师:你为什么用5÷4呢?能解释一下吗?(学生台前演示)先将其中的4根小棒分别放到4个杯中,还剩一根,这一根不论放到哪个杯中,那个杯中都至少有两根小棒。用平均分的方法。老师有个疑问:为什么要平均分呢?

(只有平均分,才能保证每个杯中的小棒数是最少的。)

我们用算式表示就是:5÷4=1„„1,表示每个杯中先平均放1根,剩下的1根不论放到哪个杯中,总有一个杯中至少有2根小棒。那将7根小棒放到6个杯中呢? 将100根小棒放到99个杯中呢? 你发现了什么规律?同桌说一说。

(只要棒数比杯数多1,总有一个杯中至少有2根小棒。)师:刚才研究的问题有个特点:小棒数比杯数多1,有没有想过棒比杯多

3、多

3、多4的情况?是不是也会有这样的结论呢? 试一试:将5根小棒放到3个杯中;将7根小棒放到4个杯里呢?(总有一个杯里至少有2根小棒)

不管怎么放,总有一个杯里至少有2根小棒。

师:奥,那现在老师得到结论了:只要小棒比杯子多,那就总有1个杯子里至少有2根小棒,同学们同意吗? 为什么不同意?举个例子。9根小棒放到4个杯子里 15根小棒放到4个杯子里

师:研究到这里,你能发现什么规律?着小组内交流一下。用小棒的数量除以杯子的数量,总有一个杯子里至少有的小棒根数就是商加1。有没有不同意见?

当棒数与杯数整除时,就不用加1,结果就是商。

师:今天我们研究的是一个著名的数学问题,这就是著名的“抽屉原理”。只不过我们今天是用小棒和杯子来代替了物体和抽屉。最早利用抽屉原理解决问题的是德国数学家狄利克雷,因此,人们又把这个原理称为“狄利克雷原理”。(课件展示)现在你能用这个原理解决问题了么? 课堂练习(课件展示):“做一做” 1、7只鸽子飞回5个鸽舍,至少有2只鸽子飞回同一个鸽舍。为什么?

2、将15个苹果放到4个盘子中,总会有一个盘子至少有()个苹果。这两个题目中,分别把什么当做了抽屉?

你现在知道用抽屉原理解决问题的关键了么?(找准哪是抽屉)(课件展示)用物体数除以抽屉数,如果能整除则总有一个抽屉里至少有“商”个物体;

如果不能整除(有余数)则总有一个抽屉里至少有商+1个物体。

(课件展示)拓展练习:

1、一幅扑克,拿走大、小王后还有52张牌,任意抽出其中的5张,总会有至少两张牌的花色相同,为什么?

2、我们班共65人,至少几个人的属相相同?为什么?(任选一个你喜欢的做)这一节课你有哪些收获?

套餐作业:(课件展示)A:课本P70“做一做” B:课本P73“练习十二”

抽屉原理教案 篇3

胡家营学区 霍卫国

【教学内容】

《人教版教科书·数学》六年级下册第70、71页。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】

课件、水杯、吸管、作业纸。【教学过程】

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。师:开始。

师:都坐下了吗? 生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗? 生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

二、通过操作,探究新知 教学例1 出示题目:有3支吸管,2个盒子,把3支吸管放进2个盒子里,有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支吸管放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2支吸管?

是:是这样吗?谁还有这样的发现,再说一说。同桌互相说一说。

师:那么,把4支吸管放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?根据学生摆的情况,师板书各种情况。(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗? 生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2支吸管。

师:“总有”是什么意思? 生:一定有 师:“至少”有2支什么意思?

生:不少于两只,可能是2支,也可能是多于2支? 师:就是不少于2支。(通过操作让学生充分体验感受)

师:把3支吸管放进2个盒子里,和把4支吸管放进3个盒子里,不管怎么放,总有一个盒子里至少有2支吸管。这是我们通过一一列举发现了这个结论。我们能不能找到一种更为直接的方法,也能得到这个结论呢? 学生思考——组内交流——汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支吸管。

师:你能结合操作给大家演示一遍吗?(学生操作演示)师:这种分法,实际就是先怎么分的? 生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 师:同意吗?

师:哪位同学能把你的想法算式表达出来?

生: 4÷ 3=1……1 不管怎么放,总有一个盒子里至少有2枝铅笔。师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把7枝笔放进6个盒子里呢? 把8枝笔放进7个盒子里呢?

把100枝笔放进99个盒子里呢?„„

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:这么大是数同学们很快就能得出结论。如果铅笔数比盒子数不是多一,会出现什么情况呢?

出示题目:把5支铅笔放进3个杯子呢?

(留给学生思考的空间,师巡视了解各种情况)学生汇报。

总结:只要铅笔数是杯子数的一倍多不超过两倍,无论怎么放总有一个杯子里的铅笔至少有2支。师:再多呢?

把5支铅笔放进2个杯子里呢?(小组讨论 指明同学演示并汇报)教师总结,也是用平均分的思想。把7支铅笔放进3个杯子里呢?

把15支铅笔放进4个杯子里呢?

学生小组探究并汇报。教师点评,引导学生总结规律。

商+1

这节课我们学习的就是课本中70和71页的内容。打开书结合我们今天研究的内容把书好好的看一下。(教师巡视)

师:我们今天用小棒和杯子研究的这一类的问题呢,最早把一些物品放进抽屉里来研究的所以称为“抽屉原理”,用它可以解决许多有趣的问题,下面我们应用这一原理解决问题。

课堂练习70、71页“做一做”。(独立完成,交流反馈)

三、拓展提升(教师点拨,课下思考)

一副扑克牌,去掉了两张王牌,还剩52张,任意抽出5张,同种花色的至少有几张?为什么?

小学抽屉原理 篇4

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学准备】

1、教学ppt课件

2、铅笔120支(小棒代替),笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。

【教学流程】

一、问题引入。

师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5位同学上来。1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。

2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗?

(游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。)

3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

4、明确学习目标与任务:

师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法)课件出示学习目标与要求

1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2)通过实验操作、自主探究、小组合作发现抽屉原理。3)感受数学文化的魅力,提高对数学的兴趣。

二、探究新知

(一)教学例1

为了研究这个原理,我们做一组实验。

1、观察猜测

课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放进 ____支铅笔。

猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。师:你会用实验证明你的猜想吗?

2、小组合作:

课件出示:把4支铅笔放进3个文具中盒中,可以怎样放? 有几种不同的放法? 提出实验要求:我们以小组为单位实际放放看,一人负责操作,其他人用笔将不同的放法记录下来。(师巡视,了解情况,个别指导)

3、交流汇报

师:你们摆好了吗?共有几种摆法?(学生说)

学生汇报:小组代表汇报,老师利用电脑进行了模拟实验演示,课件出示各种摆法:(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗? 生:没有了。

4、说结论:

师:观察这四种分法,在每一种放法中,有几支铅笔放进了同一个文具盒?

生:答:第一种摆法有4支铅笔放进同一个文具盒中;第二种摆法有3支铅笔放进同一个文具盒中;第三种摆法有2支铅笔放进同一个文具盒中;第四种摆法有2支铅笔放进同一个文具盒中;

师:: 我们综合这4种摆法,你们能发现什么规律?(学生说)师:谁能再说一遍?谁还想说?

引导学生说:不管怎么放,总有一个盒子里至少有2枝铅笔。(课件出示)教师板书:老师把同学们的发现记录下来,(板书): 铅笔 文具盒 总有一个文具盒至少放进 4 3 2 5、教师重点强调:“总有、至少”

师:老师为什么要强调“总有、至少”呢?“总有”是什么意思? 生:一定有,总会有(强调存在性)师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过4种摆法让学生充分体验感受)

师小结:看来,不管怎么放,总有一个文具盒至少放进2枝铅笔。这是我们通过实际操作,采用一一列举的方法得到的结论。

6、教学平均分方法

A、老师提出质疑:假如是6支铅笔放进5个文具盒,或者是10支铅笔放进9个文具盒,甚至是100支铅笔放进99个文具盒,结果会怎么样?你还会用一一列举的方法去证明吗?(学生思考)那有没有一种既简单又快捷的方法呢?

B 引导观察:师:请同学们观察这4种分法,哪种摆法最能体现“至少有2支铅笔放进同一个文具盒”这个结论呢?(摆法4)

师:它是怎样分的呢?我们再看一遍摆的过程。C 课件演示平均分的过程并引导学生思考:

1、它是怎样分的?(平均分)

为什么只用平均分一种方法就能证明“总有1个文具盒至少放入2支铅笔”?

2、你能用平均分的方法解释刚才的结论吗? 学生思考——组内交流-----汇报.引导学生说:如果每个文具盒放进1支,最多放进3支.剩下的1支不管放在哪个文具盒里.总有1个文具盒至少放进2支铅笔。(或那个文具盒就至少有2支笔)师:谁能再说一遍?谁还想说?(课件出示)

D 谁会用算术表示刚才平均分的过程?教师板书:4÷3=1„„1

7、引导发现原理1:

刚才我们学习了一一列举的方法,而且还学习了用平均分的方法证明了“把4支铅笔放进3个文具盒中,总有一个文具盒至少放进2支铅笔”这个结论。下面我们看到一组练习。①尝试练习(课件)如果把6支铅笔放到5个文具盒中,总有一个文具盒至少放进()支笔? 如果把10支铅笔放到9个文具盒中,总有一个文具盒至少放进()支笔? 如果把100支铅笔放到99个文具盒中,总有一个文具盒至少放进()支笔? 你会用算术解释吗?教师板书 ÷ 5 = 1„„ 1 2 100 ÷ 99 = 1„„1 2 ②课堂小结:通过刚才的学习你发现什么规律?(多指几名学生回答)

引导学生归纳出:只要放的铅笔数比文具盒的盒数多1,总有一个文具盒里至少放进2支铅笔。

师:你同意他的说法吗?谁还想说?

③师:如果把文具盒看做抽屉,铅笔看做被分配的物体,那刚才的规律还可以另外一种表达(课件出示):如果物体数比抽屉数大1,不管怎么放,总有一个抽屉至少放入2个物体。(学生读一遍)

8、师:你能用抽屉原理解释刚才的抢凳子游戏吗?什么是被分物体?什么是抽屉?

(二)教学例2

如果物体数比抽屉数多

2、多

3、多4„„又会出现什么结果呢?

1、出示例题(PPT):把5支铅笔放进3个文具盒,不管怎么放总有1个文具盒里至少放多少支铅笔?为什么?

2、学生猜想结论:

3、师:你们猜想的对吗?我们看看电脑模拟实验的过程,(电脑演示平均分的过程)师:你能解释为什么吗?

4、汇报(演示)并解释发现的结论。

A解释并汇报:如果每个文具盒放进1支,最多放进3支.剩下的2支不管放在哪个文具盒里.总有1个文具盒至少放进2支铅笔。(或那个文具盒就至少有2支铅笔)

B教师板书:老师把同学们的发现记录下来,板书:5 3 2

5、算术怎样列?5÷3=1———2

6、尝试练习

1、如果7支铅笔放进4个文具盒中,至少有()支铅笔放进同一个文具盒中?

2、如果9支铅笔放进4个文具盒中,会有什么结果? 3、15支呢?

4、你能用算术表示吗?

7、学生做题汇报,教师板书 ÷ 4 = 1„„3 2 9 ÷ 4 = 2 „„1 3 15 ÷ 4 = 3„„3 4

8、总结规律,发现原理2 师:我们研究到这了,看看有什么规律? 学生汇报:

学情预设①:“商+余数”和“商+1”两种情况:师:验证一下,看看到底是商+1还是+余数?

学情预设②:意见统一为“商+1”:师:为什么不管余几都是商+1呢?)

总结:课件出示:如果物体数比抽屉数 大一些,不管怎么放,总有一个抽屉至少放入(商+1)个物体。

(如果有学生提出没有余数的情况,可以让学生举例子验证,说明这个结论的前提是“有余数”)

三、巩固运用解决问题

应用原理能不能解决一些实际问题?下面准备了一组闯关练习,如果闯关成功,那同学们就会得到一个神秘礼物哦!想不想试试?有信心吗?

1、闯关1:7只鸽子飞回5 个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?

2、神秘礼物:机器猫小叮当

3、闯关2:8只鸽子飞回3个鸽舍里,至少有()只鸽子要飞进同一个鸽舍里?为什么?

4神秘礼物:扑克牌游戏

一幅扑克,拿走大、小王后还有52张牌,请你任意抽出其中的5张牌,那么你可以发现什么?为什么? ①师与生配合做

教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。②学生试着解释。5闯关3:智慧城堡

在我们班的任意13人中,总有至少()人的属相相同,想一想,为什么?

1.学生猜想 2.学生试着说理

3.式子表示:13÷12 = 1„„1 1+1 = 2(名)

6、神秘礼物:名言警句“聪明出于勤奋,天才在于积累”。

——华罗庚

7、闯关4:智慧城堡

1.会昌小学在“感恩教师,送祝福”活动中,为每位过生日教师订了一份生日蛋糕。请问154名教师中至少有()名教师的生日是在同一个月份? 2.学生猜想 3.学生试着说理

4.式子表示154÷12=12„„10 12+1=13(人)

8、神秘礼物:喜羊羊与灰太狼

9、闯关5思维拓展

如果要保证至少有2名教师生日是在同一天,那至少要有()名教师?

10、介绍数学知识:(课件出示“你知道吗“)

四、课堂小结:通过今天的学习你有什么收获?

五、作业训练

要求学生完成练习册练习。

六、板书设计: 抽屉原理

(物体数)(抽屉数)至少数 铅笔 文具盒 总有一个文具盒至少放进(商+1)÷ 3 = 1„„ 1 2 6 ÷ 5 = 1„„ 1 2 100 ÷ 99 = 1„„1 2 5 ÷ 3 = 1„„2 2 7 ÷ 4 = 1„„3 2 9 ÷ 4 = 2 „„1 3 15 ÷ 4 = 3„„3 4

+余数)(商 用式子表示为:

物体数÷抽屉数=商„ „余数

至少数=商+1(注意:不是商+余数)

七、设计思路

数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题。

1、经历“数学化”的过程。

“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。

2、用具体的操作,将抽象变为直观。

“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。

3、注重建模思想的渗透。

本节课的教学,有意识地培养学生的“模型”思想,让学生理解“抽屉问题”的“一般化模型”。在学生自主探索的基础上,教师引导学生对两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题;在学生解决了“4枝铅笔放进3个文具盒”的问题后,继续思考,类推,得出一般性的结论。这样设计,提升了学生的思维,发展了学生的能力。

4、注重调动学生的积极性。

兴趣是最好的老师,是调动学生积极探究知识的动力,学生感兴趣就会很积极地参与到学习中来,反之他们则会不予理睬。对于“抽屉原理”的学习,学生以前并没有接触过,学生以前理解数学问题全都是由数量和数量关系组成,解决问题时基本上是用算术和几何知识,极少用到推理的知识。所以,教学中激发学生学习的兴趣犹为重要。本节课中,教师从学生已有的知识经验出发,从简单的物体入手,鼓励学生大胆思考,积极交流、讨论等,给学生创设了一个和谐的学习环境,使学生在轻松愉快中学习数学,并在数学学习中享受着快乐。

5、体现“学生为主体,教师为主导”的新教学理念。

教师不是学生学习的指挥者,而是学生学习活动的伙伴。教学中学生是学习的主体,教师只是与学生共同探索、共同研究,与学生一起解决问题、构建模型,让学生在问题中 “学”和“悟”。

6、精选学生身边感兴趣的素材。

抽屉原理 篇5

例1 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解 从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。

原则2 如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则1相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原则1可看作原则2的物例(m=1)

例2 正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色。例3 把1到10的自然数摆成一个圆圈,证明一定存在在个相邻的数,它们的和数大于17.证明 如图12-1,设a1,a2,a3,„,a9,a10分别代表不超过10的十个自然数,它们围成一个圈,三个相邻的数的组成是(a1,a2,a3),(a2,a3,a4),(a3,a4,a5),„,(a9,a10,a1),(a10,a1,a2)共十组.现把它们看作十个抽屉,每个抽屉的物体数是

a1+a2+a3,a2+a3+a4,a3+a4+a5,„a9+a10+a1,a10+a1+a2, 由于(a1+a2+a3)+(a2+a3+a4)+„+(a9+a10+a1)+(a10+a1+a2)=3(a1+a2+„+a9+a10)=3×(1+2+„+9+10)

――根据原则2,至少有一个括号内的三数和不少于17,即至少有三个相邻的数的和不小于17.原则

1、原则2可归结到更一般形式:

原则3 把m1+m2+„+mn+k(k≥1)个物体放入n个抽屉里,那么或在第一个抽屉里至少放入m1+1个物体,或在第二个抽屉里至少放入m2+1个物体,„„,或在第n个抽屉里至少放入mn+1个物体。

证明

假定第一个抽屉放入物体的数不超过m1个,第二个抽屉放入物体的数不超过m2个,„„,第n个抽屉放入物体的个数不超过mn,那么放入所有抽屉的物体总数不超过m1+m2+„+mn个,与题设矛盾。

例4 有红袜2双,白袜3双,黑袜4双,黄袜5双,蓝袜6双(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双。

证明 除可能取出红袜、白袜3双外.还至少从其它三种颜色的袜子里取出4双,根据原理3,必在黑袜或黄袜、蓝袜里取2双。

上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少。2.制造抽屉是运用原则的一大关键

首先要指出的是,对于同一问题,常可依据情况,从不同角度设计抽屉,从而导致不同的制造抽屉的方式.例5 在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过(假定四点在一直线上构成面积为零的四边形).证明

如图12-2把正方形分成四个相同的小正方形。因13=3×4+1,根据原则2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的。

事实上,由于解决问题的核心在于将正方形分割成四个面积相等的部分,所以还可以把正方形按图12-3(此处无图)所示的形式分割.合理地制造抽屉必须建立在充分考虑问题自身特点的基础上.例6 在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么?

解 如图12-4(设挂牌的三棵树依次为a、b、c.ab=a,bc=b,若a、b中有一为偶数,命题得证.否则a、b均为奇数,则ac=a+b为偶数,命题得证.换一个角度考虑:给每棵树上编上号,于是两棵树之间的距离就是号码差,由于树的号码只能为奇数和偶数两类,那么挂牌的三棵树号码至少有两个同为奇数或偶数,它们的差必为偶数,问题得证.后一证明十分巧妙,通过编号码,将两树间距离转化为号码差.这种转化的思想方法是一种非常重要的数学方法。

例7 从自然数1,2,3,„99,100这100个数中随意取出51个数来,求证:其中一定有两个数,它们中的一个是另一个的倍数.分析设法制造抽屉:(1)不超过50个;(2)每个抽屉的里的数(除仅有的一个外),其中一个数是另一个数的倍数,一个自然数的想法是从数的质因数表示形式入手.解 设第一个抽屉里放进数:1,1×2,1×22,1×23,1×24,1×25,1×26;第二个抽屉时放进数:3,3×2,3×22,3×23,3×24,3×25;第三个抽屉里放进数:5,5×2,5×22,5×23,5×24;„„„„„„第二十五个抽屉里放进数:49,49×2;第二十六个抽屉里放进数:51.„„„„„„第五十个抽屉里放进数:99.那么随意取出51个数中,必有两个数同属一个抽屉,其中一个数是另一个数的倍数.制造抽屉并非总是一帆风顺的,有时要边制造边调整、改进.例8 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.分析 注意到这些数队以10的余数即个位数字,以0,1,„,9为标准制造10个抽屉,标以[0],[1],„,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.3.较复杂的问题须反复地运用抽屉原则,将复杂问题转化为简单问题.例9 以(x,y,z)表示三元有序整数组,其中x、y、z为整数,试证:在任意七个三元整数组中,至少有两个三元数组,它们的x、y、z元中有两对都是奇数或都是偶数.分析 设七个三元素组为a1(x1,y1,z1)、a2(x2,y2,z2)、„、a7(x7,y7,z7).现在逐步探索,从x元开始,由抽屉原则,x1,x2,„,x7这七个数中,必定有四个数具有相同的奇偶性,不妨设这四个数是x1,x2,x3,x4且为偶数,接着集中考虑a1、a2、a3、a4这四组数的y元,若比如y1,y2,y3,y4中有两个是偶数,则问题已证,否则至多有一个是偶数,比如y4是偶数,这时我们再来集中考虑a1、a2、a3的z元.在z1,z2,z3中,由抽屉原则必有两个数具有相同的奇偶性,如z1、z2,这时无论它们是奇数,还是偶数,问题都已得到证明.下面介绍一个著名问题.例10 任选6人,试证其中必有3人,他们互相认识或都不认识.分析 用a、b、c、d、e、f表示这6个人,首先以a为中心考虑,他与另外五个人b、c、d、e、f只有两种可能的关系:认识或不认识,那么由抽屉原则,他必定与其中某三人认识或不认识,现不妨设a认识b、c、d三人,当b、c、d三人都互不认识时,问题得证;当b、c、d三人中有两人认识,如b、c认识时,则a、b、c互相认识,问题也得证.本例和上例都采用了舍去保留、化繁为简、逐步缩小考虑范围的方法.例11 a,b,c,d为四个任意给定的整数,求证:以下六个差数b-a,c-a,d-a,c-b,d-b,d-c的乘积一定可以被12整除.证明 把这6个差数的乘积记为p,我们必须且只须证明:3与4都可以整除p,以下分两步进行.第一步,把a,b,c,d按以3为除数的余数来分类,这样的类只有三个,故知a,b,c,d中至少有2个除以3的余数相同,例如,不妨设为a,b,这时3可整除b-a,从而3可整除p.第二步,再把a,b,c,d按以4为除数的余数来分类,这种类至多只有四个,如果a,b,c,d中有二数除以4的余数相同,那么与第一步类似,我们立即可作出4可整除p的结论.设a,b,c,d四数除以4的余数不同,由此推知,a,b,c,d之中必有二个奇数(不妨设为a,b),也必有二个偶数(设为c,d),这时b-a为偶数,d-c也是偶数,故4可整除(b-a)(d-c),自然也可得出4可整除p.如果能进一步灵活运用原则,不仅制造抽屉,还根据问题的特征,制造出放进抽屉的物体,则更可收到意想不到的效果.例12 求证:从任意n个自然数a1,a2,„,an中可以找到若干个数,使它们的和是n的倍数.分析:以0,1,„,n-1即被n除的余数分类制造抽屉的合理的,但把什么样的数作为抽屉里的物体呢?扣住“和”,构造下列和数:

s1=a1, s2=a1+a2, s=a1+a2+a3, „„„„ sn=a1+a2+„+an,其中任意两个和数之差仍为和数,若他们之中有一是n的倍数,问题得证;

抽屉原理 篇6

2、某校六年级有学生367人,请问有没有两个学生的生日是同一天?

3、某校有370名1992年出生的学生,其中至少有2名学生的生日是同一天?为什么?

4、从1、2、3、4……1994、1995个自然数中,至少应选出多少个数才能保证其中必有两个数的差是1000?

5、从八个连续自然数中任意选出五个。证明其中必有两个数的差等于4.6、从2、4、6…..30这15个偶数中任取9个数,证明:其中一定有两个数之和是34.7、一只口袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有2个同色的?

8、某班学生去买语文书、数学书、英语书。买书的情况是:有买一本的、二本的、三本的或四本的。问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

9、某班学生去买数学书、语文书、美术书、自然书。买书的情形是:有买一本的、二本的、三本的或四本的。问至少去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

10、布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?

11、一个容器里放着10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛从容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取多少块木块?

12、一副扑克牌共54张,其中1至13点各有4张,还有2张王的扑克牌。至少取出几张牌,才能保证其中必有4张牌的点数相同?

13、某区有小学生13170人,其中一定有几人是同年同月同日生的(小学生年龄为7至13岁)?

14、某班共有46个学生,他们都参加了兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同?

抽屉原理课件 篇7

六年级数学下册70页、71页例1、例2.

教学目标:

1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:

经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:

理解“抽屉原理”的一般规律。

教学准备:

相应数量的杯子、铅笔、课件。

教学过程:

一、情景引入

让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知

1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?

摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1

(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?

(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。

(4,0,0) (3,1,0) (2,2,0) (2,1,1)

(学生通过操作观察、比较不难发现有与上个问题同样结论。)

(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

师:“总有”是什么意思? “至少”呢?让学生理解它们的含义。

师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。

教师出示课件演示让学生进一步理解“平均放”。

3、探究n+1根铅笔放进n个杯子问题

师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?

让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。

师:7根铅笔放进6个杯子,你们又有什么发现?

……

学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。

学生汇报后引导学生用实验验证想法。

师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)

师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)

4、总结规律

师:刚才我们研究的都是铅笔数比杯子数多1,而余数也正巧是1的,如果余下铅笔数比杯子多2、多3、多4的呢,结论又会怎样?

(1)探究把5根铅笔放在3个杯子里,不管怎么放,总有一个杯子里至少有几根铅笔?为什么?

a、先同桌摆一摆,再说一说。

b、你怎么分的?

学生汇报后,教师演示:将5根笔平均分到3个杯子里里,余下的两根怎么办?是把余下的两根无论放到哪个杯子里都行吗?怎样保证至少?

引导学生知道再把两根铅笔平均分,分别放入两个杯子里。

(2)探究把15根铅笔放在4个杯子里的结论。

(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。

(4)教学例2

课件出示:

1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

学生汇报

小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。

师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的结果。

三、解决问题

1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?

2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?

师:最后,我们再来玩个游戏,你们都玩过扑克牌吗?一共有几张牌(54),抽出大王和小王还剩几张(52)有几种花色(四种),下面老师请一位同学任愿的抽出5张,不用看,老师就知道,不管怎么抽,至少有2张是同花色的。老师说的对吗?为什么?

抽屉原理教学反思 篇8

反思我的教学过程,有几下几点可取之处:

1、情境中激发兴趣。

兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

2、活动中恰当引导。

教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。

3、游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

《抽屉原理》教学反思 篇9

课前引入部分,我设计有关抽屉原理在生活中运用的问题,使生活问题数学化、数学课堂生活化,让学生在数学课堂中的到发展。在教学中,我采取活动化的数学课堂,使学生在生动、活拨的数学活动中主动参与、主动实践,主动思考,主动探索、主动创造;使学生在数学知识、数学能力、数学思想、数学情感中得到充分的发展,从而让学生从学习中获得自主学习的培养,解题思维的拓展,解题能力的提升。在教学例3时,我采取用课件模拟实验的方式让学生感受实验的过程,把抽象的数学知识运用课件演示出来,从而化难为易,化抽象为具体。并让学生发挥自己的想象空间,组织讨论得出最终的结论。

在本堂课的教学中,我着重培养的学生思考解决问题的过程和思路。要让学生知道发现问题,就要会找办法解决问题。

抽屉原理及其简单应用 篇10

摘 要: 本文着重从抽屉的构造方法阐述抽屉原理,介绍了抽屉原理及其常见形式,并结合实例探讨了这一原理在高等数学和初等数论中的应用。关键词: 组合数学;抽屉原理;抽屉构造

1.引言

抽屉原理也叫鸽笼原理, 它是德国数学家狄利克雷(P.G.T.Dirichlet)首先提出来的, 因此也称作狄利克雷原理.它是数学中一个基本的原理,在数论和组合论中有着广泛的应用。在数学的学习研究中,我们也可以把它看作是一种重要的非常规解题方法,应用它能解决许多涉及存在性的数学问题。

2.抽屉原理的基本形式与构造

2.1基本形式

陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理Ⅰ 把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素。

原理Ⅱ 把m个元素任意放到n(mn)个集合里,则至少有一个集合里至少有k个元素,其中

m , 当n能整除m时,nkm  1 , 当n不能整除m时.n原理Ⅲ 把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素。

2.2基本构造

利用抽屉原理解题过程中首先要注意指明什么是元素,什么是抽屉,元素进入抽屉的规则是什么,以及在同一个盒子中,所有元素具有的性质。构造抽屉是用抽屉原理解题的关键。有的题目运用一次抽屉原理就能解决,有的则需反复用多次;有些问题明显能用抽屉原理解决,但对于较复杂的问题则需经过一番剖析转化才能用抽屉原理解决。3.利用抽屉原理解题的常用方法

3.1利用划分数组构造抽屉

例1 在前12个自然数中任取七个数,那么, 一定存在两个数, 其中的一个数是另一个数的整数倍。

分析:若能把前12个自然数划分成六个集合, 即构成六个抽屉,使每个抽屉内的数或只有一个, 或任意的两个数, 其中的一个是另一个的整数倍,这样, 就可以由抽屉原理来推出结论。现在的问题是如何对这12个自然数:1,2 ,„,12 进行分组, 注意到一个自然数, 它要么是奇数, 要么是偶数。若是偶数, 我们总能把它表达为奇数与2k(k1,2,3...)的乘积的形式,这样, 如果允许上述乘积中的因子2k的指数K可以等于零, 则每一个自然数都可表达成“ 奇数2k”(k1,2,3...)的形式, 于是, 把1,2,3„,12个自然数用上述表达式进行表达, 并把式中“奇数” 部分相同的自然数作为一组, 构成一个抽屉。

证明: 把前12个自然数划分为如下六个抽屉:

A1={120,121,122,123} A2={320,321,322} A3={520,521} A4={720} A5={920} A6={1120} 显然, 上述六个抽屉内的任意两个抽屉无公共元素, 且A1+A2+...+A6={1,2,3,...,12}.于是,由抽屉原理得,对于前12个自然数不论以何种方式从其中取出七个数,必定存在两个数同在上述六个抽屉的某一个抽屉内。设x、y是这两个数,因为A4、A5、A6都是单元素集,因此,x、y不可能同在这三个抽屉中的任何一个抽屉内。可见,x、y必同在A1、A2、A3的三个抽屉中的某一个之内,这样x和y两个数中,较大的数必是较小数的整数倍。例2 学校组织1993名学生参观天安门,人民大会堂和历史博物馆,规定每人必须去一处,最多去两处参观。那么至少有多少学生参观的地方完全相同?

分析:我们可以把某学生参观某处记作“1”,没有去参观记作“0”。并用有序数组{a,b,c}表示学生去参观天安门、人民大会堂和历史博物馆的不同情况。因为规定每人必须去一处,最多去两处,所以参观的方式,只有下列六种可能:

{1、1、0} {1、0、1} {0、1、1} {1、0、0} {0、1、0} {0、0、1} 把这六种情况作为六个抽屉,根据抽屉原理,在1993名学生中,至少有(1993)+1=333人参观的地方相同。63.2利用余数构造抽屉

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m1]表示。在研究与整除有关的问题时,常常用剩余类作为抽屉。

例3 对于任意的五个自然数,证明其中必有3 个数的和能被3 整除。

证明:任何数除以3 所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]

1、若这五个自然数除以3 后所得余数分别分布在这3 个抽屉中(即抽屉中分别为含有余数为0,1,2 的数),我们从这三个抽屉中各取1 个(如1到5中取3,4,5),其和(3+4+5=12)必能被3 整除。

2、若这5 个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3 个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3 个自然数之和是3 的倍数。

3、若这5 个余数分布在其中的一个抽屉中,很显然,必有3 个自然数之和能被3 整除。

3.3利用等分区间构造抽屉

所谓等分区间简单的说即是:如果在长度为1的区间内有多于n个的点,可考虑把区间n等分成n个子区间,这样由抽屉原理可知,一定有两点落在同一子

1区间,它们之间的距离不大于这种构造法常用于处理一些不等式的证明。

n例4 已知11个数x1,x2,,x11,全满足0xi1 ,i=1, 2  ,11,证明必有两个xi,xj(ij)满足xixj1.101.由抽屉原理,10证明:如图1,将实数轴上介于0与1那段(连同端点)等分为10小段(这10个小段也就是10个等分区间,即10个抽屉),每一小段长为

1111个点(数)中至少有+1=2个点落在同一条小线段上,这两点相应的数之差

10的绝对值 1.100

图1 对于给定了一定的长度或区间并要证明不等式的问题,我们常常采用等分区间的构造方法来构造抽屉,正如上面的例子,在等分区间的基础上我们便很方便的构造了抽屉,从而寻找到了证明不等式的一种非常特殊而又简易的方法,与通常的不等式的证明方法(构造函数法,移位相减法)相比,等分区间构造抽屉更简易,更容易被人接受。

3.4利用几何元素构造抽屉

在涉及到一个几何图形内有若干点时,常常是把图形巧妙地分割成适当的部分,然后用分割所得的小图形作抽屉。这种分割一般符合一个“分划”的定义,即抽屉间的元素既互不重复,也无遗漏;但有时根据解题需要,分割也可使得抽屉之间含有公共元素。

例5 如果直径为5的圆内有10个点,求证其中有某两点的距离小于2。分析:把圆等分成9个扇形而构造出9个抽屉,是最先考虑到的,但显然是不行的(虽然有两个点在某一扇形内,但不能确认它们之间的距离小于2)。转而考虑先用一个与已知圆同心,半径为1 的不包含边界的小圆作为一个抽屉,然后把圆环部分等分成八个部分,如图二所示,这样就构成了9个抽屉。

证明:先将圆分成八个全等的扇形,再在中间作一个直径d=1.8的圆(如图2),这就把已知的圆分成了9个区域(抽屉).由抽屉原理,圆内的10个点(球),必有两点落在同一区域内,只须证明每个区域中的两点的距离都小于2.显然,小圆内任两点间的距离小于2,又曲边扇形ABCD中,AB2,AD2,CD2,而任两点距离最大者AC,有

AC =OA2OC22OAOCcos45

=2.520.922.50.92=3.88<2.图2

3.5利用状态制构造抽屉

例6 设有六点,任意三点不共线,四点不共面,如果把这六个点两两用直线联系起来,并把这些直线涂以红色或者蓝色.求证:不论如何涂色,总可以找到三点,做成以它们为顶点的三角形,而这三角形三边涂有相同的颜色。

分析:设已知六点为A1,A2,A3,A4,A5,A6,由于任三点不共线,所以任三点均可作为某三角形的三个顶点。

证明:从六个点中任取一点A1,将A1与其余五点相连得到五条线段,线段如下所示: A1A2,A1A3,A1A4,A1A5,A1A6,这五条线段只有两种颜色即红色或者蓝色,由抽屉原理知,至少有三条涂有同一种颜色。颜色为抽屉,线段为元素,不妨设A1A2,A1A3,A1A4,涂有红色,这时我们考察△A2A3A4

(1)若△A2A3A4中有一条红色边,如A2A3,则△A1A2A3为三边同红的三角形;

(2)若△A2A3A4中无一条红色边,则△A2A3A4就是三边均为蓝色的三角形。4.抽屉原理的应用

4.1抽屉原理在高等数学中的应用

高等数学中一些问题抽象,复杂,解答比较困难,如果一些问题巧妙地运用抽屉原理会收到很好的效果,下列举例介绍抽屉原理在高等数学中的巧妙应用。

例7 设A为n阶方阵,证明:存在1in,使秩(Ai)=秩(Ai1)=秩(Ai2)

证明:因为n阶方阵的秩只能是0,1 , 2,  ,n这n+1个一,由抽屉原理可知,存在k,l满EA0,A,A2,,An,An1,E的个数多于秩的个数,足1k

秩(Ak)= 秩(Al), 但

秩(Ak)秩(Ak1)„秩(Al), 所以

秩(Ak)=秩(Ak1), 利用此式与秩的性质得

秩(ABC)秩(AB)+秩(BC)-秩(B), 这里的A,B,C是任意三个可乘矩阵,用数学归纳法可证

秩(Akm)=秩(Akm1).其中m为非负整数,故命题的结论成立。

4.2抽屉原理在初等数论中的应用

例8(中国剩余定理)令m和n为两个互素的正整数,并令a和b为整数,且0am1以及0bn1,则存在一个正整数x,使得x 除以m 的余数是a,并且x 除以n 的余数为b,即x可以写成xpma的同时又可以写成xqnb的形式,这里p 和q 是整数。

(n1)ma,证明: 为了证明这个结论考虑n 个整数a,ma,2ma,„,这些整数中的每一个除以m都余a.设其中的两个除以n 有相同的余数r. 令这两个数为ima 和jma,其中存在两整数qi和qj,使得imaqinr及jmaqjnr,0ijn1.因此,这两个方程相减可得(ji)m(qjqi)n.于是n是(ji)m的一个因子. 由于n和m没有除1 之外的公因子,因此n是ji的因子. 然而,0ijn1意味着,0jin1,也就是说n 不可能是ji的因子. 该矛盾产生于我们的假设: n个整数a,ma,2ma,...,(n1)ma中有两个除以n会有相同的余数。

因此这n个数中的每一个数除以n 都有不同的余数。

根据抽屉原理,n个数0,1,„,n1 中的每一个作为余数都要出现,特别地,数b也是如此。令p 为整数,满足0pn1,且使数xpma 除以n余数为b. 则对于某个适当的q,有xqnb.

因此,xpma且xqnb,从而x具有所要求的性质。

5.结束语

本文对抽屉原理的常见形式及其应用结合实例做了一些探讨,为数学解题提供了一种简便的方法.应用抽屉原理解题的难点在于如何恰当的构造抽屉,而制造抽屉的办法是灵活多变的, 不能生搬硬套某个模式, 需要灵活运用。

参考文献

[1]陈景林,阎满富.组合数学与图论.北京:中国铁道出版社出版,2000.4-6 [2]曹汝成.组合数学.广州:华南理工大学出版社,2001.170-173 [3]钟颖.关于抽屉原理[J].成都教育学院学报,2003,17(7):75.[4]朱华伟,符开广.抽屉原理[J].数学通讯,2006,19(17):37.[5]忘向东,周士藩等.高等代数常用方法.山西:高校联合出版社,1989.64-66 [6]刘否南.华夏文集.太原:高校联合出版社,1995.88-90 [7]魏鸿增等.抽屉原理在高等数学中的应用.数学通报,1995,2.3-4 [8]严示健.抽屉原则及其它的一些应用.数学通报,1998,4.10-11

The Principle And Application Of The Drawer

上一篇:举国同庆初二日记下一篇:2017中职教师跟岗访学国培结业报告