课题.勾股定理

2024-08-04

课题.勾股定理(共10篇)

课题.勾股定理 篇1

课题:

14.1

勾股定理(第1课时)

教材:华东师大版

教师:衡阳市第十六中学 曹冬梅

电话*** 一

教学目标: ㈠知识目标:

⑴掌握勾股定理所揭示的本质,理解直角三角形三边之间的数量关系。(2)能够利用勾股定理熟练求解直角三角形的未知第三边 ㈡能力目标:

⑴培养学生合作探索与自主学习的能力及动手操作能力 ⑵培养学生运用所学知识解决生活中实际问题的能力 ㈢情感目标:

⑴通过介绍数学人文知识激发学生的爱国情感和民族自豪感 ⑵体会自主学习及合作探索的乐趣,增进同学之间的信任度 二

教学重点难点: 重点:

体验勾股定理的发现过程和运用勾股定理解决简单问题.难点:

运用勾股定理解决简单问题.三

教学过程:

学生动手探索

导入新知

1.画直角边长为3cm,4 cm的一个直角三角形,并量出其斜边长. 2.画直角边长为5cm,12cm 的一个直角三角形,并量出其斜边长。可以发现

345 51213222222

得出结论:

直角三角形两直角边的平方和等于斜边的平方。引入课题。

(二)介绍勾股定理的历史,激发同学们的爱国热情和民族自豪感 1

最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.2

赵爽创制了一幅“勾股圆方图”,用形数结合得到方法.详细证明。

给出了勾股定理的3

西方国家称勾股定理为毕达哥拉斯定理

毕达哥拉斯(Pythagoras,约公元前580~前500年)是古希腊杰出的数学家,天文学家,哲学家.他不仅提出了定理,而且努力探求证明方法.5

我国至今可查的有关勾股定理的最早记载比毕达哥拉斯要早发现500多年。

(三)勾股定理的证明 1

利用面积拼凑法来证明

并给出勾股定理的文字表述及对应图形的符号表述。如果直角三角形两直角边分别为a、b,斜边为c,那么 解决简单的问题: 试一试:

1)(1)若a,b,c是△ABC的三边,则

abc222即

直角三角形两直角边的平方和等于斜边的平方。

abc22222(2)若a,b,c是直角△ABC的三边,则

abc222(3)若a,c分别是直角△DEF的一条直角边和斜边,则另一直角边b有

bca2

3)、填空:

(1)已知:在∆ABC中,∠C=90◦,AC=5,BC=12, 则AB=

,(2)、已知:在∆ABC中,∠A=90◦,AC=40,BC=41, 2 则AB=

,A

B C

B C 3 结论变形 :

直角三角形中,两直角边的平方和等于斜边的平方.2abc222acb

(四)例题讲解

2bca2

2cab22

(进一步强调勾股定理是在直角三角形中).例:为了求出位眼于湖两岸的两点A,B之间的距离,一个观察者在点C设桩,使△ABC恰好为直角三角形,通过测量,得AC长160米,BC长128米,问从点A穿过湖到点B有多远?

(五)练习解题,巩固新知 如图,一个长8 米,宽6 米的草地,需在相对角的顶点间加一条小路,则小路的长为()

A.8米

B.9米

C.10米

D.14米 在波平如静的湖面上,有一朵美丽的红莲,它高出水面1米,一阵大风吹来,红莲被吹至一边,花朵齐及水面,如果知道红莲移动的水平3 距离为2米,问这里水深多少?

3.课后探索

已知△ABC的两边为3和4,请问你能求出它的第三边吗?若能请求出,若不能,请你给题目加上一个条件,并求出它的第三边.

补充条件是:若△ABC是直角三角形,那第三边是多少?周长又是多少呢?

(六)课堂小结,回顾新知 本节课你有什么收获?

(七)布置作业:

(1)课本51页,第1、2题;

(2)查阅有关勾股定理的历史资料,关注验证勾股定理的方法.四

教学设计说明: 教材分析:

勾股定理是一个古老而又年轻的定理,其在数学学习中有着至关重要的作用。它是数形结合的代表,是用数学方法来解决几何问题的基础桥梁。在中学数学学习中,也为在后面三角函数的学习及一些图形的计算打下必要的基础。

学生分析:

学生已有了整式乘法,和实数的混合运算的基础。具有良好的协作学习习惯及自主学习能力。对勾股定理的学习有较浓厚的兴趣。

本节课的教学分四步:学生动手探索结论,介绍勾股定理的历史,由面积拼凑法验证结论,应用结论解决实际问题。

2007-12-8

1米 2米

勾股定理证明 篇2

直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

以下即为一种证明方法:

如图,这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。

∵△ABE+△AED+△CED=梯形ABCD

∴(ab+ab+c²)÷2=(a+b)(a+b)/2 ∴

∴c²=a²+b²,即在直角三角形中,斜边长的平方等于两直角边的平方和

《勾股定理》教案 篇3

·教学目标

知识目标: 掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角

三角形的任意两边求得 图

1紧接着再问学生:我们是通过测量的方式发现了直角三角形两直角边的平方和等于斜边的平方或者说两小正方形的面积和大正方形的面积.这种做法往往并不可靠,我们能否证出两直角边为3、4的直角三角形斜边是5.(目的:数学需要合情推理,但也要逻辑证明.通过此问题证明过程,关键是这里渗透了面积法的证明思想.)

三、自主探索、发现新知

为了解决好这个问题我们不妨把图19.2置于方格图中,计算大正方形的面积等于25.于是让学生计算大正方形的面积,但大正方形R的面积不易求出,可引导学生利用网格对大正方形尝试割或补两种方法解决.1(34)243425.方法一:将图2补成图3,则要求正方形的面积为:

2因此直角边分别为3、4的直角三角形斜边是5即324252.1方法二:将图2补成图4,则要求正方形的面积为:434125.2因此直角边分别为3、4直角三角形斜边是5即324252.(目的:在方格图中利用割补的思想通过计算面积的方法证明了直角边分别为3、4的直角三角形斜边是5即324252.为探索一般的直角三角形也有两直角边的平方和等于斜边的平方以及证明它的成立做好铺垫.)

此时老师提出问题:对于这个直角三角形满足两直角边的平方和等于斜边的平方,那么对于任何一个直角三角形都有这种关系吗?

通过以上探索,相信有学生能用文字语言概括猜想出一般的结论:直角三角形两直角边的平方和等于斜边的平方.符号表示为a2b2c2(a、b是直角边,c是斜边.).教师要鼓励这位同学讲的好,敢于猜想是一种难能可贵的数学素养,这位同学用精确的语言叙述了直角三角形三边的关系,那么这一结论是否正确,怎样论证?

(目的:在学生的数学学习过程中,既要学会证明又要学会猜想;既要学会演绎推理又要学会合情推理.鼓励学生在讨论的基础上大胆猜想,能培养学生的探索创新精神.)

老师用多媒体将图2的方格线隐去得图5,设RtACB直角边为a,b

及斜边

c,试证明a2b2c2.通过与学生的合作交流,只要证明出斜边上的正方形的面积,等于两直角边上的正方形的面积和即可.有前面的证明过程,学生可以想到通过割补利用面积法进行证明.这个地方要留够充足的时间让学生讨论交流,证好的同学请上台来解释他是如何证明的.方案一:,用三个与RtACB一样的直角三角形将图5中斜边上的正方形补

1成图6,则Sc2(ab)24ab.化简整理得到a2b2c2.2方案二:用三个与RtACB一样的直角三角形将图5中斜边上的正方形割成1图7,则S=c2(ab)24ab.化简整理得到a2b2c2.Aa-b BC图7 图6

教师介绍:我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图19.2.8是在北京召开的2002

年国际数学家大会(ICM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.此时,教师极力夸赞学生已成功探索出5000多年前人类历史

上的一个重大发现,真是太伟大了!a2b2c2,这就是赫赫有名的勾股定理(板书课题).接着用多媒体展

示勾股定理的历史.图19.2.8

勾股定理史话

勾股定理从被发现到现在已有五千年的历史.远在公元

前三千年的巴比伦人就知道和应用它了.我国古代也发现了

这个定理.据《周髀算经》记载,商高(公元前1120年)关

于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即

邪至日=2+股2.这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情况了.人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯学派(Pythagoras,公元前580~前500)首先发现的,因而称为毕达哥拉斯定理.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S.Loomis)专门编辑了一本勾股定理证明的小册子――《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达•芬奇和美国总统詹姆士••••阿•加菲尔德(James Abram

Garfield,1831~1881)的证法.美国总统詹姆士••阿•加菲尔德的证法如下:

1112S梯形=a+b)=a2abb2,222如图:因为 111S梯形2abc2abc2.222a

b所以a2b2c2.勾股定理是一条古老而又应用十分广泛的定理.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差.勾股定理以其简单、优美的形式,丰富、深刻的内容,充分反映了自然界的和谐关系.人们对勾股定理一直保持着极高的热情,仅定理的证明就多达四百多种,甚至著名的大物理学家爱因斯坦也给出了一个证明.中国著名数学家华罗庚在谈论到一旦人类遇到了“外星人”,该怎样与他们交谈时,曾建议用一幅反映勾股定理的数形关系图来作为与“外星人”交谈的语言.这充分说明了勾股定理是自然界最本质、最基本的规律之一,而在对这样一个重要规律的发现和应用上,中国人走在了前面.方案三(教师介绍欧几里得证法)证明:证明:在Rt△ABC的三边上向外各作一个正方

形(如图8),作CN⊥DE交AB于M,那么正方形被分成两个矩形.连结CD和KB. ∵由于矩形ADNM和△ADC有公共的底AD和相等的高,∴S矩形ADNM=2S△ADC

又∵正方形ACHK和△ABK有公共的底AK和相等的高,∴S正方形ACHK=2S△ABK

在△ADC和△ABK中

∵AD=AB,AC=AK,∠CAD=∠KAB

∴△ADC≌△ABK

由此可得S矩形ADNM=S正方形ACHK 同理可证

图8

S矩形BENM=S正方形BCGF

∴S正方形ABED=S矩形ADNM+S矩形BENM=S正方形ACHK+S正方形BCGF

即a2b2c2.(目的:在勾股定理的发现过程中,充分鼓励学生不同的拼图方法得出不同的验证方法,帮助学生自主建构新知识.另外要介绍学生所拼的图7就是古代的弦图,也是在北京召开的2002年国际数学家大会的会标,进一步激发学生的成就感.让学生充分体验到探索创新所带来的成功的喜悦.)

四、应用新知、解决问题

例1如图19.2.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米)

解 在Rt△ABC中,∠ABC=90゜,BC=2.16, CA=5.41,根据勾股定理得

ABAC2BC25.4122.16

2≈4.96(米)

答:梯子上端A到墙的底端B的距离约为4.96米.图

19.2.4例2(趣味剪纸)如图两个边长分别为4个单位和

3个单位的正方形连在一起的“L”形纸片,请你剪两刀,再将所得到的图形拼成正方形.(目的:本段内容主要通过教师启发引导,学生共同探究完成,一方面让学生感受解决问题的愉悦与强烈的成就感,培养学生动手能力和学习兴趣以及加强对勾股定理的理解.另一方面让学生知道:(1)勾股定理应用的前提条件(在直角三角形中);(2)已知直角三角形的两边会用勾股定理求第三边.)

五、自我评价、形成知识

⑴这节课我的收获是.⑵我感兴趣的地方是.⑶我想进一步研究的问题是.(目的:通过这几个问题,可以很好的揭示学生新建立的不同的认知结构,也体现了不同的人学数学有不同的收获.把学习的权利交给学生,使学生体验做数学的乐趣.同时,把探究阵地从课堂延伸到课外,有利于充分挖掘学生的潜能.)

六、作业

⑴课本P104习题19.2 1,2,3⑵通过上网,搜索有关勾股定理的知识:如(1)勾股定理的历史;(2)勾股定

理的证明方法;(3)勾股定理在实际生活中的应用等.然后写一篇以勾股定理为

主题的小论文.(目的:巩固勾股定理,进一步体会定理与实际生活的联系.促进学生学知识,用知识的意识.新课程标准提倡课题学习(研究性学习),通过课题学习与研究更多地把数学与社会生活和其他学科知识联系起来,使学生进一步体会不同的数学知识以及数学与外界之间的联系,初步学习研究问题的方法,提高学生的实践能力和创新意识.)

· 关于教学设计的几点说明:

1、这节课是定理课,针对八年级学生的知识结构和心理特征,本节课我准备以“问题情境-----实验、猜测-----验证、证明----实际应用”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论.让学生经历知识的发生、形成与应用的过程,从而更好地理解数学知识的意义.让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想;

2、由于学生的个体差异表现为认知方式与思维策略的的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平.在学生回答时,我通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能;

3、探索定理采用了面积法,通过用割补两种方法对直角边为3、4这一特殊直角三角形的斜边上的正方形的面积的计算,得到此直角三角形的两直角边的平方和等于斜边的平方.由此自然的过渡到对一般直角三角形三边关系的研究,当然也自然的用此方法证明了勾股定理.这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用;

勾股定理的逆定理教案 篇4

活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?

设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.

师生行为学生分组讨论,交流总结;教师引导学生回忆.

本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.

生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.

师:那么,一个三角形满足什么条件,才能是直角三角形呢?

生:有一个内角是90°,那么这个三角形就为直角三角形.

生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.

师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

二、讲授新课

活动2问题:据说古埃及人用下图的`方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.

画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.

师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.

生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.

生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

勾股定理复习教案 篇5

【知识体系】

1、勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么

。即直角三角形两直角边的等于。

2、勾股逆定理:如果直角三角形三边长a、b、c满足,那么这个三角形是

三角形。(且∠

=90°)

注意:

(1)勾股定理与其逆定理的区别:勾股定理是直角三角形的性质定理,而此结论是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,而且可以判定直角三角形中哪一个角为直角,这种利用计算的方法来证明的方法,体现了数形结合的思想。

(2)事实上,当三角形三边为a、b、c,且c为最大边时,①若a2+b2=c2,则∠C为直角;

②若c2>a2+b2,则∠C为钝角;

③若c2

(3)满足条件a2+b2=c2的三个整数,称为勾股数。

常见的勾股数组有:3、4、5;5、12、13;8、15、17;7、24、25;20、21、29;9、40、41;…

这些勾股数组的整数倍仍然是勾股数组。

3、最短距离:将立体图形展开,利用直角三角形的勾股定理求出最短距离(斜边长)。

注意:(1)勾股数是一组数据,必须满足两个条件:①满足;②三个数都为正整数。

(2)11~20十个数的平方值:

【考点应用】【题型一

勾股定理定理的应用】

1、已知:一个直角三角形的两边长分别是3cm和4cm,求第三边的长。

2、(1)一架长2.5的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7(如图),如果梯子的顶端沿墙下滑0.4,那么梯子底端将向左滑动

第1题图

第2题图

第3题图

(2)如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离

1米,(填“>”,“=”,或“<”)

(3)如图,梯子AB斜靠在墙面上,AC⊥BC,AC=BC,当梯子的顶端A沿AC方向下滑x米时,梯足B沿CB方向滑动y米,则x与y的大小关系是()

A.x=y

B.x>y

C.x

y

D.不能确定

(4)小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1

m,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为

【题型二

勾股定理逆定理的应用】

1、如何判定一个三角形是直角三角形:

先确定最大边(如c);

验证与是否具有相等关系

若=,则△ABC是以∠C为直角的直角三角形;

若≠,则△ABC不是直角三角形。

例1、如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.

2、如图,在正方形ABCD中,E是BC的中点,F为CD上一点,且CF=CD.

求证:△AEF是直角三角形.

3、下列各组数中,可以构成直角三角形的三边长的是()

A、5,6,7

B、40,41,9

C、,1

D、,4、有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根将它们首尾顺次连结搭成一个直角三角形,则这三根细木棒的长度分别为()

A、2,4,8

B、4,8,10

C、6,8,10

D、8,10,12

5.三角形的三边长为,则这个三角形是()

A、等边三角形

B、钝角三角形

C、直角三角形

D、锐角三角形.6、已知:如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°。

7、如图,已知矩形纸片ABCD中,AB=6,BC=8,将纸片折叠,使点A与点C重合,求折痕EF长。

A

B8、一只蚂蚁从长为5cm、宽为4

cm,高是6

cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是

cm9、某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?

A

B

C

D

第9题图

10、如图,已知长方形ABCD中AB=8

cm,BC=10

cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC

边上的点F,求CE的长.11、如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C’处,折痕EF与BD交于点O,已知AB=16,AD=12,求折痕EF的长。

12、已知:如图,△ABC中,∠C=90º,AD是角平分线,CD=15,BD=25.求AC的长.

【课堂测试】

1、在长方形ABCD中,,E为BC的中点,F在A

B上,且.则四边形AFEC的面积为

2、如图3,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()

A.

B.2

C.3

D.43、如图4,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是

4、如图5,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是

()

(A)3.5

(B)4.2

(C)5.8

(D)75、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子

外面的长度为hcm,则h的取值范围是()

A.h≤17cm

B.h≥8cm

C.15cm≤h≤16cm

D.7cm≤h≤16cm6、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正

方形的边长为5,则正方形A,B,C,D的面积的和为

7、如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇

勾股定理证明教案 篇6

教学目标:让学生了解勾股定理的来源,掌握直角三角形的边、角之间分别存在着的关系,学会勾股定理的证明,熟练地运用勾股定理解决实际问题,同时锻炼学生的逻辑思维能力和发散思维方式。

教学重点:勾股定理的推理过程

教学方式:教师讲课,发现探究法,课堂讨论,练习法。课时:1课时 教学过程:

1.引入

师:勾股定理是数学中一个伟大的发现,它由希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.在公元前1000多年,商高也发现了这一定理,因此勾股定理在中国又称“商高定理”。看来中国人比外国人还发现得早一点,那么,勾股定理到底是什么呢?想必大家都知道勾三股四玄五,那么是不是只有3.4.5才可以组成直角三角形呢?现在请同学们拿出直尺和笔在草稿纸上任意画一个直角三角形,然后测量其三条边a,b,c c a b 大家就算一下,当然肯定有些同学的三角形画的不标准或者是测量有误差使得它们不相等了。大家的结果是什么呢? 同学发言。

2.师:大家可以多画几个直角三角形测量计算,看是否都成立。那么这个规律是不是适合所有的直角三角形呢?当然这需要严格的数学证明。请看下面

做8个全等的直角三角形,设它们的两条直角边长分别为a, b,斜边长为c,再做三个边长分别为a ,b ,c 的正方形,把它们拼成像上图一样的两个正方形,从图上可以看出,这连个正方形的边长都是a+b , 所以面积相等,因此有:

这是我国汉代的数学家赵爽提出的证明方法,因此这个图又称“赵爽玄图”那么除了这个方法是不是还有其他的方法可以证明这个定理呢?大家请看下面图形:

正方形A、B、C的面积有什么关系? 我们请同学来回答

同学发言。3.做一做:

(1)

求下列直角三角形中未知边的长。

(2)在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_______。

(3)

4.小结: 勾股定理:

要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:

a.已知直角三角形的两边求第三边。

《勾股定理》教学反思 篇7

回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。

对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。

勾股定理教学反思 篇8

这节课主要是围绕“课前预习?——设置问题——几何建模——解决问题——相应练习——拓展延伸”这一主线轴展开教学工作。其中主要体现在:

首先,创设情境,激发兴趣。

由教材中的实例引入,让学生猜一猜,梯的顶端下滑0.5米,问梯的底端将滑动多少米?也是滑动0.5米吗?学生将会得出不同的反应,甚至争论;这时教师就恰到好处地引导学生建立几何模型(即直角三角形)再运用勾股定理解决问题,最终来验证彼此的猜想,这样一来,课堂气氛特别轻松,学生解决问题的兴趣也格外浓。

其次,注重学生自主探究,合作交流。

在探讨例1、例2时都是先让学生根据生活经验,猜一猜结论,然后再动手建摸、验证、质疑、讨论,充分体现了学生的主体地位,学生是发现者、探索者,教师是参入学习的启发者、协调者、激励者,体现出了教师的主导作用。

第三,创设机会,让学生学会思考,乐于思考、善于思考。

在教学中有意识地安排一些问题让学生多途径思考,发现答案多种多样,让他们体味出教学的精彩,享受做数学的成功喜悦。

勾股定理的逆定理教学设计 篇9

1.目标

(1)理解勾股定理的逆定理.(2)了解互逆命题、互逆定理.2.目标解析

达成目标(1)的标志是学生经历“实验测量-猜想-论证”的定理探究过程后,能应用勾股定理的逆定理来判定一个三角形是直角三角形;

目标(2)能根据原命题写出它的逆命题,并了解原命题为真命题时,逆命题不一定为真命题.三、教学问题诊断分析

勾股定理的逆定理的证明是先作一个合适的直角三角形,再证明有已知条件的三角形和直角三角形全等等,这种证法学生不容易想到,难以理解,在教学时应该注意启发引导.本课的教学难点是证明勾股定理的逆定理.四、教学过程设计

1.创设问题情境

问题1 你能说出勾股定理吗?并指出定理的题设和结论.师生活动:学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?

师生活动:师生共同得出新的命题, 教师指出其为勾股定理的逆命题.追问2:“如果三角形三边长、b、c满足,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.【设计意图】通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.问题2 实验观察:用一根打上13个等距离结的细绳子,让学生操作,以3个结间距、4个结间距、5个结间距的长度为边长,用钉子钉成一个三角形,请学生用角尺量出最大角的度数(900).师生活动:学生动手操作,教师适时指导,并介绍这是古埃及人画直角的方法.追问:你能计算出三边长的关系吗?

师生活动:师生共同得出.【设计意图】介绍前人经验,启发思考,使学生意识到数学来源于生活.实验操作:(1)画一画,下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长(单位:cm)画三角形:

①2.5,6,6.5;②4,7.5,8.5.(2)量一量:用量角器分别测量上述各三角形的最大角的度数.(3)想一想:判断这些三角形的形状,提出猜想.师生活动:教师引导学生画三角形,并计算三边的数量关系:,.接着度量三角形最大角的度数,发现最大角为900,并猜想:如果三角形的三边长、b、c满足,那么这个三角形是直角三角形.把勾股定理记着命题1,猜想的结论作为命题2.【设计意图】让学生经历测量、计算、归纳和猜想的过程,了解几何知识的探索过程.问题3 命题1和命题2的题设和结论分别是什么?

师生活动:学生独立思考回答问题,命题1的题设是直角三角形的两直角边分别,斜边为,结论是;命题2的题设是三角形三边长满足,结论是这个三角形是直角三角形.教师引导学生分析得出这两个命题的题设和结论正好是相反的.归纳出互逆命题概念:两个命题的题设和结论正好相反,象这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.问题4 请同学们举出一些互逆命题,并思考:原命题正确,它的逆命题是否也正确呢?举例说明.师生活动:学生分组讨论合作交流,然后举手发言,教师适时记下一些互逆命题,其中既包含有原命题、逆命题都成立的互逆命题,也包括原命题成立逆命题不成立的互逆命题.(如:①对顶角相等和相等的角是对顶角②两直线平行,内错角相等和内错角相等,两直线平行③全等三角形的对应角相等和对应角相等的三角形是全等三角形.)

追问1: 在我们大家举出的互逆命题中原命题和逆命题都成立吗?

师生活动:学生举手发言回答,另一学生纠错.同时教师引导学生明确:(1)任何一个命题都有逆命题,(2)原命题是正确,逆命题不一定正确,原命题不正确,逆命题可能正确,(3)原命题与逆命题的关系就是命题中题设与结论“互换”的关系.【设计意图】让学生在合作交流的基础上明确互逆命题的概念,在生生互动的过程中掌握互逆命题的真假性是各自独立的.2.勾股定理的逆定理的证明

问题5 原命题正确,它的逆命题不一定正确.那么勾股定理的逆命题正确吗?如果你认为是真确的,你能证明这个命题“如果三角形的三边长、b、c满足,那么这个三角形是直角三角形”吗?

师生活动:教师引导学生要证明一个命题是真命题,首先要分析命题的题设及结论,让学生独立画出图形,写出已知求证.3.已知,如图,△ABC中,AB=c,AC=b,BC=,且,求证:∠C=900

【设计意图】引导学生用图形和数学符号语言表示文字命题.追问:要证明△ABC是直角三角形,只要证明∠C=900,由已知能直接证吗?

师生活动:教师引导,如果能证明△ABC与一个以、b为直角边长的Rt△A/B/C/全等。那么就证明了△ABC是直角三角形,为此,可以先构造Rt△A/B/C/,使A/C/=b,B/C/=,∠C/=900,再让学生小组讨论得出证明思路,证明了猜想的正确性.教师适时板书出规范的证明过程.4..课堂小结

(1)勾股定理的逆定理的内容是什么?

(2)原命题、逆命题之间的关系.(3)用什么方法证明勾股定理的逆定理.【设计意图】回顾和梳理勾股定理的逆定理,会运用其解决一些问题,体会构造及数学建模思想.6.布置作业

勾股定理评课稿 篇10

在讲课过程中,教师引导学生自己观察图形,猜测结论,得出命题,并合作讨论一起验证了命题的准确性,最终得出结论。并在猜想的过程中,发现了从特殊的等腰直角三角形到一般的直角三角形的数学方法。在验证命题的过程中学会用图形来帮助自己解题,也初步意识到了数形结合的思想。整个过程都是学生为主,教师为辅,基本上较好的完成了过程与方法的目标。

整节课教师教态自然,很好地引导了学生的学习过程,对重难点的把握也比较到位。最后的小结过程中引导学生要发现生活中的数学,把数学知识应用到生活,这样使学生更加热爱数学,实现了本节课的情感目标。

上一篇:信阳毛尖是绿茶吗下一篇:优秀青年志愿者申报事迹材料