数学正切和余切教案

2024-10-29

数学正切和余切教案

数学正切和余切教案 篇1

《正切和余切》教案1

一、素质教育目标(一)知识教学点

使学生了解正切、余切的概念,能够正确地用tgA、ctgA表示直角三角形(其中一个锐角为∠A)中两边的比,了解tgA与ctgA成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系.

(二)能力训练点

逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力.(三)德育渗透点

培养学生独立思考、勇于创新的精神.

二、教学重点、难点

1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值. 2.难点:了解正切和余切的概念.

三、教学步骤(一)明确目标

1.什么是锐角∠A的正弦、余弦?(结合图6-8回答).

2.填表

3.互为余角的正弦值、余弦值有何关系?

4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律? 5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值.那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其它一些三角函数,本节课我们学习正切和余切.

(二)整体感知.

正切、余切的概念,也是本章的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要.教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切.像这样,把概念、计算和应用分成两块,每块自成一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识.

(三)重点、难点的学习与目标完成过程 1.引入正切、余切概念

①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?

因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是正切和余切.”

②给出正切、余切概念如图6-10,在Rt△ABC中,把∠A的对边与邻边的比叫做∠A的正切,记作tgA.

并把∠A的邻边与对边的比叫做∠A的余切,记作ctgA,2.tgA与ctgA的关系 tgA·ctgA=1)这个关系式既重要又易于掌握,必须让学生深刻理解,并与tgA=ctg(90°-A)区别开. 3.锐角三角函数

弦、余弦、正切、余切都叫做∠A的锐角三角函数.

锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目. 问:锐角三角函数能否为负数? 学生回答这个问题很容易. 4.特殊角的三角函数. ①教师出示幻灯片

三角函数/0°/30°/45°/60°/90°

请同学推算30°、45°、60°角的正切、余切值.(如图6-11)

通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使 学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想. 0°,90°正切值与余切值可引导学生查“正切和余切表”,学生完全能独立 查出.

5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互 为余角的正切值与余切值的关系.

结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值.

即 tgA=ctg(90°-A),ctgA=tg(90°-A).

练习:1)请学生回答tg45°与ctg45°的值各是多少?tg60°与ctg30°?tg30°与ctg60°呢?学生口答之后,还可以为程度较高的学生设置问题:tg60°与ctg60°有何关系?为什么?tg30°与ctg30°呢?

2)把下列正切或余切改写成余角的余切或正切:

(1)tg52°;

(2)tg36°20′;

(3)tg75°17′;(4)ctg19°;

(5)ctg24°48′;

(6)ctg15°23′. 6.例题

例1 求下列各式的值:(1)2sin30°+3tg30°+ctg45°;(2)cos45°+tg60°·cos30°. 解:(1)2sin30°+3tg30°+ctg45°

2(2)cos45°+tg60°·cos30° 2

=2.

练习:求下列各式的值:

(1)sin30°-3tg30°+2cos30°+ctg90°;(2)2cos30°+tg60°-6ctg60°;(3)5ctg30°-2cos60°+2sin60°+tg0°;(4)cos45°+sin45°;

学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力.

(四)总结扩展

请学生小结:本节课了解了正切、余切的概念及tgA与ctgA关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想. 2

2四、布置作业

1.看教材P.20~P.22,培养学生看书习惯. 2.教材P.29中习题6.2A组2、3

上一篇:墙报总结下一篇:隐患分析讨论会