三角形重心定理

2024-11-03

三角形重心定理(共12篇)

三角形重心定理 篇1

三角形的重心定理及其证明

积石中学王有华

同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.已知:(如图)设ABC中,L、M、N分

别是BC、CA、AB的中点.求证:AL、BM、CN相交于一点G,且

AG﹕GL= BG﹕GM= CG﹕GN=2﹕1.BC证明1(平面几何法):(如图1)假设中

线AL与BM交于G,而且假设C与G的连线与AB边交于N,首先来证明N是AB的中点.现在,延长GL,并在延长线上取点D,使GL=LD。因为四边形BDCG的对角线互相平分,所以BDCG是平行四边形.从而,BG∥DC,即GM∥DC.但M是AC的中点,因此,G是AD的中点.另一方面,GC∥BD,即NG∥BD.但G是AD的中点,因此N是AB的中点.另外,G是AD的中点,因此AG﹕GL=2﹕1.同理可证:BG﹕GM=2﹕1,CG﹕GN=2﹕1.这个点G被叫做ABC的重心.证明2(向量法):(如图2)在ABC中,设AB边上的中

1线为CN,AC边上的中线为BM,其交点为G,边BC的中点为L,连接AG和GL,因为B、G、M三点共线,且M是AC的中点,

所以向量BG∥BM,所以,存在实数

1C

BG1BM,即 AGAB1(AMAB)



所以,AG1AM(11)AB,使得



=1AC(11)AB

同理,因为C、G、N三点共线,且N是AB的中点.所



以存在实数2,使得 AG2AN(12)AC

1= 2AB(12)AC

21所以1AC(11)AB = 2AB(12)AC 22



又因为AB、AC 不共线,所以 

121

2112

21

1

因为L是BC的中点,所以GLGAACCL

211111

=(ABAC)ACCB =ABAC(ABAC)

332332

11

所以 12,所以 AGABAC.33

311

=ABAC,即AG2GL66,所以A、G、L三点共线.故AL、BM、CN相交于一点G,且AG﹕GL= BG﹕GM= CG﹕GN=2﹕

1证明3(向量法)(如图3)在ABC中,BC的中点L

1

对应于OL(OBOC),中线AL上的任意一点G,有



OGOA(1)OL

11OA2OB

2OC.同理,AB的中线

CN上的任意点

G′,OGOC112A

O2

OB,求中线AL和CN的交点,就是要找一个和一个,使

OGOG.因此,我们令

1

1112,,

.解之

得1

3.所以OGOG111

3OA3OB

3OC.由对称性可知,第三条中线也经过点G.故AL、CN、BM相交于一点G,且易证AG﹕GL= BG﹕GM= CG﹕GN=2﹕1.

三角形重心定理 篇2

结论1.△ABC中, D、E分别是边BC和AC的中点, AD与BP交于P, 则点P叫三角形的重心, 且AP/AD=BP/BE=2/3

证明:设AP=λAD, BP=μBE

∵D为BC中点

变式一:△ABC中, D是边BC中点, E是AC靠近点C的三等分点, 则AP/AD=BP/BE=4/5

证明:为证明结论, 先证明结论:在△ABC中, D、E分别是边BC的三等分点, 其中E靠近点C, 则

∵在△ABE中, D为BE中点, 则在△ADC中, E为中点, 则

下证变式一结论:

设AP=λAD, BP=μBE

∵D为BC中点∴AD=12AB+12AC

变式二:△ABC中, D是边BC中点, E是AC靠近点C的四等分点, 则AP/AD=BP/BE=6/7

证明:为证明结论, 先证明结论:在△ABC中, D、E分别是边BC的四等分点, 其中E靠近点C, 则

∵在△ABE中, D为中点, 则

在△ADC中, E为中点, 则

下证变式二结论:

设AP=λAD, BP=μBE

∵D为BC中点

推广:△ABC中, D是边BC中点, E是AC靠近点C的n等分点, 则AP/AD=BP/BE=2n-2/2n-1

证明:为证明结论, 先证明结论:在△ABC中, D、E分别是边BC的n等分点其中E靠近点C, 则

三角形重心定理 篇3

本文所讨论的三角形分两种情形,一是质量均匀分布、粗细一致的三角形(空心)线框;二是质量均匀分布的三角形薄板.对于第一种情况,我发现三角形线框的物理重心与其几何重心通常并不重合;对于第二种情况,三角形薄板的物理重心与其几何重心的确完全一致.

1初步验证

我通过实验进行了简单的验证:用一根长而粗的铁丝弯成一个每边长在20 cm-30 cm左右的任意三角形线框,并在这个三角形铁丝上蒙上保鲜膜(质量可忽略不计).然后用直尺作出这个三角形的几何重心(位于保鲜膜上).最后再用手指(食指)从下面顶着这个几何重心的位置,看能否把这个三角形铁丝悬空平顶支撑起来.结果发现即使在可以少许调整的情况下也无法将三角形铁丝支撑平衡起来.这说明三角形线框的几何重心与其物理重心并不重合.

再取了一块厚度相同的木板,把它锯成三角形,然后也用直尺作出这个三角形木板的几何重心.平放着木板,再用手指从下面顶着这个几何重心的位置,发现只要少许调整,手指确实可将木板水平悬空支撑起来而不倾倒掉落.这时木板只受重力和手指的支持力作用,是一对平衡力,说明其重心在手指尖所在的竖直线上,即三角形的几何重心与其物理重心重合!

改变三角形铁丝和三角形木板的形状,多次重复上述两个实验,结果基本一致.不过,我仍然不能完全满意,因为我发现不管怎么仔细完成上述实验,总要进行适当调整.实际上,对于第二个实验,不用手指,改用较细的铁钉,就难以水平支撑平衡起三角形木板.尽管这里存在木板质量是否均匀分布、用直尺作图确定几何重心位置是否准确等等干扰因素,误差在所难免,但实验的验证无论如何总难令人完全信服.于是我尝试从理论上探究这两个重心的关系.

2理论探究

2.1三角形空心线框的几何重心与其物理重心是否重合?

要否定这个命题,可以进行证伪.也就是说只要找到一个反例,即可得到证明.

如图1所示,设质量、粗细均匀分布的三角形线框OAB的三条边长分别为OA=4、OB=3、AB=5,三角形处于图示的直角坐标系中.再设三条边单位长度的质量为λ,则三条边的质量分別为mOA=4λ、mOB=3λ、mAB=5λ.首先确定线框OAB的物理重心.由于三条边的质量均匀分布,所以可将AB边的质量等效集中于AB边的中点D,容易看出D点位置坐标为(1.5,2.0),等效质量为5λ;同理可将OB边、OA边的质量分别等效集中于OB、OA的中点E、F,位置坐标分别为(1.5,0)、(0,2.0),等效质量为3λ、4λ.接着再将D、E两点进行等效,D、E两点的重心位置M必在这两点的连线上,并且到D、E两点的距离与D、E两点的等效质量成反比.这样不难确定M点的位置坐标为(1.5,1.25)、等效质量为8λ.最后再考察M、F两点的重心G的位置,采用上述同样的方法,能够计算出G点的位置坐标为(1.0,1.5),它也是整个三角形线框的物理重心.

接下来再确定线框OAB的几何重心G′.根据三角形几何重心的性质——重心到顶点的距离与重心到对边中点的距离之比为2∶1,我们知道,△OAB的重心G′一定在中线OD上,并且满足OG′=2G′D.不难计算G

?倕 的位置坐标为(1.0,4/3).另外,G′的位置确定也可以通过三角形(几何)重心的性质1(见文后附注)——在平面直角坐标系中,三角形的(几何)重心的坐标就等于三角形三个顶点坐标的算术平均值.采用这种方法求G′的位置坐标更加直接.

比较G、G′的位置坐标,发现二者并不重合.通过这个特例足可以说明,三角形线框的几何重心与其物理重心一般并不重合.

2.2三角形薄板的几何重心与其物理重心是否重合?

这个问题相对复杂,下面先从两个简单的情况说起.

命题13个质量相等的小球分别位于三角形的顶点,则这3个小球的物理重心与该三角形的几何重心重合.

说明:如图2所示,容易理解A、B两球的重心位于AB的中点D.D(A、B两球的等效点)和C球的物理重心位于G,显然G点实际上也就是三个小球A、B、C的物理重心.由于D点的相当于集中了A、B两球的质量,所以GC的距离是GD的2倍.对照附注中三角形的(几何)重心性质2——三角形的(几何)重心到顶点的距离与(几何)重心到对边中点的距离之比为2∶1,不难看出G点也就是三角形ABC的几何重心.

命题2如果均质三角形线框的三条边的粗细(宽度)与其长度成反比,则三角形线框的物理重心与该三角形的几何重心重合.

说明:由于线框三条边的粗细(宽度)与其长度成反比,可知三条边的表面积(设线框的厚度一致)

相等,所以三条边的质量相等,如图3所示.加之三边的质量分布均匀,因而可以认为,三条边AB、BC、CA的质量分别集中于它们的中点D、E、F.再考察三角形DEF的物理重心,它与与命题1的情形完全相同.并且根据图3不难看出△ABC与△DEF的几何重心重合.所以△ABC线框的物理重心与△DEF的几何重心亦即△ABC的几何重心重合.最后再来探究均质三角形薄板的重心位置问题.如图4所示,令G点为薄板ABC的几何重心,连接AG、BG、CG.并将线段AG、BG、CG各自均分n等份,再将AG、BG、CG边上n等份的点分别顺次对应连接起来,这样便把整个△ABC分割成n个三角形空心线框.图4中实线所示的A1B1C1-A2B2C2为其中的一个三角形线框.

下面讨论三角形线框A1B1C1-A2B2C2的物理重心位置.根据附注中三角形的(几何)重心性质3——三角形的(几何)重心和三角形的三个顶点组成的3个三角形面积相等,即有S△ABG=S△BCG=S△CAG.在△ABG中,由于线段A1B1、A2B2…把△ABG分成n个细长的小梯形,这些小梯形的面积从顶

点G到底边AB按特定比例递增(不难理解,△BCG和△CAG中的情况也是一样).这样图4中三角形线框A1B1C1-A2B2C2的三条边A1B1B2A2(即图4中显示的细长的小梯形)、B1C1C2B2、C1A1A2C2的面积也相等.加之质量分布均匀,所以三角形线框A1B1C1-A2B2C2的三条边的质量相等.结合前述的命题2可知三角形线框A1B1C1-A2B2C2的物理重心就在G点.同理,其他三角形线框的物理重心也都在G点,所以整个三角形薄板的物理重心就在其几何重心G点上.

上述的证明实际上就是微元法,把三角形薄板分割成若干个三角形线框.这与高中物理必修1教材中推导匀变速运动的位移-时间关系x=v0t+12at2的思路类似.由此可见,高中的物理学习,方法比内容更为重要,这也是我在探索重心问题时得到的一点体会.

三角形重心有什么性质 篇4

证明:如图:作BE⊥AC于点E,CF⊥AB于点F,且BE交CF于点H,连接AH并延长交BC于点D。

现在我们只要证明AD⊥BC即可。

因为CF⊥AB,BE 所以 四边形BFEC为圆内接四边形。

四边形AFHE为圆内接四边形。

所以∠FAH=∠FEH=∠FEB=∠FCB

由∠FAH=∠FCB得

三角形重心定理 篇5

(一) 正弦定理:

形式一:

形式二:

形式三:

形式四:

解决以下两类问题:

(1) 已知两角和任一边, 求其他两边和一角; (唯一解)

(2) 已知两边和其中一边的对角, 求另一边的对角 (从而进一步求出其他的边和角) 。

若给出a, b, A那么解的个数为:无解 (a<bsinA) ;

一解 (a=bsinA或者a≥bsinA)

两解 (bsinA<a<b) ;

(二) 余弦定理:

形式一:a2=b2+c2-2abcosA, b2=a2+c2-2abcosB, c2=a2+b2-2abcosC;

形式二:

解决以下两类问题: (1) 已知三边, 求三个角; (唯一解)

(2) 已知两边和它们的夹角, 求第三边和其他两个角 (唯一解) ;

(3) 三角形的面积:

(4) 两内角与其正弦值:在△ABC中, A<B⇔sinA<sinB, ……;

(5) 三内角与三角函数值的关系:

在△ABC中:sin (A+B) =sinC cos (A+B) =-cosC

题型一:正、余弦定理解三角形

例1.已知:在△ABC中, ∠A=45°, c=, a=2, 解此三角形.

解一:

∴当∠C=60°时, ∠B=75°∴b=

∴当∠C=120°时, ∠B=15°∴b=

解二:设AC=b, 由余弦定理:

再由余弦定理:cosC=±∴∠C=60°或120°, ∠B=75°或15°

思维点拨:应用正弦定理时, 应注意已知两边和其中一边的对角解三角形时, 可能有两解的情形;

题型二、判定三角形的形状

例2.在△ABC中, 若, 判断△ABC的形状。

解一:由正弦定理:

∴2A=2B或2A=180°-2B即:A=B或A+B=90°∴△ABC为等腰或直角三角形

解二:由题设:

化简:b2 (a2+c2-b2) =a2 (b2+c2-a2) ∴ (a2-b2) (a2+b2-c2) =0∴a=b或a2+b2=c2∴△ABC为等腰或直角△

点评:考查三角形基本性质, 要求通过观察、分析、判断明确解题思路和变形方向, 通畅解题途径。

题型三、三角形中的求角、边长或面积问题。

例3. (2008全国文科卷17) 在△ABC中,

(1) 求sinC的值; (2) 设BC=5, 求△ABC的面积。

分析:本题主要考查正弦定理、余弦定理等基础知识, 同时考查利用三角公式进行恒等变形的技能和运算能力.

(2) 由正弦定理得

点评:考查余弦定理、正弦定理、两角和的正弦公式等基础知识, 考查基本运算能力。

题型四、解决实际应用问题。

例4.某观察站C在A城的南偏西20°方向, 由A城出发有一条公路, 走向是南偏东40°, B处在公路上且距离C处31千米, B处有一人正沿公路向A城走去, 走了20千米后到达D处, 此时CD距离为21千米, 问人还需走多少千米才能到达A城?

解:设AD=x, AC=y,

∴在△ACD中有x2+y2-2xycos60°=212, 即x2+y2-xy=441 (1)

而在△ABC中, (x+20) 2+y2-2 (x+20) ycos60°=312, 即x2+y2-xy+40x-20y=561 (2)

(2) — (1) 得y=2x-6, 代入 (1) 得x2-6x-135=0

得x=15 (km) , 即此人还需走15km才能到达A城点评:数形结合、函数方程思想。一般题型:仰角、俯角、方向角。

题型五、证明三角恒等式。

例5.△ABC中, 若a2=b (b+c) , 求证:A=2B

分析:研究三角形问题一般有两种思路:一是边化角, 二是角化边。

证明:证明略。

点评:利用正弦定理, 将命题中边的关系转化为角间关系, 从而全部利用三角公式变换求解

二、规律方法总结

1.要正确区分两个定理的不同作用, 围绕三角形面积公式及三角形外接圆直径解三角形问题。

2.两个定理可实现 (1) 化边为角; (2) 化角为边。

3.结论:A+B+C=π, A, B, C均为正角;

4.两内角与其正弦值:在△ABC中, A<B⇔sinA<sinB…

三角形重心定理 篇6

一、说教材

1.教材的地位和作用

在前面,学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的变换。全等是相似的一种特殊情况,从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章研究的问题实际上是在前面研究图形的全等和一些全等变换基础上的拓广和发展。

在后面,学生还要学习“锐角三角函数”和“投影与视图”的知识,在物理中,学习力学、光学等,也要用到相似的知识。在实际生活中的建筑设计、测量、绘图等许多方面,也都要用到相似的有关知识。因此这一章内容对于学生今后从事各种实际工作也具有重要作用。

2.教学目标

知识目标:掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

能力目标:渗透数学中普遍存在着相互联系、相互转化,经历探索两个三角形相似条件的过程,分析归纳结论的过程;在定理论证中,体会转化思想的应用。

情感价值目标:从认识上培养学生从特殊到一般的方法认识事物,从思维上培养学生用类比的方法展开思维;通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。

3.教学重点

两个三角形相似的判定方法2及其应用。

4.教学难点

探究三角形相似的条件,运用三角形相似的判定定理解决问题。

二、说教学策略

新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。

1.教法

教学有法但教无定法,在教学过程中,我们充分运用启发式教学方法和现代化教学手段,把传授知识和培养学生的教学素养结合起来。

我将采用引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

2.学法

由于学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“观察——猜想——验证——归纳——反馈——实践”的主线进行学习。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。

三、说学情

在课堂教学中,作为学生学习的组织者引导者与合作者。注意突出学生的数学实践活动,变“教学”为“导学”提高课堂效率。在教学中我们尽量引导学生成为知识的发现者,把教师的点播和解决学生的实际问题结合起来,为学生创设情境,鼓励学生亲自动动手实践,在实践中发现知识,培养学生的创新精神和实践能力。全等是相似的一种特殊情况。学生对相似三角形的学习应该是比较轻松的。

四、说教学理念

1.本结课的基本理念是本着义务教育的基础性普遍性和发展性联系学生实际生活面向全体学生。

2.从现实生活中发现问题并提出问题,让学生亲生参与活动,进行探索和发现。

五、说教学流程

本节课按照“知识回顾”——“情景导入、激发兴趣”——“类比联想、探索交流” “应用新知”——“运用提高”——“归纳小结”的流程展开.

1.情境导入

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。

为了让学生更直观的感受到几何图形广泛的应用在实际生活中,我们特意为学生展示了优秀的美术作品及经典的建筑图片。通过这一环节激发学生对数学学科的热爱,并由此引入本课。

2.知识回顾

由于相似三角形的判定与实际生活息息相关,所以我们首先通过知识回顾的形式引导学生掌握相似三角形的判定方法,并通过这一环节使学生体会到数学知识的紧密联系。

3.探索交流

采用用化归方法,证明猜想形成定理。学生利用刻度尺量角器等作图工具做静态探究与应用几何画板等计算机软件做动态探究有机结合起来,让学生通过小组合作,让学生通过观察、实践、验证的主线进行学习,再用几何画板演示,将预备定理基本图形中的小三角形移出、移进,通过图形变换揭示应用预备定理,证明两个三角形相似的可行途径,目的在于引导学生作辅助线,探求证明方法。

4.应用新知

为了让学生更好的理解和掌握两个三角形相似的判定定理二,我设置了相应的习题,习题中既有考察学生对知识理解和掌握的基础题,又有考察学生对知识灵活运用的能力题。

5.运用提高

在条条大路通罗马这一环节上,我们设置的意图在于从认识上培养学生从一般到特殊的发放认识事物、从思维上培养学生用类比的方法展开思维。

6.归纳小结

让学生思考总结本节课的收获,在此基础上师生归纳:

在小结本结课的同时,教师送给学生这样富有哲理而又意义深远的几句话。

不经一番寒彻骨,哪来梅花扑鼻香、让我们以爱迪生的精神、

比尔盖茨的头脑,争雄龙虎榜,夺冠凤凰台!

7.说课件设计

我们所用的课件是以POWERPOINT为模板插入相应的图片以及FLASH设计简单易操作,充分体现了教学手段是为教学内容服务的原则。

六、说板书设计

我们板书设计的意图在于体现本结课的重点知识,突出相似三角形的判定定理二与实际生活的紧密联系。

七、教学设计说明及自我评价在提高

本结课我们设计的目的是通过学生的动手操作得出结论。突出学生的主体地位,在操作交流中使学生的学习成果得以展示获得成功的快乐。

八年级数学三角形内角和定理 篇7

主备:崔友丽 王维玉 审核:崔兴泉

课本内容:p126—p127

课前准备:

刻度尺、三角板 学习目标:

(1)知识与技能 :

掌握“三角形内角和定理”的证明过程,并能根据这个定理解决实际问题。(2)过程与方法 :

通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。(3)情感态度与价值观:

通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习课本p126—p127内容,独立完成课后练习1、2后,与小组同学交流(课前完成)

二. 回顾课本p126—p127思考下列问题:

1、三角形的内角和是多少度?你是怎样知道的?

2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的步骤 ①画图

②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。③分析、探究证明方法。

4、要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

① 如图1,延长BC得到一平角∠BCD,然后以CA为一边,在△ABC的外部画∠1=∠A。

② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB

④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习

四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测: 1.、2、六、布置作业

三角形内角和定理导学案(第二课时)

课本内容:P127-P65例

1、例2 课前准备:三角板 学习目标

1、三角形的外角的概念和三角形的内角和定理的两个推论。

2、.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力,理解掌握三角形内角和定理的推论及其应用。

3、通过探索三角形内角和定理的推论的活动,来培养学生的论证能力,拓宽他们的解题思路,从而使他们灵活应用所学知识。学习重点:三角形内角和定理的推论。

学习难点:三角形的外角、三角形内角和定理的推论的应用。

一:自主预习课本P127-P65例

1、例2,完成课后练习题后,与小组同学交流(课前完成)

二、回顾课本思考下列问题:

1、复习旧知

上节课我们证明了三角形内角和定理,大家来回忆一下:它的证明思路是什么?

2、尝试发现、探索新知 那什么叫三角形的外角呢?

三角形的一边与()组成的角,叫做三角形的外角。

3、动手操作,合作探究,发现新知:

教师活动:∠1是△ABC的一个外角,∠1与图中的其他角有什么关系呢?能证明你的结论吗?

引导学生通过三角形内角和定理直接推导出两个新定理: 三角形的外角的性质

三角形的一个外角等于()。三角形的一个外角大于任何一个()。

在这里,我们通过三角形内角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定理的推论(corollary)。

因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用。注意:应用三角形内角和定理的推论时,一定要理解其意思.即:“和它不相邻”的意义。

4、练习

B

已知:如图,求∠C的度数。

C 75A

E5、例题分析,拓展思维

D例1:已知,如图,在△ABC中,AD平分外角∠EAC,∠B=∠C,求证: AAD∥BC

CB2、证明:三角形的三个外角和360。

三、巩固练习:

四边形的四个外角和是(),并说明理由。

1、已知:如图,五角星形的顶角分别是,,C

求证:∠A+∠B+∠C+∠D+∠E=180

DB

EA

议一议:

有的 同学想连结CD,把五个角“凑”到内,他的想法可行吗? 小组讨论,尝试证明

2、如图:已知,在⊿ABC中,1是它的一个外角,E为边 AC上的一点,延长BC到点D,连接DE,证明: 1﹥ 2

点拨:看到要证两个角的不等关系,会让我们想到三角形内角和定理的推论2,但此题中的∠1和∠2却不是一个三角形的内角和外角,所以我们应找到一个间接量来牵线搭桥,那么可以找谁呢?

A1BD⌒⌒2EC

四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测

1、课本P94 随堂练习1

2、三角形的三个外角中最多有_______个锐角。

3、如图:求 A+ B+ C+ D+ E+ F?

4、△ ABC中,BE为∠ABC的平分线,CE为∠ACD的平分线,两线交BA于E点。你能找出∠E与∠A有什么关系吗?

六、布置作业

相似三角形判定定理的证明课件 篇8

第23章 图形的相似

第5节 相似三角形判定

WY

复习回顾

全等判定:

(对应)边角

(6组量) 判定方法 角边角 角角边 边边边

边角边

1.两角分别相等

三角分别

相等, 三2.三边成比例 3.两边成比例且

夹角相等

4.两边成比例且

其中一边的对角相等 边成比例

判定定理一: 两角分别相等的两个三角形相似。

证明:在ΔABC的边AB、AC上,分别截取AD=A/B/,AE=A/C/,连结DE。 ∵ AD=A/B/,∠A=∠A/,AE=A/C/

∴ ΔA DE≌ΔA/B/C/,

∴ ∠ADE=∠B/,

又∵ ∠B/=∠B,

∴ ∠ADE=∠B,

∴ DE//BC,

∴ ΔADE∽ΔABC。 A A/ E

∴ ΔA/B/C/∽ΔABC B C B/ C/ 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:“有两个角对应相等的两个三角形相似。”

证明:在ΔABC的边AB、AC上,分别截取AD=A/B/,AE=A/C/,连结DE。

∵ AD=A/B/,∠A=∠A/,AE=A/C/ ∴ ΔA DE≌ΔA/B/C/, ∴ ∠ADE=∠B/, 又∵ ∠B/=∠B, ∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。

A

A/

E

∴ ΔA/B/C/∽ΔABC

B

C B/ C/

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:“

有两个角对应相等的两个

三角形相似。”

判定定理二:两边对应成比例且夹角相等的

两个 三角形相似.

判定定理三:三边成比例的两个三角形相似

?如图,△ ABC与△ A′B′C′相似吗? ?你用什么方法来支持你的判断?

AB?8 ,BC? ,AC?2 ;A?B??4,B?C??,A?C??2;

ABACBC2?????2.A?B?A?C?B?C?1

有一对 等角,找

另一对等角---用判定定理1 夹边成比例---用判定定理2 夹角相等----用判定定理2

有两边对应 边成比例,

第三边也成比例---用判定定理3

有一对直角---用直角三角形 相似的判定定理

B

D C B

D E

D C

C

B

B C

C

B

D

D

F

提示:易知?B1A1C1??B2A2C2

???90?45

由勾股定理得

A1B1?22,A1C1?4A2B2?2,A2C2?2

ABA2B2

??

ACA2C2

?△A1B1C1∽△A2B2C2

练习提高

思路分析: ∽ 先证明

先证明

上面的思路分析可以用一段顺口溜来表述:

证等积,化等比;

横找竖找定相似. 不相似,别着急; 等线等比来代替. ……

如何证明

△ABD∽△ACB

易知∠A是△ABD和△ACB 根据两角分别相等的 的.公共角,

两个三角形相似,只要再证明一对角相等即可。观察图形,猜想 ∠3=∠C ?

1

2

∠3=∠C

∠3=∠C ∠A= ∠A

△ABD∽△ACB

1

2

AC

?

AB

AB?AD?AC

AE=AB

AE2=AD・AC

2

①当∠1=∠C时

②当∠1=∠A时

(2)已知AD=3,BD=5,AE=4,求AC的长 两角分别相等的两个三角形相似(2) ∵△ADE∽△ACB (已证)

ADAE??ACAB

34??,解得:ACAC3?5

?6

2)已知AD=5,BD=2, 求AC的长

两角分别相等的两个三角形相似(2) ∵△ACD∽△ABC (已证)

ACAD

??ABAC

AC5??解得:AC??35(负值舍去)5?2AC

三角函数·正、余弦定理及其应用 篇9

1. 在[△ABC]中,三个内角[A,B,C]的对边分别为[a,b,c],若[a=2,b=22,C=π12],则内角[A]的值为( )

A. [π3]或[2π3] B. [π6]或[5π6]

C. [π3] D. [π6]

2. 在[△ABC]中,角[A,B,C]的对边分别为[a,b,c],若[a2=b2+bc+c2],则角[A]等于( )

A. [2π3] B. [π3]

C. [3π4] D. [π6]

3. 三角形两条边长分别为2和3,其夹角的余弦值是方程[2x2-3x+1=0]的根,则此三角形周长为( )

A. [7] B. [7]

C. [5+7] D. [5+23]

4. 若[△ABC]的三个内角成等差数列,三边成等比数列,则[△ABC]是( )

A. 直角三角形

B. 等腰直角三角形

C. 等边三角形

D. 钝角三角形

5. 已知[△ABC]中,[a=4],[b=43],[∠A=30°],则[∠B]等于( )

A. 30° B. 30°或150°

C. 60° D. 60°或120°

6. 已知[△ABC]的面积为[32,][AC=3,][∠ABC=π3],则[△ABC]的周长等于( )

A. [3+3] B. [33]

C. [2+3] D. [332]

7. 下列判断中正确的是( )

A. [ΔABC]中,[a=7],[b=14],[A=30°],有两解

B. [ΔABC]中,[a=30,b=25,A=150°],有一解

C. [ΔABC]中,[a=6,b=9,A=45°],有两解

D. [ΔABC]中,[b=9,c=10,B=60°],无解

8. 已知[ΔABC]中,[AB=3,AC=1],且[B=30]°则[ΔABC]的面积等于( )

A. [32] B. [34]

C. [32或3] D. [34或32]

9. 若[ΔABC]的三边[a,b,c],它的面积为[a2+b2-c243],则角[C]等于( )

A. [30°] B. [45°]

C. [60°] D. [90°]

10. 已知[a,b]为[△ABC]的边,[A,B]分别是[a,b]的对角,且[sinAsinB=23],则[a+bb]的值为( )

A. [13] B. [23]

C. [43] D. [53]

二、填空题(每小题4分,共16分)

11. 已知[△ABC]中,[A∶B∶C=1∶2∶3],[a=1],则[asinA]= .

12. 设[△ABC]的三个内角[A,B,C]所对的三边分别为[a,b,c],若[△ABC]的面积为[S=a2-(b-c)2],则[sinA1-cosA]= .

13. 如图,在[△ABC]中,[AB=AC=2],[BC=23],点[D]在[BC]边上,[∠ADC=75?],则[AD]的长为 .

14. 给定下列命题:①半径为2,圆心角的弧度数为[12]的扇形的面积为[12];②若[α],[β]为锐角,[tan(α+β)=-3],[tanβ=12],则[α+2β=3π4];③若[A],[B]是[△ABC]的两个内角,且[sinA

三、解答题(共4小题,44分)

15. (10分)[△ABC]中,己知[A>B>C],且[A=2C],[b=4,a+c=8],求[a,c]的长.

16. (10分)已知[a,b,c]是[△ABC]中[A,B,C]的对边, 关于[x]的方程[b(x2+1)+c(x2-1)-2ax=0]有两个相等的实根, 且[sinCcosA-cosCsinA=0], 试判定[△ABC]的形状.

17. (12分)已知[A,B,C]是[△ABC]的三个内角,且满足[2sinB=sinA+sinC],设[B]的最大值为[B0].

(1)求[B0]的大小;

(2)当[B=3B04]时,求[cosA-cosC]的值.

18. (12分)设[△ABC]的内角[A,B,C]的对边分别为[a,b,c]. 已知[b2+c2=a2+bc],求:

(1)[A]的大小;

(2)若[a=2],求[△ABC]面积的最大值.

三角形重心定理 篇10

九数

许国祥

我的教学宗旨是: 一般情况下,按照教材上的教学设计进行教学,以学生为主体,教师做学生的组织者、引导者、合作者,只在关键处点拨,补充,尤其是在几何教学中,以培养学生的合情推理能力,发展学生逻辑推理能力,靠近中考。

我的教学设计

一、知识回顾。(小黑板出示)1.我们已学过了哪些判定三角形相似的方法? 2.在△ABC与△DEF中因为∠A=∠D=45°,∠B=26,°∠E=109°.则这两个三角形是否相似?

二、动脑筋

鼓励学生动手画图,认真思考书中问题,引导同学们讨论得出判定定理3:两边对应成比例且夹角相等的两个三角形相似。

指名说一说:这个定理的条件和结论各是什么?关键处是什么? 同桌完成课本上的做一做。然后指名在班上说。教师及时给予表扬和肯定。

三、出示例题2.要求学生尝试完成。不会做的自己看书,然后再做。教师行巡回辅导,适时指点练习中容易出现的问题。最后指名板演,集体订正。

四、出示课本78页中的B组2题作为典例分析。

要求学生凭眼睛看这两个三角形相似吗?再通过计算他们的对应边是否成比例。有一个角对应相等吗?他们相似吗?同桌讨论各自的心得。从这个例子你能得出什么结论?指名说。

教师示范:规范写出两个三角形对应边成比例,且夹角相等的两个三角形相似已知,求证及证明过程

五、出示B组1题作为典例分析。要求学生先自学,再试着做一做。最后师规范板书全过程。

六、启迪学生除这种解法外,你还能用别的方法来证明吗?鼓励学生用多种方法解题。

七、引导学生归纳解题所得。

八、总结整堂课内容。

九、巩固练习。完成教材第78--79页练习1、2题

十、作业:基本训练78--79页A组1-2题。教师巡回辅导

我的反思: 成功之处:.1、课前对旧知识的回顾,以防止负迁移现象,特别是做一做的设计注重了相似三角形中对应元素的训练,为潜能生设置了一个障碍,以培养学生的合理想象力。

2、整堂课体现了以学生为主体的教学理念。教师的点拨很到位,对定理的剖 析突彻,在教学过程中注重了规范板书,为学生起到了示范作用。

3、巡回辅导对提高潜能生有很大帮助,同时充分利用有利资源,以优帮劣,及让优生巩固了所学知识又提高了潜能生,何乐而不为?

4、作业的设计具有层次性。做到了突出重点,突破难点。不足之处:

1、巡回辅导时未顾及到全局,关键是时间太紧。

2、时间分配不够合理,运用定理解题时间花的太多,导致作业不能当堂完成。

三角形重心定理 篇11

5.三角形内角和定理(第1课时)

一、学生知识状况分析

学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.

二、教学任务分析

上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:

1.掌握三角形内角和定理的证明及简单应用。

2.灵活运用三角形内角和定理解决相关问题。

3.用多种方法证明三角形定理,培养一题多解的能力。

4.对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.

三、教学过程分析

本节课的设计分为四个环节:情境引入——探索新知——反馈练习——课堂小结

第一环节:情境引入

活动内容:(1)用折纸的方法验证三角形内角和定理.

实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

(1)

(2)

(3)

(4)

试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢? 活动目的:

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明. 教学效果:

说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

第二环节:探索新知 活动内容:

① 用严谨的证明来论证三角形内角和定理.

② 看哪个同学想的方法最多?

B C

B C

D

A D A E

E 方法一:过A点作DE∥BC

∵DE∥BC ∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180° ∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC的延长线CD,过点C作射线CE∥BA.

∵CE∥BA ∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180° ∴∠A+∠B+∠ACB=180°(等量代换)活动目的:

用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。教学效果:

添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.

第三环节:反馈练习活动内容:

(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

(2)△ABC中,∠C=90°,∠A=30°,∠B=?(3)∠A=50°,∠B=∠C,则△ABC中∠B=?

(4)三角形的三个内角中,只能有____个直角或____个钝角.(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?(7)已知:△ABC中,∠C=∠B=2∠A。

(a)求∠B的度数;

(b)若BD是AC边上的高,求∠DBC的度数?

活动目的:

通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏. 教学效果:

学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。

第四环节:课堂小结 活动内容:

① 证明三角形内角和定理有哪几种方法? ② 辅助线的作法技巧.③ 三角形内角和定理的简单应用.活动目的:

复习巩固本课知识,提高学生的掌握程度. 教学效果:

学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能 熟练运用三角形内角和定理进行相关证明.课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题

四、教学反思

三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

高中数学三角函数公式定理口诀 篇12

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

山西铁路工程建设监理有限公司

上一篇:报关员考试讲义精品下一篇:通用规程及标准