小学奥数工程问题总结(精选10篇)
小学奥数工程问题总结 篇1
小学奥数工程问题教案
一、本讲学习目标
联系生活实际,弄清楚工作量、时间、效率之间的关系,提高解决行程问题的能力。
二、重点难点考点分析
工程问题的实质就是工作量、工作时间和工作效率之间的关系问题。工程问题的解题思路和行程问题相似,需要找出三个基本量之间的关系,通过三个基本量之间的换算找出解题方法。工程问题当中,分数的出现与运算较为常见,因此,解决工程问题首先要学好分数的四则运算。
三、知识框架
解决工程问题首先弄清行程问题中这三个量的关系: 工作量=时间×效率(a=t×e)时间=工作量÷效率(t=a÷e)效率=工作量÷时间(e=a÷t)
四、概念解析
工作量:工程问题中的工作量是工程问题的总体量,在未知情况下,可假设工作量为1 ; 时间:工程问题中的时间是工程问题的因子量;
效率:和时间一样,效率也是工程问题的因子量,其地位和形式与时间类似。
五、例题讲解
甲、乙两个工程队共同完成一项工程需18天,如果甲队干3天、乙队干4天则完成工程的1/5。问:甲、乙两队独立完成该工程各需多少天?
打印一份稿件,甲单独打需要50分完成,乙单独打需30分完成。现在甲单独打若干份后,乙接着打完,共42分。问:甲打了稿件的几分之几?
有甲、乙两根水管,分别同时给两个大小相同的水池A和B注水,在相同的时间内甲、乙两管注水量之比是7:5。经过2时,A、B两池中已注入水之和恰好是一池水。此后,甲管的注水速度提高25%,乙管的注水速度降低30%。当甲管注满A池时,乙管还需多长时间注满B池?
一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天
李师傅加工540个零件。他前一半时间每分生产8个,后一半时间每分生产12个,正好完成任务。当他完成任务的45%时,恰好是上午9点。张师傅开始工作的时间是几点几分几秒?
师徒三人合作承包一项工程,8天能够全部完成。已知师傅单独做所需的天数与两个徒弟合作所需的天数相同。师傅与徒弟甲所需的天数的4倍与徒弟乙单独完成这项工程所需的天数相同。问:徒弟乙单独完成这项工程需多少天?
一项工程,甲,队独做10天可以完成,乙队独做30天可以完成.现在两队合作期间甲队休息了2天,乙队休息了8天(两队不在同一天休息).从开始到完工共用了多少天
某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才13
能完成;如果由第二、四、五合干需要8天完成;如果由第一、三、四小队合干需要42天。那么这五个小队一起合干需要多少天才能完成这项工程?
六、课后练习
完成一项工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。问:甲、乙单独干这件工作各需多少天?
一件工作,甲、乙合干需要6天完成,已知甲单独完成该工作的1/2所需的时间与乙单独完成该工作1/3的时间相等。问:甲单独完成该工作需要多长时间?
一项工程,如甲队独做,可6天完成.甲3天的工作量,乙要4天完成.两队合做了2天后,由乙队单独做,乙队还需做多少天才能完成
甲、乙、丙三人合修一围墙。甲、乙合修5天修好围墙的1/3,乙、丙合修2天修好围墙的余下1/4,剩下的围墙甲、丙又合修5天才完成。问:甲、乙、丙单独修好围墙分别需要几天?
有一批工人完成某项工程,如果能增加八人,则10天就能完成;如果能增加3人,就要20天完成。现在只能增加2个人,那么完成这项工程需要多少天?
八 励志或学科小故事——欧几里得
欧几里得出生于雅典,接受了希腊古典数学,30岁就成了有名的学者。欧几里得善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度”。尽管欧几里得简化了他的几何学,国王还是不理解,希望找到一条学习的捷径。欧几里得说:“在几何学里,大家只能走一条路,没有专为国王铺设的达到”。这句话成为千古传诵的学习箴言。
小学奥数工程问题总结 篇2
由于孙悟空有事离开了,剩下的工作室猪八戒单独做完的,结果前后共用了15小时。如果这件工作全部由猪八戒单独做,那么需要()小时完成。
2.一项工程,甲单独做要12小时完成,乙单独做要18小时完成,如果先由甲工作1小时,然后由乙接替甲工作1小时,再由甲接替乙工作1小时……两人如此交替工作,那么完成任务共用了多少小时?
3.甲、乙两人共同加工一批零件,8小时可以完成任务。如果甲单独加工,需要12小时完成,现在甲、乙两人共同加工了22小时后,甲被调出做其他工作,由乙继续加工了420个零件5
才完成任务,问乙一共加工零件多少个?
4.甲、乙、丙三人去完成植树任务,已知甲植1棵树的时间,乙可以植2棵,丙可以植3棵。他们三人先一起工作了5天,完成全部任务的1,然后丙休息了8天,乙休息了3天,甲没3
有休息,最后一起完成了任务。从开始植树算起,总共用个多少天才完成了任务?
5.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米。若同时打开进水口和三个出水口,池中水16分钟做完;若同时打开进水口与五个出水口,池中水9分钟放完。池中原有水多少立方米?
6.一批零件,由师傅单独做需5小时完成,由徒弟单独做需7小时完成,两人合做,完成任务时师傅做的比总数的一半还多18个,则这批零件共有多少个?
7.一个装满了水的水池有一个进水阀及三个口径相同的排水阀,如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完;如果同时打开进水阀及两个排水阀,则10分钟能把水池的水排完。问:关闭进水阀并且同时打开三个排水阀,需要几分钟能排完水池中的水?
8.有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管。进水管以均匀的速度不停地向这个蓄水池注水,后来有人想打开出水管,使池内的水全部排完(这是池内已注入了一些水),如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根水管,需6小时把池内的水全部排光。问:想要在4.5小时内把池内的水全部排光,需同时打开几个出水管?
9.甲、乙、丙三人共同完成一项工作,5天完成了全部工作的1,然后甲休息了3天,乙休3
息了2天,丙没有休息,如果甲一天的工作量是丙一天的工作量的3倍,乙一天的工作量是丙一天的工作量的2倍,那么这项工作从开始算起是第几天完成的?
10.一项挖土工程,如果甲队单独做36天可以完成,乙队单独做要45天才能完成,现在两队同时施工,工作效率提高20%,当工作完成3时,突然遇到地下水,影响施工进度,使5
小学数学奥数社团工作总结 篇3
这一学期,我担任学校四年级的奥数社团教学工作。我认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推“自主——合作——创新”课堂教学模式的同时,“联系生活实际学数学”,把新课程标准的新思想、新理念和数学课堂教学的新思路、新五设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。
一、激发学生学习兴趣,让他们能够感受成功、体验到学习数学的快乐
本社团学生,大部分学生基础较差,随着数学知识点的增多,知识面的扩展,学生越来越感到学习数学的困难,面对形式多样的解题方式更是无法应对,就学习尽头来说是心有余而力不足。为此,我采取的策略是先让学生感到学数学不难:上课时我有意识的设计一些简单的问题叫学习困难的学生来回答,让他们板演一些基本的计算题,激励他们大胆的解答,并在适时的时候予以提示,是他们能在老师善意的帮助下顺利的解答,让他们从心理上感到解决数学问题不是太难,只要掌握基本的方法是可以触类旁通的;第一环节实施后,我采取得第二步是在讲课时把知识生活化的方式,以学生常见的范例、经常接触的身边的数学问题为例,加以有声有色的描述,使学生感到学数学很有用,数学问题解决不好会出笑话,会影响自己的将来,要好好学数学,要学好数学,因为需要而产生学习数学的兴趣;学生的兴趣被激发后,我首先想到的是保持,一是注重从学生的课堂反应来反馈,将学生的问题和与优点添油加醋的加以评价,再就是通过开展一些丰富多彩的数学活动,如讲数学家的故事,搞一些数学小竞赛,小组合作、作业评比、学生评价等等,积极发掘学生的闪光点,让学生的个性得以张扬,努力营造一个学数学的良好氛围,让学生体验学数学和做数学的快乐,使学生从思想上逐步扭转对数学的枯燥印象,最后,我利用各种机会,经常给不同层次学生以成就感,让每一位同学都能体验到学习数学的成功与快乐。一年来,成效显著:首先是学生敢于大胆回答问题了,其次是能基本清楚的描述解题思路了,再次就是作业正确率提高了,测试情况也有了较为明显的好转。
二、认真钻研业务,努力提高课堂40分钟的教学效率。
在业务上我积极利用各种机会,学习教育教学新理念,积极参加网络教研活动,精心打理博客内容(课堂教学中的案例、反思、故事、随笔等),潜心钻研教材教法,认真备课、认真上课,坚持不懈地进行“自我充电”,以提高自己的业务理论水平。课堂上,我把学到的新课程理念结合本班实际,努力贯彻到课堂教学中去,以期提高课堂40分钟的效率。课余,我经常与同事们一起探讨教学过程中遇到的各种问题,互相学习,共同提高;我还结合实际教学撰写一些自己平时的教学反思和经验总结点滴等等。从中,我更是感受到了学无止境的道理。要充分发挥课堂教学这个“主阵地”的作用,提高课堂40分钟的效率,我们要与时俱进,坚持不懈地学习探究教学新理论新实践。
三、关爱学生与严格要求相结合,尽量使每一位学生进步。
亲其师,才能信其道。在平时与学生接触的过程中,我不以“师长”自居,尽量与学生平等交往,建立“朋友式”的深厚友谊,努力关爱每一位学生的成长。与学生多谈心,帮助学生解决学习上与生活上的各种困惑。同时,面对个别调皮的学生,也实行严格要求、正确导向的办法,让他们树立起正确的荣辱观。课堂教学,纪律是提高课堂效率的重要保证。面对各层次的学生,我既要关爱大部分学生,又要面对个别不守纪律的捣蛋分子实行严格要求。课堂上,我尽量做到分层施教与个别辅导相结合;课余,我让优秀学生与“学困生”实行“一帮一”结对子,互帮互助,共同提高。一学期来,学生们原本薄弱的基础,逐步得以夯实,学生的学习成绩有了稳步提高。
四、总结得失,以励再战。
1、取得的成绩:在我的努力带动下,学困生的脸上有了笑容了,学生们的学习兴趣较以前提高了,学习的态度也改变了不少。
2、存在的不足:部分学生多年来形成的一些不良学习方法和习惯,还有待进一步规范和引导;学困生在起始年级的知识空缺(口算乘除法及其他)直接影响着计算的效率与质量,学习成绩虽然有所进步,但许多方面还有很大的提升空间;老师的付出与学生知识掌握的反馈(作业、成绩)使老师产生急躁的情绪。
小学奥数流水行程问题教学设计 篇4
本课分为两课时,第一课时为例题讲解、答疑激趣、归纳算理、布置课后作业;第二课时为习题讲解,反思总结。
一、教学目标:
1、知识与技能:掌握行船、流水问题的基本规律,能理清水速、船速之间的关系
2、过程与方法:经历应用问题的解决,掌握流水行程问题的基本解决方法和步骤,学会用画图等方法解决问题
3、情感态度价值观:经历问题解决的步骤,加强逻辑能力和思维水平,增加学生思维的挑战,引发学生的兴趣。
二、教学重点:船速、水速和顺水、逆水的等量关系式 教学难点:理解问题的解决方法
三、教学过程
(一)展示例题,指出关键
已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?
1、理解信息。请学生从中找出关键词和所了解到的信息,说说如何理解
2、集思广益。根据你了解到的信息,如何解决现在的问题
3、教师展示思路:
分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).
因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).
现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).
木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:
6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).
解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).
答:船到B港时,木块离B港还有60米. 此题运用了关系式:(顺水速度-逆水速度)÷2=水速
(二)训练拓展,巩固思维
根据学生所学到的关系式进行进一步推理。已知:(顺水速度-逆水速度)÷2=水速
可得:(顺水速度+逆水速度)÷2=船速
船速+水速=顺水速度
船速-水速=逆水速度
静水中的速度=船速
(三)习题精讲精练
1、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?
2、一艘轮船从甲港开往乙港,顺水而行每小时28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?
3、一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;后来顺流航行60其千米,逆流航行120千米,也用了15小时。求水流的速度。
4、甲乙两个码头相距112千米,一只船从乙码头逆水而上,行了8小时到达甲码头。已知船速是水速的15倍,这只船从甲码头返回乙码头需要几小时?
5、一艘轮船往返于相距240千米的甲乙两港之间,逆水速度是每小时18千米,顺水的速度是每小时26千米。一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需多少小时
(四)课后反思,归纳总结
小学奥数牛吃草问题教案(二) 篇5
牛吃草问题二
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题常用的四个基本公式,分别是:
设定一头牛一天吃草量为“1”
1草的生长速度=(对应的牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数)
2原有草量=牛头数×吃的天数-草的生长速度×吃的天数 3吃的天数=原有草量÷(牛头数-草的生长速度)4牛头数=原有草量÷吃的天数+草的生长速度
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天 新长出的草量应该是不变的。正由于这个不变量,才能导出上面的四个基本公式。牛吃草的问题经常给出不同头数的牛吃同一片草地,这地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题的关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有的草量,进而解答问题。
这类题的基本数量关系是:
1(牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数)=草地每天新长出的草
2牛头数×吃的天数-草的生长速度×吃的天数=原有草量 解决多块草地的方法 多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。
思维拓展 例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?
【分析】“牛吃草”问题的特点是随时间的增长,所研究的量也等量地增加。解答时,要抓住这个关键问题,也就是要求出原来的量和每天增加的量各是多少。【思考5】一个牧场上的青草每天都匀速生长。这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完。这群牛原来有多少头?
25头。设每头牛每天的吃草量为1份。每天新生的草量为:(23×9-27×6)÷(20-10)=15份,原有的草量为(27-15)×6=72份。如两头牛不卖掉,这群牛在4+4=8天内吃草量72+15×8+2×4=200份。所以这群牛原来有200÷8=25头
例6 有三块草地,面积分别为5公顷,6公顷和8公顷。每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。第三块草地可供19头牛吃多少天? 【分析】由题目可知,这是三块面积不同的草地,为了解决这个问题,首先要将这三块草地的面积统一起来。巩固练习1.一块牧场长满了草,每天均匀生长。这块牧场的草可供10头牛吃40天,供15头牛吃20天。可供25头牛吃__天。()
A.10 B.5 C.20 A 假设1头牛1天吃草的量为1份。每天新生的草量为:(10×40-15×20)÷(40-20)=5(份)。那么愿草量为:10×40-40×5=200(份),安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。
2.一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。那么想用4天的时间,把这块草地的草吃光,需要__只羊。()
A.22 B.23 C.24 B假设1只羊1天吃草的量为1份。每天新生草量是:(14×10-20×5)÷(10-5)=8(份)原草量是:20×5-8×5=60(份)安排8只羊专门吃每天新长出来的草,4天时间吃光这块草地共需羊:60÷4+8=23(只)
3.画展9时开门,但早有人来排队等候入场。从第一个观众来到时起,每分钟来的观众人数一样多。如果开3个入场口,9点9分就不再有人排队了,那么第一个观众到达的时间是8点__分。()
A.10 B.12 C.15 C假设每个人口每分钟进入的观众量是1份。
每分钟来的观众人数为(3×9-5×5)÷(9-5)=0.5(份)到9时止,已来的观众人数为:3×9-0.5×9=22.5(份)第一个观众来到时比9时提前了:22.5÷0.5=45(分)所以第一个观众到达的时间是9时-45分=8时15分。
4.经测算,地球上的资源可供100亿人生活100年,或 可供80亿人生活300年。假设地球新生成的资源增长速度是一样的。那么,为了满足人类不断发展的要求,地球最多只能养活()亿人。
设1亿人1年所消耗的资源为1份
那么地球上每年新生成的资源量为:(80×300-100×100)÷(300-100)=70(份)
只有当地球每年新生资源不少于消耗点的资源时,地球上的资源才不至于逐渐减少,才能满足人类不断发展的需要。所以地球最多只能养活:70÷1=70(亿人)
5.快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用()小时。自行车的速度是:(20×10-24×6)÷(10-6)=14(千米/小时)三车出发时自行车距A地:(24-14)×6==60(千米)慢车追上自行车所用的时间为:60÷(19-14)=12(小时)
6.一水池中原有一些水,装有一根进水管,若干根抽水管。进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管,()小时可将可将水池中的水抽干。设1根抽水管每小时抽水量为1份。(1)进水管每小时卸货量是:(21×8-24×6)÷(8-6)=12(份)(2)水池中原有的水量为:21×8-12×8=72(份)
(3)16根抽水管,要将水池中的水全部抽干需:72÷(16-12)=18(小时)
7.某码头剖不断有货轮卸下货物,又不断用汽车把货物运走,如用9辆汽车,12小时可以把它们运完,如果用8辆汽车,16小时可以把它们运完。如果开始只用3辆汽车,10小时后增加若干辆,再过4小时也能运完,那么后来增加的汽车是()辆。设每两汽车每小时运的货物为1份。
(1)进水管每小时的进水量为:(8×16-9×12)÷(16-12)=5(份)(2)码头原有货物量是:9×12-12×5=48(份)
(3)3辆汽车运10小时后还有货物量是:48+(5-3)×10=68(份)(4)后来增加的汽车辆数是:(68+4×5)÷4-3=19(辆)
8.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
8天
(1)按牛的吃草量来计算,80只羊相当于80÷4=20(头)牛。(2)设1头牛1天的吃草量为1份。
(3)先求出这片草地每天新生长的草量:(16×20-20×12)÷(20-12)=10(份)(4)再求出草地上原有的草量:16×20-10×20=120(份)
(5)最后求出10头牛与60只羊一起吃的天数:120÷(10+60÷4-10)=8(天)
9.某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加。为了防洪,需开闸泄洪。假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线。现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门?
4个 设1个泄洪闸1小时的泄水量为1份。
(1)水库中每小时增加的上游河水量:(1×30-2×10)÷(30-10)=0.5(份)(2)水库中原有的超过安全线的水量为:1×30-0.5×30=15(份)(3)在5.5小时内共要泄出的水量是:15+0.5×5.5=17.75(份)(4)至少要开的闸门个数为:17.75÷5.5≈4(个)(采用“进1”法取值)
10.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在的速度去追乙车,3小时后能追上。那么甲车以现在的速度去追,几小时后能追上乙车?
15小时
设甲车现在的速度为每小时行单位“1”,那么乙车的速度为:(2×5-3×3)÷(5-3)=0.5 乙车原来与甲车的距离为: 2×5-0.5×5=7.5 所以甲车以现在的速度去追,追及的时间为: 7.5÷(1-0.5)=15(小时)
1、有三块草地,面积分别为5,6和8公顷。草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问:第三块草地可供19头牛吃多少天?2、3、4、5、6、7、牧场上的牧草每天均匀生长,这片草地可供17头牛吃6天,可供13头牛吃12天.问多少头牛4天把草地的草吃完? 有-牧场,21头牛20天可将草吃完,25头牛则15天可将草吃完,现有牛若干头,吃6天后卖了4头,余下的牛再吃2天则将草吃完,问原有牛多少头? 22头牛,吃33公亩牧场的草54夭可吃尽,17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽? 某火车站检票口,在检票开始前已有-些人排队,检票开始后每分钟有10人前来排队检票,-个检票口每分钟能让25人检票进站.如果只有-个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后多少分钟就没有人排队? 甲、乙、丙三个仓库,各存放着同样数量的大米,甲仓库用皮带输送机-台和12个工人5小时把甲仓库搬空,乙仓库用皮带输送机-台和28个工人3小时把乙仓库搬空.丙仓库有皮带输送机2台,如果要2小时把丙仓库搬空,同时还需要多少名工人? 牧场上-片牧草,可供27只羊吃6天;或者供23只羊吃9天,如果牧草每周匀速生长,可供21只羊吃几天?
小学奥数工程问题总结 篇6
学校:______________班级:___________姓名:__________得分:________(总分:100分)
1、张明在期末考试时,语文、数学两门功课的平均分是95分,数学比语文多得8分,张明这两门功课的成绩各是多少分?(6分)
2、有A、B、C三个数,A+B=252,B+C=197,C+A=149,求这三个数。(6分)
3、甲、乙两个筐共装苹果75千克,从甲筐取出5千克苹果放入乙筐里,甲筐苹果还比乙筐苹果多7千克,甲、乙两筐原来各有苹果多少千克?(6分)
4、张强用270元买了一件外衣、一顶帽子和一双鞋子。外衣比鞋贵140元,买外衣和鞋比买帽子多花210元,张强买这双鞋花了多少钱?(7分)
5、李叔叔要在下午3点钟上班,他估计快到上班时间了,到屋里去看钟,可是钟早在12点10分就停了。他上足发条却忘了拨动指针,匆匆离家,到工厂一看钟,离上班时间还有10分钟。夜里11点下班,李叔叔马上离厂回到家里,一看钟才9点整。假定李叔叔的上班和下班在路上用的时间相同,那么他家的钟停了多长时间(上发条所用时间忽略不计)?(8分)
6、小明用21.4元去买两种贺卡,甲卡每张1.5元,乙卡每张0.7元,钱恰好用完。可是售货员把甲卡张数算作乙卡张数,把乙卡张数算作甲卡张数,要找还小明3.2元。问:小明买了甲、乙卡各几张?(8分)
7、两个连续的奇数之和是100,求这两个奇数。(6分)
8、在一个减法算式里,被减数、减数和差这三个数的和是388,减数比差大16,求减数。(7分)
9、篮球和排球共58个,排球和足球共45个,足球和篮球共77个,那么,篮球、排球和足球各有多少个?(6分)
10、小明比小强多27本书,如果要小强比小明多5本书,那么小明要给小强多少本书?(6分)
11、姐姐做英语练习,比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟。妹妹做算术、英语两门练习共用了44分钟。那么,妹妹做英语练习用了多少分钟?(8分)
12、用100元购买钢笔和圆珠笔,各买5支还多余5元;如果买7支钢笔、3支圆珠笔就缺5元。问:钢笔、圆珠笔每支价格各是多少元?(8分)
13、有一个没有写完的算式:(6分)
987654321 =23
请在等式左边各个数字之间,插入四个加号和四个减号,使等式成立。
14、全班买了51套运动服,共花了1989元,每件上衣比裤子贵7元钱。一件上衣和一条裤子各 多少元?(6分)
15、两个连续的偶数之和是86,求这两个偶数。(6分)
小学奥数工程问题总结 篇7
一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的`速度是______米/秒。
答案与解析:
17(米/秒)。
解析:客车与人是相向行程问题,可以把人看作是有速度而无长度的火车,利用火车相遇问题:两车身长÷两车速之和=时间,可知,
两车速之和=两车身长÷时间
=(144+0)÷8
=18(米/秒)。
人的速度=60(米/分)
=1(米/秒)。
车的速度=18-1
=17(米/秒)。
小学奥数工程问题总结 篇8
一、题型概述
已知两个数的和与两个数之间的差,求出这两个数。
二、基本解题思路
教学方法:线段图例法
第一步:找出两个数的和,以及两个数的差
第二步:运用除法公式求出较小数或较小数:
较大数=(两数和+两数差)÷2
较小数=(两数和-两数差)÷2
三、实例应用
1、应用案例 1
已知两个数的和是36,两个数的差是4,求这两个数是多少?
较大数=(36+4)÷2=20
较小数=(36-4)÷2=162、应用案例2
已知两个数的和是56,两个数的差是8,求这两个数是多少?
较大数=(56+8)÷2=32
较小数=(56-8)÷2=243、应用案例3
今年,爸爸与妈妈的年龄和是75岁,爸爸比妈妈大3岁。问爸爸和妈妈今年多大了? 爸爸:(75+3)÷2=39
妈妈:(75-3)÷2=36
四、奥赛训练
1、两个数的和是89,较小数比较大数小15。问这两个数各是多少?
2、A和B的和是57,A和B的差是3,A比B大,求A和B各是多少?
3、大个子小明和小个子小强是好朋友,他们都爱打篮球。他们两的身高一共有343厘米,小强比小明矮13厘米,问小明和小强的身高各是多少厘米?
奥数计算专项总结 篇9
例1.3125+5431+2793+6875+4569
解:原式=(3125+6875)+(4569+5431)+2793
=22793
例2.100+99-98-97+96+95-94-93+……+4+3-2
解:原式=100+(99-98-97+96)+(95-94-93+92)+……+(7-6-5+4)+(3-2)
=100+1=101
分析:例2是将连续的(+--+)四个数组合在一起,结果恰好等于整数0,很快得到中间96个数相加减的结果是0,只要计算余下的100+3-2即可。
二、加补数法:
例3:1999998+199998+19998+1998+198+88
解:原式=2000000+200000+20000+2000+200+100-2×5-12
=2222300-22=2222278
分析:因为各数都是接近整
十、百…的数,所以将各数先加上各自的补数,再减去加上的补数。
三、找准基数法:
例4.51.2+48.8+52.5+50.9+47.8+52.3-48.2-59.6
解:原式=50×(6-2)+1.2-1.2+2.5+0.9-2.2+2.3+1.8-9.6
=200-4.3=195.7
分析:这些数都比较接近50,所以计算时就以50为基数,把每个数都看作50,先计算,然后再加多或减少,这样减轻了运算的负担。
四、分解法:
例5.1992×198.9-1991×198.8
解:原式=1991×198.9+198.9×1-1991×198.8
=1991×(198.9-198.8)+198.9
=199.1+198.9=398
三年级奥数重叠问题 篇10
例
1、同学们排队做操,从前数丁丁是第6个,从后数他排在第8个,这一队一
共有多少个同学?
同类练习:
1、同学们排队做操,从前数小王是第8个,从后来数小王是第9个,这一队
一共有多少个同学?
2、同学们排队,从前数小明是第9个,从后数乐乐是第7个,小明和乐乐中间
还有5个人,这一队可能是多少个同学?还可能是多少个同学?
例
2、为庆祝“六一”,同学们排成每行人数相等的鲜花队,小华的位置是从左边
是第2个,从右边是第4个,从前数是第3个,从后面数是第5个,鲜花队有多少人?
同类练习:
1、三(4)班排成每行人数相同的队伍参加学校运动会,梅梅位置从前数是第6个,从后数是第4个,从左边、从右边数都是第3个,三(4)班共有多少人?
2、小朋友排成方阵跳集体舞,笑笑不管从前数,从后数,还是从左数、从右
数,都是第5个,这个方阵中一共有多少个小朋友?
例
3、有两块木板,一块长80cm,另一块长70cm,把它们钉在一起,中间重叠的部分是10cm,这块钉在一起的木板全长多少厘米?
同类练习:
1、小张把两根长20cm的彩色纸条粘贴成一根长纸条,黏贴部分长3cm,贴好
后的长纸条长多少厘米?
2、王师傅把两根木条钉成一根长木条,这两根木条,一根长50cm,另一根比第一根短10cm,钉成的木条重叠部分长10cm,钉成的木条全长多少厘米?
例
4、把两块一样长的木板钉在一起,成一块长木板,这块钉成的木板长14分米,中间重叠部分长2分米,这两块木板分别长多少分米?
同类练习:
1、把两条一样长的纸条粘贴成一根长16分米的纸条,中间粘贴部分长2分米,这两根纸条的长多少分米?
2、把两块木板钉成一条较长的木板,钉成的木板长8分米,中间重叠部分长1分米,已知一块长3分米,另一块长是多少分米?
例
5、有一块长5分米的木板和一块长7分米的木板钉在一起,得到一块长10分
米的木板,中间重叠部分有多长?
同类练习:
1、把两根长度分别是60cm和40cm的绳子打一个结,结成一根长90cm的绳
子,打结部分的长度是多少?
2、把3块长度都是5dm的木板钉成一块木板,每个重叠处的长度都是一样,钉成的这块木板总长度为13dm,每个重叠处长度分别是多少分米?
例
6、自习课商,做完语文作文的有35人,做完数学作业的有28人,全班总人
数是50人,每人至少完成一项作业,有多少同学两项作业都做完?
同类练习:
1、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种,三年级既带矿泉水,又带水果的小朋友有多少人?
2、在一次数学测试中,三(3)班50人中有12人两道思考题都没有做对,有32人做对第一道,有20人做对第二道,有多少人两道题都做对?
例
7、上美术课,三(6)班同学每人都带一种彩色笔,有18人带水彩笔,有37
人带油画棒,还有6人两种笔都带,三(6)班一共有多少人?
同类练习:
1、同学们去图书室借文艺书和科技书,每人都借了书,有27人借文艺书,有
32人借科技书,其中5人两类书都借了,去图书室借书一共有多少人?
2、40人参加智力比赛,答对第一题的有28人,答对第二题的有21人,两题
都答对的有15人,两题都没答对的有多少人?
2、三(5)班的同学参加跳绳和踢毽子比赛,有8人没有参加,有21人参加
踢毽子比赛,有24人参加跳绳比赛,还有6人两项都参加,三(5)班一共有多少名同学?
例
8、朝阳小学有50人参加象棋比赛和围棋比赛,参加象棋比赛的有38人,有
12人既参加象棋比赛,又参加围棋比赛,参加围棋比赛的有多少人?
同类练习:
1、50个同学报名参加文体活动,每人至少参加体育组和文娱组中的一个,其
中参加体育组的有29人,既参加体育组又参加文娱组的有8人,参加文娱组有多少人?
综合练习
1、同学们做早操,从前数小刚是第7个,从后数他是第4个,这一队一共有多
少个同学?
2、同学们排成方阵跳舞,从前数小玉是第5人,从后面数她是第4人,从左数
她是第4个,从右数她是第2个,这个方阵一共有多少人?
3、同学们排队跳舞,每行,每列人数同样多,小红的位置无论从前数、从后数、从左数还是右数都是第3个,一共有多少个同学跳舞?
4、王师傅把两根长度都是25cm的铁丝焊接在一起,焊接部分长5cm,焊接部
分长5cm,焊接好的铁丝共长多少厘米?
5、张师傅把两块一样长的木板钉成一块木板,钉好的木板长9分米,中间重叠
部分长1分米,这两块木板分别长多少分米?
6、把一块长45cm和一块长50cm的木板钉在一起,得到一块长85cm的木板,中间重叠部分是多长?
7、三(2)班同学每人至少订一份《英语学习报》或《中国少年报》,其中30
人订《英语学习报》,有21人订《中国少年报》,全班40人,有多少人两份报纸都订了?
8、三(2)班有学生46人,做对第一道思考题的有29人,两道思考题都做对的有5人,两道题都做错的有5人,做对第二道思考题的有多少人?
9、三(2)班有学生46人,做对第一道题思考题的有29人,做对第二道思考
题的有17人,两道题都做错的有5人,两道题都做对的有多少人?
10、三(5)班43人上美术课,有2人没带画笔,带油画笔的有25人,带水彩
笔的有23人,两种笔都带的有多少人?
11、五(1)班同学排成5条队做操,每队人数一样多,小华的位置是:从前面
数第6个,从后面数第4个。这个班共有学生多少人?
【小学奥数工程问题总结】推荐阅读:
小学奥数题工程问题05-23
追及问题奥数小学12-18
小学奥数流水行船问题11-22
小学奥数知识点总结11-21
小学三年级奥数下册鸡兔同笼问题教案10-10
小学奥数教学10-21
小学奥数简单推理06-10
小学奥数组合图形面积08-29
小学生学习奥数11-19
小学奥数五年级讲解06-05