《函数概念》说课稿

2024-12-06

《函数概念》说课稿(精选8篇)

《函数概念》说课稿 篇1

尊敬的各位评委、老师们:

大家好!

今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:

一、背景分析

1、学习任务分析

本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析

学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;

教学难点为:函数概念的形成及理解。

二、教学目标设计

根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)

通过丰富的实例,让学生

①了解函数是非空数集到非空数集的一个对应;

②了解构成函数的三要素;

③理解函数概念的本质;

④理解f(x)与f(a)(a为常数)的区别与联系;

⑤会求一些简单函数的定义域。

2、过程与方法(方面)

在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)

让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

三、课堂结构设计

为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:

复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识——小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。

四、教学媒体设计

教学中利用投影与黑板相结合的形式,利用投影直观、生动地展示实例,并能增加课堂容量;利用黑板列举本节重要内容,使学生对所学内容有一整体认识,并让学生利用黑板展写、展讲例题,有问题及时发现及时解决。

五、教学过程设计

本节课围绕问题的解决与重难点的突破,设计了下面的教学过程。

整个教学过程按四个环节展开:

首先,在第一环节——复习旧知,引出课题,先由两个问题导入新课

①初中时函数是如何定义的?

②y=1是函数吗?

[设计意图]:学生通过对这两个问题的思考与讨论,发现利用初中的定义很难回答第②个问题,从而激起他们的好奇心:高中阶段的函数概念会是什么?激发他们学习本节课的强烈愿望和情感,使他们处于积极主动的探究状态,大大提高了课堂效率。

从学生的心理状态与认知规律出发,教学过程自然过渡到第二个环节——函数概念的形成。

由于高中阶段的函数概念本身比较抽象,看不见也摸不着,不易直接给出,因此在本环节中,我主要通过学生能看见能感知的生活中的3个实例出发,由具体到抽象,由特殊到一般,一步步归纳形成函数的概念,此过程我称之为“创设情境,形成概念”。

对于这3个实例,我分别预设一个问题让学生思考与体会。

问题1:从炮弹发射到落地的0-26s时间内,集合A是否存在某一时间t,在B中没有高度h与之对应?是否有两个或多个高度与之相对应?

问题2:从1979—20xx年,集合A是否存在某一时间t,在B中没有面积S与之对应?是否有两个或多个面积与它相对应吗?

问题3:从1991—20xx年间,集合A中是否存在某一时间t,在B中没恩格尔系数与之对应?是否会有两个或多个恩格尔系数与对应?

[设计意图]:通过循序渐进地提问,变教为诱,以诱达思,引导学生根据问题总结3个实例的各自特点,并综合各自特点,归纳它们的公共特征,着重向学生渗透集合与对应的观点,这样,再让学生经历由具体到抽象的概括过程,用集合、对应的语言来描述函数时就显得水到渠成,难点得以突破。

函数的概念既已形成,本节课自然进入了第3个环节——剖析概念,理解概念。

函数概念的理解是本节课的重点也是难点,概念本身比较抽象,学生在理解上可能把握不准确,所以我分两个步骤来进行剖析,由具体到抽象,螺旋上升。

首先,在学生熟读熟背函数概念的基础上,我设计一个学生活动,让学生充分参与,在参与中体会学习的快乐。

我利用多媒体制作一个表格,请学号为01—05的同学填写自己上次的数学考试成绩,并提出3个问题:

问题1:若学号构成集合A,成绩构成集合B,对应关系f:上次数学考试成绩,那么由A到B能否构成函数?

问题2:若将问题1中“学号”改为“01—05的学生”,其余不变,那么由A到B能否构成函数?

问题3:若学号04的学生上次考试因病缺考,无成绩,那么对问题1学号与成绩能否构成函数?

[设计意图]:通过层层提问,层层回答,让学生对概念中关键词的把握更为准确,对函数概念的理解更为具体,为总结归纳函数概念的本质特征打下基础。

其次,我通过幻灯片的形式展示几组数集的对应关系,让学生分析讨论哪些对应关系能构成函数,在学生深刻认识到函数是非空数集到非空数集的一对一或多对一的对应关系,并能准确把握概念中的关键词后,再着重强强在这两种对应关系中,何为定义域,何为值域,值域和集合B有什么关系,强调函数的三要素,得出两函数相等的条件。

至此,本节课的第三个环节已经完成,对于区间的概念,学生通过预习能够理解课堂上不再多讲,仅在多媒体上进行展示,但会在后面例题的使用中指出注意事项。

在本节课的第四个环节——例题分析中,我重点以例题的形式考查函数的有关概念问题,简单函数的定义域问题以及函数的求值问题,至于分段函数、复合函数的求值及定义域问题,将在下节课予以解决,本环节主要通过学生讨论、展写、展讲、学生互评、教师点评的方式完成知识的巩固,让学生成为课堂的主人。

最后,通过

——总结点评,完善知识体系

——课堂练习,巩固知识掌握

——布置作业,沉淀教学成果

六、教学评价设计

教学是动态生成的过程,课堂上必然会有难以预料的事情发生,具体的教学过程还应根据实际情况加以调整。

最后,引用赫尔巴特的一句名言结束我的说课,那就是“发挥我们教师的创造性,使教育过程成为一种艺术的事业,使我们不聪明的孩子变的聪明,使我们聪明的孩子变的更聪明”。

谢谢大家!

《导数的概念》说课稿 篇2

一、教材分析

1.对教学内容认识

教材中对导数内容的处理更加关注对导数概念本质的把握。教材中不再将导数作为特殊的极限处理,而是从变化率这一反映数学思想和本质的各种实例出发,为导数模型的建立提供丰富的背景。导数概念虽然未直接从极限引入,但学生经历的由平均变化率(近似量)到瞬时变化率(精确量)的过程却是实实在在的极限思想。在这一过程中,由静止思维向动态思维的转变、形成过程与方法的抽象性、“以直代曲”与“无限逼近”的思想、“实无限”与“潜无限”的直观选择、“瞬时速度”与“曲线的切线”的定义等等都将成为学生学习导数概念的认知障碍。

2.三维教学目标

(1)知识与技能

了解导数概念的实际背景,掌握导数的概念并运用概念求导数,体会导数的思想及其内涵。

(2)过程与方法

通过对导数概念的探索过程,培养学生科学地分析和探究问题的能力。

(3)情感态度价值观

学习归纳、类比的推理方式;体验无限逼近、从特殊到一般、化归与转化的数学思想;培养学生正确认识量变与质变、运动与静止等对立统一观点,形成正确的数学观。

3.重点难点

教学重点:导数的概念以及用定义求导数的方法。

教学难点:对导数概念的理解。

二、教法分析

1.学情分析

(1)心理发展规律

在课堂上,学生的独立性大为增强,不喜欢老师喋喋不休地讲个没完,不希望老师过多地讲授,希望课堂上能留给他们独立思考的时间。

(2)认知与思维发展规律

学生的思维从经验型水平向理论型水平转变,思维成分、个体差异水平基本上趋于稳定状态,思维发展的可塑性渐小。

(3)认知基础

学生已具有一定的抽象思维能力,但由于学生刚开始接触这新知识,且导数的概念建立在极限的思想上,比较抽象,理解导数的内涵对他们来说确实还是有困难的。

2.教学方式

本课题采用“教师适时引导和学生自主探究与合作学习相结合”的教学方式。整堂课围绕“一切为了学生发展”的教学原则,突出两个字:动——师生互动、共同探索;导——做到三个引导:①引导学生通过亲身经历,动口、动脑、动手参与数学活动。②引导学生发挥主观能动性,主动探索新知。③引导学生分组讨论,合作交流,共同探讨问题。教学手段上,则充分利用信息技术的优势,突破教学难点。

(3)教学手段

在概念探究过程中充分利用信息技术的优势,依据学生的认知水平,从平均变化率入手,用直观形象的“无限逼近”方法定义导数,深入浅出的展示导数概念的要领和实质,突破教学难点。

三、教学过程

总体可分为五部分:①创设情境,引入新课;②初步探索,揭示内涵;③循序渐进,延伸拓展;④归纳总结,内化知识;⑤作业安排,课后练习。

教学的一开始,通过设疑:“能不能将圆的切线推广为一般的曲线的切线”,抓住学生从不同角度、不同层面认识理解的差异,掀起矛盾,引发惊奇,使学生有探索动机,愿意参与到本次学习活动中来。

由于学生已经具备了平均变化率知识,为研究本课题提高了知识上的积累和准备,故接下来以变化率为基础,精心创设了三个问题情境,引发学生思维展开,增强学生主动思维的内驱力。由于这个环节对学生概念的理解非常重要,故教学中充分利用了信息化教学手段,通过课件模拟、计算机数据处理、电脑演示等,逐步揭示数学本质,也为学生创设了参与的空间。

在接下来的概念的概括阶段,教师提出“如果推广到一般情形,它们能不能统一到一个共同的数学模型当中呢?”让学生通过前面的分析、比较,把这类事物的共同特征描述出来,并推广到一般。由于概括是概念教学的核心,所以教学中采取学生合作学习的方式,让学生相互交流、倾听,在争辩、互助的过程中进一步体悟、理解概念。

在应用概念的阶段,列举了三个典型的例题,这三个例题有简单、有困难,有熟悉、有陌生,都是在学生认知水平上进行的应用。在例一中,放手让学生一试,上台板演,体现了学生学习的主体性。在例二、例三的讲授中,通过得当的数学语言,规范的板书,起到教师示范作用。

高一数学对数函数 (说课稿) 篇3

http://

对数函数说课稿

一、说教材

1、地位和作用

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习.而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识.2、教学目标的确定及依据

依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1)理解对数函数的概念、掌握对数函数的图象和性质.(2)培养学生自主学习、综合归纳、数形结合的能力.(3)培养学生用类比方法探索研究数学问题的素养;

(4)培养学生对待知识的科学态度、勇于探索和创新的精神.(5)在民主、和谐的教学气氛中,促进师生的情感交流.3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识.亿库教育网

http://

亿库教育网

http:// 难点:底数a对对数函数的图象和性质的影响;

关键:对数函数与指数函数的类比教学

[关键]由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点.二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质.根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳.(2)采用“从特殊到一般”、“从具体到抽象”的方法.(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法.(4)投影仪演示法.在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学

亿库教育网

http://

亿库教育网

http:// 生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻.三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照.(2)探究式学习法:学生通过分析、探索,得出对数函数的定义.(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质.(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距.这样可发挥学生的主观能动性,有利于提高学生的各种能力.四.说教程

在认真分析教材、教法、学法的基础上,设计教学过程如下:

(一)创设问题情景、提出问题

在某细胞分裂过程中,细胞个数y是分裂次数x的函数y2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数

问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问

亿库教育网

http://

亿库教育网

http:// 题?

设计意图:为了引出对数函数

问题三:在关系式xlog2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念.(二)意义建构: 1. 对数函数的概念:

同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为y0.84x,我们也可以把它改为对数式,xlog0.84y,其中x年也可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的.设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类.但在习惯上,我们用x表示自变量,用y表示函数值 问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)问题三:在y以解释.问题四:你能根据指数函数的定义给出对数函数的定义吗?

亿库教育网

http:// logax中,a有什么限制条件吗?请结合指数式给

亿库教育网

http:// 问题五:是什么? 问题六:处是什么?

与中的x,y的相同之处是什么?不同之处

与 中的x,y的相同之处是什么?不同之 设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域

2. 对数函数的图象与性质

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

(提示学生进行类比学习)

合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系.(1)y2;ylogxx2x

12x1(2)y,ylog2x

a合作探究2:当a0,a1,函数y与ylogax的图象之间有什么关系?(在这儿体现“从特殊到一般”、“从具体到抽象”的方法)

合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质.亿库教育网

http://

亿库教育网

http://(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

问题1:对数函数y么?

问题2:对数函数ylogalogax(a0,a1,)是否具有奇偶性,为什

x(a0,a1,),当a1时,x取何值,y0,x取何值,y.0,当0a1呢?

问题3:对数式logab的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述.知识拓展:函数yax称为yaxlogax的反函数,反之,函数ylogax也称为y的反函数.一般地,如果函数yf1f(x)存在反函数,那么它的反函数记作为y

(三)数学应用 1. 例题

例1:求下列函数的定义域

(1)y(2)ylog0.2(x)

(4x)

logax1(a0,a1,)

logx(该题主要考查对数函数ya的定义域(0,)这一限制条件根据函数的解析式求得不等式,解对应的不等式.同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

亿库教育网

http://

亿库教育网

http://(1)log23.4,log23.8

(2)log0.51.8,log0.52.1(3)loga5.1,log7a5.9

(4)log75,log6,(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

合作探究4:已知logm4logn4,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想.)

本题可以从以下几方面加以引导点拨 1.本题的难点在哪儿?

2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系

本题也可以从形的角度来思考.(四)目标检测

P69 1,2,3

(五)课堂小结

由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)

(六)布置作业 P70 1,2,3

亿库教育网

http://

亿库教育网

http://

函数的奇偶性说课稿 - 篇4

各位评委老师好:

我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。一.教材分析

《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。二.学情分析

认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。

任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。

改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。

三、教学目标

根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。

知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。

过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

重点与难点

重点:函数奇偶性的概念及判断。虽然函数的奇偶性知识点并不是很难理解,但知识掌握不全面的同学,往往会忽略定义域的问题。因此在介绍奇偶函数的概念时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。难点:函数奇偶性定义的理解与形成过程。此阶段的学生看侍问题仍在较大程度上是静止的片面的,抽象概念能力仍不强,对构建奇偶性的概念造成一定的困难。

四、教学方法

教法:本节课采用了引导发现法、直观演示法、类比法,教学中,精心设计了一个又一个带有启发性和思考性的问题,创设情景,诱导学生学会思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

学法:让学生在“观察—归纳—检验—应用”的学习过程中,自主参与知识的发生—发展—形成的过程,从而使学生掌握知识。

五、教学过程

(一)创设情境:

多媒体展示一组图片,使学生感受到生活中的对称美,通过展示图片,让学生在欣赏的同时,观察图片的对称关系。

设计意图:激发学习兴趣,调动学习的积极性便于思维定向

(二)激情导入

多媒体呈现两个特殊函数的图像yx3,yx2,开启新的学习。让学生观察图像的特征,这时学生能发现图像对称关系。数学家华罗更说“数缺形时少直观,形缺数时难入微”。要揭示概念的本质特征,就要完成从形到数,从直观到抽象的提炼与上升。

(三)自主学习、研讨展示、形成概念

1.我利用学生熟知的图像yx,yx3及其图像,让学生求对应的函数值,把学生的数据呈现在表中,以多媒体的形式呈现在大家眼前,鲜明又直观的数据,让学生自然而然的意识到这类函数在数据上也具有对称性。此时作为课堂主导的教师设问给学生:这种对称是特殊的?还是具有一般性的呢?这时学生满是好奇心,学习的积极性高涨。然后教师运用多媒体动画展示学生不难发现,图象都是以坐标原点为对称中心的中心对称图形,进而给出函数的图像上这样两点,这两个点满足横坐标相反,纵坐标页相反的特点。从而得出这种对称是一般的。既对定义域内任意的x,都有f(-x)=-f(x)最后得出奇函数严格的定义。

设计意图:定义中定义域对应的区间关于坐标原点对称是学生思维的难点,在这个过程中学生把对图形规模的感性认识,转化成数量的理性认识,切实经历了一次从特殊归纳出一般的体验。发挥学生自主性

2.紧接着用多媒体展示奇函数的图像特征。并指出如果一个函数是奇函数,则它的图象关于原点对称。反过来,如果一个函数的图象关于原点对称,则这个函数为奇函数。

设计意图:提高学生的读图能力,渗透 数形结合的数学思想

3.教师要不断设疑,挖掘奇函数概念,学习中的疑点。接着呈现的是刚才那个三次函数yx3的一部分,改变奇函数的定义域,这时教师可以设问:它还是奇函数吗?学生能答出不是。教师则追问:同样的函数解析式为什么会出现不同的答案?追根求源:是定义域出现了问题。函数能成为奇函数定义域对称是通行证。突破定义中的难点!

设计意图:完备概念,突破本节课的难点。4.设置两道口答练习,设计意图:有效地促进学生深化理解定义中隐含的对定义域的要求,对奇函数的概念及易错点定义域问题进行回炉及二度清晰,对偶函数的类比迁移做了最充足的准备。

5.设置一道例题,有3个小题,用奇函数定义判断函数是不是奇函数。设计意图:例题根据各种不同情况进行设计,符合学生认知心理,突出重点突破难点,为学生更好的掌握奇函数定义奠定基础,6.紧接着设置一组练习题题,有3个小题,用奇函数定义判断函数是不是奇函数。

设计意图:通过练习,进一步加深对定义的理解 偶函数从内容上、从知识结构上,研究思路和表现手法上和奇函数都有着不尽的相同之处。所以对偶函数的学习可以让学生进行自主及类比学习。

设计意图:通过类比、自学,培养学生的理性思维,提高学生的学习能力,加强学生间的合作交流,放手让学生自己去进行偶函数的判断,提高学生举一反三解决问题的能力,增强学生学习数学的自信心。

1.在完成奇偶函数知识的学习后,教师设计了4道不同类型例题。是利用定义进行偶函数的判定。

设计意图:仿照例1解题过程,教师引导讲解紧跟相应练习,并规范解题步骤,让学生从本质上把握偶函数的概念,尤其是定义域的对称性,突出重点,突破难点。

2.紧接着设计了3道练习题。并叫同学在黑板上演练解题过程。设计意图:鼓励学生勇于表现,培养学生的自信心,通过当堂检测,进一步应用所学,使具体知识形成方法和技能。对于在应用知识的过程中出现的问题,及时指正,评价反馈,做到堂堂清。

3.通过上述例题和练习,师生共同总结函数奇偶性的整体性质,以及用定义判断函数奇偶性的步骤。

设计意图:体现知识连续性,激发思维积极性,活动中自主学习,树立学生自信心。

4.紧接着例3是利用奇偶性补出图形。

设计意图:一是培养学生的动手能力;二是让学生进行知识的二次应用。从而使学生形成善于综合的意识,提高知识的应用能力。课堂小节

教师提出问题,明确本节重点难点。⑴函数奇偶性定义?

⑵奇偶函数的图象有什么特征? ⑶如何利用定义证明函数的奇偶性?

采取方法:师生共同讨论、交流、总结。师生,生生合作学习,让学生发表自己的意见,并就课堂出现的典型错误及造成错误的原因追根求源。

设计意图:通过对比,加深理解,强化记忆。梳理总结,并对学生薄弱或易错处强调总结。作业 :教材P73,练习A组第 1题(2)(4);第2题(2)(4)(必做)

第 6,7题(选做).

设计意图:面向全体学生,注重个体差异,加强作业针对性,进行分层作业,进一步达到不同的学生在数学上得到不同的发展。

六、板书设计 板书分为三板

第一版是主板是概念显示区,强化掌握概念知识。

指数函数设计说课稿 篇5

1、进一步理解指数函数的性质。

2、能较熟练地运用指数函数的性质解决指数函数的平移问题。

教学重点:

指数函数的性质的应用。

教学难点:

指数函数图象的平移变换。

教学过程:

一、情境创设

1、复习指数函数的概念、图象和性质

2、情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

二、数学应用与建构

例1、解不等式:

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。

例2、说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的`示意图。

小结:指数函数的平移规律:y=f(x)左右平移,y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数x的图象。

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数y的图象。

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是。

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是(),函数y=a2x—1的图象恒过的定点的坐标是()。

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?

小结:函数图象的对称变换规律。

例3、已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象。

例4、求函数的最小值以及取得最小值时的x值。

小结:复合函数常常需要换元来求解其最值。

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于();

(2)函数y=2x的值域为();

(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;

(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围。

三、小结

1、指数函数的性质及应用;

2、指数型函数的定点问题;

3、指数型函数的草图及其变换规律。

四、作业:

课本P55—6、7。

五、课后探究

(1)函数f(x)的定义域为(0,1),则函数f(x)的定义域为?

函数的单调性说课稿(获奖) 篇6

《函数的单调性》说课稿

北京景山学校 许云尧

各位专家、评委:大家好!

我是北京景山学校的数学教师许云尧,很高兴有机会参加这次说课活动,希望专家和评委对我的说课提出宝贵意见.我说课的内容是《函数的单调性》的教学设计,下面我分别从教学内容的分析、教学目标的确定、教学方法的选择和教学过程的设计这四个方面来汇报我对这节课的教学设想.

一、教学内容的分析 1.教材的地位和作用

首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.

其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.2.教学的重点和难点

对于函数的单调性,学生的认知困难主要在两个方面: 首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学

共 8 页 第 1 页

《函数的单调性》说课稿

生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.二、教学目标的确定

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

三、教学方法的选择 1.教学方法

本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.2.教学手段

教学中使用了多媒体投影和计算机来辅助教学.目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.

四、教学过程的设计

为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下:

(一)创设情境,引入课题

概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段

共 8 页 第 2 页

《函数的单调性》说课稿 的教学中,我从具体材料——有关奥运会天气的例子出发,而不是从抽象语言入手来引入函数的单调性.使学生体会到研究函数单调性的必要性,明确本课我们要研究和学习的课题,同时激发学生的学习兴趣和主动探究的精神.

在课前,我给学生布置了两个任务:

(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上我引导学生观察2006年8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低.然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子(如燃油价格等).随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

(二)归纳探索,形成概念

在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识.1.借助图象,直观感知

本环节的教学主要是从学生的已有认知出发,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.在本环节的教学中,我主要设计了两个问题:

问题1:分别作出函数yx2,yx2,yx2以及y观察自变量变化时,函数值有什么变化规律?

在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.而后两个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

共 8 页 第 3 页

1的图象,并且x《函数的单调性》说课稿

对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题2.问题2:能否根据自己的理解说说什么是增函数、减函数? 教学中,我引导学生用自己的语言描述增函数的定义:

如果函数f(x)在某个区间上的图象从左向右逐渐上升,或者如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数.

然后让学生类比描述减函数的定义.至此,学生对函数单调性就有了一个直观、描述性的认识.

2.探究规律,理性认识

在此环节中,我设计了两个问题,通过对两个问题的研究、交流、讨论,将函数的单调性研究从研究函数图象过渡到研究函数的解析式,使学生对单调性的认识由感性认识上升到理性认识的高度,使学生完成对概念的第二次认识.

问题1:右图是函数yx2(x0)的 x图象,能说出这个函数分别在哪个区间为增 函数和减函数吗?

对于问题1,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.问题2:如何从解析式的角度说明f(x)x2在[0,)上为增函数? 在前边的铺垫下,问题2是形成单调性概念的关键.在教学中,我组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈,评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种:

(1)在给定区间内取两个数,例如1和2,因为1222,所以f(x)x2在[0,)上为增函数.

(2)仿(1),取很多组验证均满足,所以f(x)x2在[0,)上为增函数. 对于这两种错误,我鼓励学生分别用图形语言和文字语言进行辨析.引导学生明确问题的根源是两个自变量不可能被穷举.在充分讨论的基础上,引导学生

共 8 页 第 4 页

《函数的单调性》说课稿

从给定的区间内任意取两个自变量x1,x2,然后求差比较函数值的大小,从而得到正确的回答: 任意取0x1x2,有x1x2(x1x2)(x1x2)0,即x1x2,所以

2222f(x)x2在[0,)为增函数.

这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小.事实上,这种回答也给出了证明单调性的方法,为后续用定义证明其他函数的单调性做好铺垫,降低难度.至此,学生对函数单调性有了理性的认识.3.抽象思维,形成概念

本环节在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程,完成对概念的第三次认识.教学中,我引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后我指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时我设计了一组判断题: 判断题:

1①已知函数f(x),因为f(1)f(2),所以函数f(x)是增函数.

x②若函数f(x)满足f(2)

④因为函数f(x)11在(,0)和(0,)上都是减函数,所以f(x)在xx(,0)(0,)上是减函数.通过对判断题的讨论,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在AB上是增(或减)函数.

从而加深学生对定义的理解,完成本阶段的教学.共 8 页 第 5 页

《函数的单调性》说课稿

(三)掌握证法,适当延展

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握根据单调性定义证明函数单调性的方法,同时引导学生探究定义的等价形式,对证明方法做适当延展.2例 证明函数f(x)x在(2,)上是增函数.

x在引入导数后,用定义证明单调性的作用已经有所降低,我选择一个较难的例子,主要是考虑让学生对证明过程中遇到的问题有一个比较深刻的认识.证明过程的教学分为三个环节:难点突破、详细板书、归纳步骤.1.难点突破

对于函数单调性的证明,由于前边有对函数f(x)x2在[0,)上为增函数的研究作铺垫, 大部分学生能完成取值和求差两个步骤: 证明:任取x1,x2(2,),且x1x2, f(x1)f(x2)(x122)(x2),x1x2因此学生的难点主要是两个函数值求差后的变形方向以及变形的程度.问题主要集中在两个方面:一方面部分学生不知道如何变形,不敢动笔;另一方面部分学生在变形不彻底,理由不充分的情形下就下结论.针对这两方面的问题,教学中,我组织学生讨论,引导学生回顾函数f(x)x2在[0,)上为增函数的说明过程,明确变形的主要思路是因式分解.然后我引导学生从已有的认知出发,考虑分组分解法,即把形式相同的项分在一起,变形后容易找到公因式(x1x2),提取后即可考虑判断符号.2.详细板书

在上面分析的基础上,我对证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯.证明:任取x1,x2(2,),且x1x2,设元

f(x1)f(x2)(x122)(x2)

求差 x1x222)

变形

x1x2(x1x2)(共 8 页 第 6 页

《函数的单调性》说课稿

(x1x2)2(x2x1)

x1x2(x1x2)x1x22.x1x2由x1,x2(2,),得x1x22, 断号 又由x1x2,得x1x20,于是f(x1)f(x2)0,即f(x1)f(x2).2所以,函数f(x)x在(2,)上是增函数.

定论

x3.归纳步骤

在板书的基础上,我引导学生归纳利用定义证明函数单调性的方法和步骤(设元,求差,变形,断号,定论).通过对证明过程的分析,使学生明确每一步的必要性和目的,特别是第三步,让学生明确变形的方法以及变形的程度,帮助学生掌握方法,提高学生的推理论证能力.

为了巩固用定义证明函数单调性的方法,强化解题步骤,形成并提高解题能力,我设计了课堂练习:

证明:函数f(x)x在[0,)上是增函数.

教学过程中,我对学生的完成情况进行及时评价和有针对性的指导.同时考虑到我校学生数学基础较好,思维较为活跃的特点,为了加深学生对定义的理解,并对判断单调性的方法做适当延展,我设计了下面的问题.问题:除了用定义外,如果证得对任意的x1,x2(a,b),且x1x2,有f(x2)f(x1)0,能断定函数f(x)在(a,b)上是增函数吗? x2x1教学过程中,我引导学生分析这种叙述与定义的等价性.然后,让学生尝试用这种定义等价形式证明之前的课堂练习.这种方法进一步发展可以得到导数法,为今后用导数方法研究函数单调性埋下伏笔.

(四)归纳小结,提高认识

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法的一般规律,深化对数学思想方法的认识,为后续学习打好基础.

1.学习小结

在知识层面上,引导学生回顾函数单调性定义的探究过程,使学生对单调性

共 8 页 第 7 页

《函数的单调性》说课稿

概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义.在方法层面上,首先引导学生回顾判断,证明函数单调性的方法和步骤;然后引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,重点强调用符号语言来刻画图形语言,用定量分析来解释定性结果;同时对学习过程作必要的反思,为后续的学习做好铺垫.2.布置作业

在布置书面作业的同时,为了尊重学生的个体差异,满足学生多样化的学习需要,我设计了探究作业供学有余力的同学课后完成.(1)证明:函数f(x)在(a,b)上是增函数的充要条件是对任意的x,xh(a,b),且h0,有

f(xh)f(x)0.

h目的是加深学生对定义的理解,而且这种方法进一步发展同样也可以得到导数法.

(2)研究函数yx1(x0)的单调性,并结合描点法画出函数的草图. x目的是使学生体会到利用函数的单调性可以简化函数图象的绘制过程,体会由数到形的研究方法和引入单调性定义的必要性,加深对数形结合的认识.

以上就是我对《函数的单调性》这节课的教学设想.各位专家、评委,本节课我在概念教学上进行了一些尝试.在教学过程中,我努力创设一个探索数学的学习环境,通过设计一系列问题,使学生在探究问题的过程中,亲身经历数学概念的发生与发展过程,从而逐步把握概念的实质内涵,深入理解概念.不足之处,恳请各位专家批评指正.谢谢!

函数的周期性说课稿 篇7

各位评委、老师!大家好!

我说课的内容是人教版高中数学必修四第一章1.4.2《正弦余弦函数的周期性》第一课时的内容。

下面我从教材分析、教法学法分析、教学过程分析、教学评价分析、教学板书设计五个方面向大家介绍我对本节课的理解和设计。

一、说教材分析

1、教材的地位和作用:

由教材的知识结构、功能特点可知:本节课是学生学习了诱导公式和三角函数图象之后,对三角函数的又一个深入探讨.是研究三角函数其它性质的基础,又是函数性质的重要补充.

研究三角函数周期的过程中蕴含着数形结合、分析讨论、归纳推理等数学思想方法,在高中数学课程的学习中起到承上启下的作用.

2、教学目标:

根据本节课的教学内容和学生的认知规律,我制定以下教学目标:

(1)知识目标:

理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期。

(2)能力目标:

让学生经历研究三角函数从特殊到一般再到特殊的过程,领会并感悟数形结合、分类讨论、归纳推理的思想方法

(3)情感目标:

让学生体会数学来源于生活,体会从感性到理性的思维过程,感受数学的魅力。

3、重点难点分析:

由于学生对抽象函数图像缺乏感性认识。为此,在教学过程中让学生自己去感受函数图象的周期性为这一堂课的突破口。因此确定本节课的重点是

重点:正弦、余弦函数的周期性;

难点:周期函数定义及运用定义求函数的周期

二、说教法分析:

依据本节课的特点,我主要运用了启发发现教学法,并充分利用多媒体、网络等现代教学媒体进行辅助教学,增强知识的直观性和趣味性。通过创设情境,激发学习兴趣,引导学生去观察、思考、讨论,使得学生在动手动脑的过程中发现规律,减轻学生认知的难度。

三、说学法分析:

学生已掌握了诱导公式、函数图象及五点作图的方法,但对知识的理解和方法的掌握不完善,反映在学生解题思维不严密、过程不完整,能力上具备了观察、类比、分析、归纳的能力,但知识的整合和主动迁移能力较弱。因此,我指导学生采用自主思考、合作探究的学习方法。让学生在学习、合作的过程中,体会数学的乐趣。

四、 说教学过程分析

我设计的教学环节分别是情境引入、探索新知、精析例题、巩固提高、小结归纳、布置作业六个环节

下面我将就每个环节分别从教什么、怎么教、为何这样教三个方面加以说明。

1、创设情境,引入新课:

托尔斯泰曾说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”因此我通过有趣的现象引入课题,由时间和日历引导学生得出相同的间隔重复出现的现象称为周期现象。在我们的自然界中也同样的存在周期现象,例如:行星的转动;不断更换的一年四季,那么聪明的你们,有没有发现数学中的周期现象呢?引出本节课的课题,这样的设计可以激发学生兴趣,培养学生主动性,让同学们体会数学来源于生活,用之生活,为理解函数的周期性做铺垫。

2、师生互动,探索新知:

新课标指出:学习过程中要给学生提供探索与交流空间,鼓励学生自主探索、合作交流。

首先利用课件出示某港口的水深变化图,通过生活实际,利用正弦函数图像进行动画演示,让学直观感知周而复始的变化规律――函数图像存在有周期性。接着引导学生回顾以前的知识――终边相同的角有相同的三角函数值,让学生把y=sinx,x∈[0,2π]的图象得出y=sinx,x∈R的图象,通过动画的演示,将图象左右平移,加深学生对周期的理解。然后引导学生观察发现:形:图象按照一定规律重复出现;数:对于自变量的一切值每增加或减少一个定值时,函数值重复取得。接着引导学生联想诱导公式,结合抽象的图象,构建出周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数。非零常数T叫做这个函数的周期。这样的设计有利于培养学生观察、分析和抽象概括的能力,进一步渗透数形结合的思想方法。

接着就提出疑问1、正弦函数的周期是多少;2、正弦函数的周期中,最小的正数是多少?这样问题的设计,有利于让学生理解最小正周期的定义,同时为学习后面知识埋下了伏笔。

为了帮助学生正确理解周期函数概念,防止学生以偏概全。我设计了小组讨论,将四人分一组进行讨论,再由学生发表意见。让学生学会怎样学习概念,培养学生透过现象看本质的能力,使学生养成细致、全面地考虑问题的`思维品质。让学生在讨论交流中不断完善自己,充分感受成功与失败的体验,突破本课的重点。

到这里学生已经基本掌握了正弦函数的周期,接着让学生通过类比的方法,应该可以很快得到余弦函数的周期,加深到周期性定义的理解

3、 例题精解,加深理解:

俗话说:“光说不练假把式,光练不说傻把式,又练又说真把式。” 为了让学生将知识应用于实际,突破难点,我设计了三道题,第一题师生共同完成,利用课件中的图像引导学生发现最小正周期。第2、3题学生独立完成,观察学生对周期函数定义的掌握情况,由学生点评,培养学生数形结合的能力。

4、 分层练习,巩固提高:

为了巩固学生所学的知识和不足,我设计了以下练习;

概念理解:函数周期性定义的变式题;

周期运用:运用函数定义求函数的周期;

整个练习的设计涵盖了本节课的知识点,减轻了学生课后练习的负担,有效提高学生解决问题的能力。

5、小结归纳,知识梳理:

1、你这节课学到了什么新知识和数学方法?

2、你这节课有什么感悟和疑惑?

最后小结归纳,知识梳理,通过老师的提问的方式,你这节课学到了什么新知识和数学方法?有什么感悟和疑惑?有效地活跃了课堂氛围,梳理知识,明确学习内容和学习方法,强化重点,达到巩固新知的目的。

6、布置作业,拓展提升

(1)必做题:教科书习题4.8第3题;

(2)课外思考:

分层作业设计,满足不同学生的学习需求,有效地依据学生的能力提高他们的数学水平,让不同的学生在数学上得到不同的发展。

五、说教学评价分析

我在课堂中将采用自评、小组评、教师评等评价的方式,让评价与反思贯穿教学的全过程,也尊重了学生的个体差异,从而让学生认识自我,建立信心,掌握学习的方法,提高学习效率。

六、说教学板书设计

让学生对本节课的重点一目了然,再现教学情景,以提高学生的记忆效率,更好地达到本节课的教学目标

《函数概念》说课稿 篇8

一、教材分析:

本节课是“中等职业教育课程改革国家规划新教材”数学基础模块上册第四章第二节的教学内容。第三章刚刚学习了函数的相关知识,第四章第一节学习了实数指数幂的知识,在此基础之上学习指数函数,过渡自然。同时指数函数的学习可以为后续对数函数的学习奠定基础,因此本节课在教材中起到了承上启下的作用。

二、学情分析:

我所授课的班级是汽车系数控11-1班,学生思维活跃,动手操作能力强。在学习本节课之前学生已具备一定的函数基础知识和实数指数幂的相关知识,掌握了作图的一般方法及步骤,这些知识储备是进一步学习指数函数的前提。但是学生在作图时缺乏规范性,而且解题的速度相对较慢,针对学生的这些特点,我设计了一份学习材料,利用打好的方格,来规范学生的作图。

三、教学目标以及重点、难点

通过对教材和学生的分析,我确立了本节课的教学目标以及重点、难点: 知识目标:

理解指数函数的定义,掌握指数函数的图像与性质 能力目标:

1、能通过指数函数的定义判断什么样的函数是指数函数;

2、能利用作图软件画出指数函数的图像;

3、能通过指数函数的图像分析出指数函数的性质。情感、态度、价值观目标:

1、在学习过程中培养学生勇于思考、善于探索的思维品质

2、培养讲究卫生、爱护机器设备的思想意识 重点、难点:

重点:指数函数的定义及指数函数的图像与性质

难点:引导学生从指数函数的图像中抽象出其性质的过程

四、教法和学法:

依据本课的教学目标和重点、难点的分析,结合学生的特点,确定如下的教法与学法: 教法:启发引导法

通过设置一系列问题,逐步引导学生积极思考、主动解决问题,学习知识。学法:自主探究

学生在问题及任务的驱动下,自主探究,通过想、画、练、说,达到掌握知识的目的。

五、教学过程

我结合数学组的教学模式及对学生、教学内容等的分析,设计如下的教学过程: 1.情境设置,提出问题

结合数控专业学生的专业特点,我设置了两个情境问题:细菌分裂和数控机床的折旧率,其中一个和日常生活有关,一个和专业实践有关,学生比较容易接受,也有助于引起学生学习的兴趣。

通过这两个情境问题得出两个函数关系式,再通过问题引导,启发学生思考,从而引出本节课的课题。

2.师生互动,学习数学

这一环节里分为三个内容:指数函数的概念、图像和性质。(1)指数函数的概念

为了使学生对指数函数的形式概念更好的理解掌握,从“自变量x在函数中的位置、底数a的取值、ax前面的系数为1”3个方面引导学生分析其概念,并且通过练习使学生对其形式概念巩固掌握。(2)做出指数函数的图像

1y()x2、在作图时,先引导学生回忆作图的一般步骤,然后给学生布置做出y

2、x1xy()y3x、3这四个函数的图像的任务。为了降低难度,在学习材料上,教师已经列出表格,并确定了自变量x的取值,由学生完成函数值y的计算和填写。而且为了规范作图,教师在学习材料上已经打好方格,要求学生在方格中画出图像来。

为了增大课堂的容量,我发给每一名学生的学习材料,只要求做出上面四个函数中的一个图像即可。而且考虑到以前上课时分组的无效性,本次课我没有将学生分组,学生拿到哪个函数的学习材料,就画出哪个函数的图像,这样就能保证每一位同学都能思考、动手,而且一节课中四个函数的图像都能做出来。

教师在学生作图的过程中,适当指导,并从中挑选出做得比较好的四类图像用投影打出,1xy()xy22的具体作图过提醒学生们观察它们的图像特征。之后教师用多媒体给出函数、程,使学生对自己刚才的作图过程进行巩固改正。

(3)分析归纳指数函数的性质

带领学生观察、分析展示的四个底不同的指数函数的图像,由一系列问题启发学生思考,归纳出将函数分为底数a1和0a1这两类时相应的性质,通过表格的形式给出,这样比较形象直观。并结合图形给出口诀 “上无限、左右伸,大1增小1减,(0,1)是个特征点”,帮助学生记忆其图象和性质。

利用指数函数的性质,带领学生分析本节课开始的两个例子,细菌分裂是个增函数,数控机床的折旧是个减函数,根据增减函数的性质,教育学生要讲究卫生,抑制细菌的增长,并且在实习时要爱护机器,合理使用,降低机器的折旧率,提高其使用率。3.巩固落实

通过一个例题、一个练习,引导学生巩固指数函数的性质,达到学以致用的目的。4.领悟提升

通过问题引导学生复习总结本节课的主要内容,由学生自己归纳小结,使学生对本节课所学知识有个整体的把握,并加以提升。5.布置作业

作业是要求学生将课堂上没有完成的学习材料填完,并完成课后的相关习题,同时布置了预习任务,达到课后巩固预习的目的。

六、教学评价

本节课在课堂上没有安排评价这一环节,这一环节将在学生将学习材料上交以后再进行。

七、教学创新:

上一篇:图书借阅制度及要求下一篇:2017最美医生观后感