自适应空域滤波(精选10篇)
自适应空域滤波 篇1
引言
随着海洋资源开发的加快,海洋可控源电磁探测技术(CSEM)的使用也越来越受到重视。在海下油气开采过程中,如果可以提前获得海底底层电阻率信息并识别海底储层构造,将极大的提高油气勘探的成功率。
海洋CSEM法采用水平电偶极子激发低频电磁波信号,通过海底的接收阵列对接收的电磁信号进行数据处理、解释,分析得到海底底层的电阻率分布,通过电阻率与储层的含油气饱和度的关系,来探测地层的含油气性。由于海水运动产生的磁场,检测设备等本身产生的随机噪声以及空气波的影响,探测时不可避免的会受到噪声的干扰,因此去噪是CSEM信号中非常重要的环节。自1982年Morlet小波理论提出以后,小波理论已经广泛应用于多个领域,特别是在信号去噪领域。本文针对空域相关滤波法的不足,结合自适应滤波,采用一种自适应空域相关滤波的去噪方法[1,2]。
1 基于小波系数尺度相关性的空域滤波法的原理和算法
1.1 SSNF法去噪的基本原理
根据信号与噪声的小波变换在各个尺度下所表现的不同的传播特性,表明信号经小波变换后,其系数在不同尺度间有较强的相关性,尤其在信号边缘处相关性更加明显;而噪声经小波变换后,在各尺度间没有相关性或呈现弱相关性[2,3]。
因此可以将两个相邻尺度的小波系数相乘来区分系数类别,从而达到增强信号消除噪声的目的。
1.2 SSNF算法分析
在尺度j(或2j)上n点处的相关系数,其表达式定义为[3]:
规范化(n o r m a l i z a t i o n)相关系数cor(j,n),其表达式定义为[8]:
其中
分别表示对应于尺度j的小波系数与相关系数的能量。
由于噪声主要集中在低尺度上,所以从对最小的两个尺度层进行小波变换并估计σ。如果,则将该处的小波系数W(1,n)置0。对所有小波系数进行上述处理,我们用W'(1,n)表示对W(1,n)处理的结果,则。
SSNF滤波算法的具体实现步骤如下[7-8]:
1)求长度为N含噪信号的小波变换
2)计算各尺度的标准方差σ1以及噪声的标准方差。
3)对所有小波进行尺度为J的分解,步骤如下:
(1)计算各个尺度下的相关系数cor(j,n);
(2)计算其规范化系数Ncor(j,n)使得相关系数具有可比性;
(3)n为1到N时,通过对各尺度下Ncor(j,n)和W(j,n)的绝对值进行比较,得到信号信息。如果|Ncor(j,n)|≥|W(j,n)|,则认为该点的小波变换由信号控制,将小波系数W(j,n)的值赋给相应位置的,将该点的W(j,n)和Ncor(j,n)都置0。若相反,则对应点的W(j,n)和相关系数cor(j,n)保持不变。
(4)设从W(j,n)(n=1,2n,…,N)中抽取K个边缘点,噪声能量值为,如果,则对尺度J循环中止,否则重复(1),(2),(3)和(4)。
4)最后利用变换后所得的信号信息,进行信号重构。
2 自适应空域滤波算法[2,9]
在利用传统的空域算法进行去噪后,若去除的小波系数方差和其尺度上的噪声方差之比为1,则去除的都是噪声系数。如果λ>1,一部分噪声将被当做信号保留下来。一般的空域滤波算法,经过第一次迭代后,如λ>1,则认为W(j,n)还有包含有部分信号细节,然后进行第二次迭代,直到λ<1为止,此时认为W(j,n)中只剩下噪声的小波系数,信号已被完全提取出来,从而迭代停止。但由于两个λ的差值往往很大,因此有很多噪声被当做细节信号保留下来。
为了改善这种情况,本文采用了一种的方法可以自适应调整λ的值。在小波变换的相关系数中加入新的系数C,即自适应调整系数,使得λ的值为1。利用自适应滤波器可以找到最佳的调整系数,只需使λ=1,并将C·|Ncor(j,n)|与|W(j,n)|进行比较,去除噪声系数保留信号细节,滤波将达到最佳效果。
C的最佳估计式:其中λ>1时,2λ-1>1,当λ<1时,2λ-1<1。
3 仿真分析
海洋CSEM信号是典型的非线性、非平稳信号,现假设海洋CSEM原始模拟信号为。利用MATLAB模拟采样点数为1024,信噪比为5的还海洋CSEM信号,并用awgn函数加入信号长度为1024,信噪比为5的随机噪声,并采用小波db2对模拟信号进行尺度为3的分解,用SSNF方法进行处理,结果如图1、图2所示。
由图1看出,信号的能量主要集中在低频部分,而噪声能量则分散在整个小波变换域内。因此在尺度1-2下,信号波形无法体现或不明显,此时小波变换主要由噪声控制。从尺度j=4开始,信号波形得到较好体现,说明此时虽然有噪声影响,但是信号占主导地位。
由图2信号去噪的对比可以看出,此方法较好的还原了原始信号的形状。但是去噪后的小波系数由于去噪反而增加了一些毛刺,较多部分的细节信号被当做噪声剔除掉。
再利用MATLAB对相同的加噪信号用自适应空余滤波法进行去噪处理,其结果如图3所示。从结果可以看出自适应空域相关滤波算法的去噪信号较好,较好的消除了Gibbs现象,还原了原始信号。这是由于在不同尺度下的信噪比存在差异,噪声的小波变换系数集中在低尺度部分,而信号的小波变换系数则集中在高尺度部分。经过传统的SSNF法滤波后,部分大尺度边缘携带了噪声的小波系数,噪声的小波系数被当做信号的边缘信息提取,重构回去的信号会发生毛刺现象。因此,传统的SSNF方法在高尺度系数上的去噪有效性较低。而通过加入自适应滤波方法后,能有效地去除掺杂在重构信号中的噪声信号,尤其是残留在低尺度细节中的噪声。
4 结语
本文将自适应空域相关滤波方法应用到海洋CSEM信号中,从仿真结果可以看出,对含有高频分量的信号采用此方法去噪,不仅最大限度的去除了重构边缘信号中的噪声部分,而且很好地保留了有效信号,克服了单纯SSNF滤波法的缺点。该方法得到的小波系数连续性较好,可以较准确的还原了原始信号且在很大程度上抑制了gibbs现象,从而为我们在海洋可控源探测中提供准确的信号。
参考文献
[1]XU Y.Wavelet transform domain filters:A spatially selective noise filtration technique[J].IEEE Trans.Image Processing,1994,3:747-758
[2]Pan Q,Zhang L,and Dai G Zh,et al..Two denoising methods by wavelet transform[J].IEEE Trans.on Signal Proc.,1999,47(12):3401-3406
[3]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005
[4]成礼智,郭汉伟.小波与离散变换理论及工程实践[M].北京:清华大学出版社,2005
[5]吴正国,夏立,尹为民.现代信号处理技术[M].武汉:武汉大学出版社,2003
[6]胡昌华,张军波等.基于MATLAB的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社,1999
[7]于彩霞.海洋可控源电磁法数据处理研究(硕士论文)[D].中国地质大学,2010
[8]姚胜利.地震信号的小波去噪方法研究(硕士论文)[D].中南大学,2007
[9]毛有伟,林春生,吴正国.一种基于SSNF的新型阈值滤波去噪算法[J].海军工程大学学报,2007,19(6):75-78
自适应空域滤波 篇2
自适应粒子滤波在卫星紫外导航中的应用
基于紫外敏感器的自主导航系统是典型的非线性和噪声非高斯分布的系统,针对扩展卡尔曼滤波(EKF)和Unscented 卡尔曼滤波(UKF)不适于噪声非高斯分布的系统,和一般粒子滤波缺乏在线自适应调整能力等问题,提出了将基于正交性原理的自适应强跟踪滤波器(STF)和UKF相融合作为重要密度函数,应用于基于紫外敏感器自主导航粒子滤波器新方法,通过UKF构造粒子群,对粒子群中的.每一个粒子的每一个sigma点用STF进行更新,使得算法的鲁棒性增强,有极强的对突变状态的跟踪能力,具有强的自适应能力.为了说明算法的有效性,结合模拟的轨道数据和测量数据进行了仿真,仿真结果说明了所提算法的有效性.
作 者:耿建中 肖业伦 GENG Jian-zhong XIAO Ye-lun 作者单位:北京航空航天大学宇航学院,北京,100083 刊 名:计算机仿真 ISTIC PKU英文刊名:COMPUTER SIMULATION 年,卷(期): 24(7) 分类号:V417 关键词:粒子滤波 无察觉卡尔曼滤波 自适应滤波 强跟踪滤波器 卫星轨道自适应空域滤波 篇3
为了便于对微型线阵CCD光谱采集系统采集的光谱数据进行分析,需要对光谱数据采集过程中出现的噪声进行降噪处理,以提高光谱数据的信噪比。首先,根据线阵CCD参数指标,设计了一种硬件降温结构,并用它对线阵CCD进行降温去噪。接着,根据递归最小二乘自适应滤波算法对采集好的水样品光谱数据进行去噪处理,然后和未去噪的水样品数据对比。实验表明,硬件电路降温去噪能够衰减线阵CCD上的暗电流噪声,使用递归最小二乘自适应滤波方法能够有效消减光谱采集系统中光谱数据的噪声。
关键词:
光谱学; 线阵CCD; 自适应滤波; 去噪
中图分类号: O 433.4文献标志码: Adoi: 10.3969/j.issn.10055630.2016.02.014
Abstract:
In order to analyze the spectral data collected by a linear CCD spectral acquisition system,it needs to solve the spectral noise that appeared in the process of data collection,to improve the signaltonoise ratio of the spectral data.First,According to the linear CCD parameter,we design a kind of cooling hardware structure and use it to cool the denoising linear CCD.At the same time,based on recursive least square adaptive filter algorithm,water sample spectral data is dealt with to compare with the noise of water sample data.Experimental results indicate that hardware circuit denoising is not able to completely remove the thermal current on the linear CCD noise.Using the recursive least square adaptive filter method can effectively reduce noise in the spectrum acquisition system.
Keywords:
spectroscopy; linear CCD; adaptive filter; denoising
引言
近年来,光谱分析技术逐渐被广泛应用于环境、食品安全监测、物质分析等领域,在天文学和卫星监测领域也有广泛使用。正是由于各个领域对这门技术的推广和普及使得光谱技术逐渐走向成熟。与传统的电化学分析和色谱分析方法相比,光谱分析技术更具有操作简便、重复性好、测量精度高和检测快速的优点[1]。光谱仪的小型化、微型化,使得光谱仪的色散距离变短,仪器内部空间密度变得更加紧凑,这使得整个仪器的分辨率、灵敏度、信噪比等性能将更多地依赖于光电探测器件CCD上[2]。然而在使用光谱仪器采集被测物体光谱数据的过程中,由于受到仪器线阵CCD品质因素的影响或者机器发热量高导致仪器内部的CCD、电阻等元件的电流热噪声变大使得被测物质的光谱数据含有噪声,最终在对被测物质进行成分分析时误差增大[3]。因此对原始的光谱数据进行去噪处理是鉴定物质准确性的必要保证。
光谱数据去噪处理的好坏与否,会影响物质成分分析的结果和仪器的预测精度[4]。目前,常用的光谱去噪方法主要有硬件去噪和软件去噪两种。在软件去噪方面,常用的有微分法、平滑法、傅里叶变换和小波变换等[5]。用微分法对光谱数据去噪能够消除基线漂移、强化谱带特征,但去噪效果不好。平滑法可以衰弱信号中的高频噪声,但有用的光谱信号也会被衰减,造成光谱信号失真。傅里叶变换法对平稳信号有很好的去噪效果。小波变换法可以只对特定频率或某一时刻的局部信号进行频谱处理,而不影响整体信号,去噪效果好,但小波变换运算量大,实现去噪效果的速度较慢[6]。自适应滤波方法不仅具有运算量小、速度快、可递推实时处理的优点,而且它不需要已知信号的统计特性,它是通过一种自适应算法来调节自身滤波参数从而达到最好的滤波效果[7]。正是由于自适应滤波的这些优点,使其广泛应用于通讯、激光、医学等领域。
实验中所采用的小型线阵CCD光谱采集系统是自主研发的,它能够采集220~800 nm波长范围的紫外可见光谱数据。该系统采用了交叉非对称式的CzernyTurner光学结构如图1所示。仪器中采用的线阵CCD为东芝TCD1304AP,属于中低端水平的CCD。在该线阵CCD光谱数据采集系统中,噪声的来源有很多种。其中主要的噪声来源是线阵CCD,它的输出噪声主要有暗电流散粒噪声、光子散粒噪声、输出放大器噪声等。此外在信号的传输过程中还会夹杂着一些电子器件噪声。这些噪声都是一些具有均匀频谱的低频噪声和高斯白噪声[89]。
为了去除CCD上的散粒噪声,实验中采用硬件温控去噪方法和软件自适应滤波方法。在硬件温控去噪方法中,采用了TEC半导体制冷技术,用EP306E058RTO型号的TEC制冷芯片对CCD进行控温去噪,制冷装置如图2所示。图3为半导体制冷片控温驱动板实物图,通过它来控制半导体制冷。图2中散热铝块和风扇的作用是迅速散去TEC制冷片上产生的热量,使TEC制冷片能够正常工作。
图4中显示的光谱曲线是没有进行降噪处理的原始水样品光谱曲线,为了便于看清噪声,所以图中显示的曲线是从水样品光谱曲线中选取了一段噪声明显的曲线经过放大之后的图像。从图4中可以看出在没有对线阵CCD进行降温时采集到的水样品光谱数据中存在着像锯齿型一样的噪声。实验中的光谱数据来自于自主研发的小型线阵CCD光谱采集系统,由于在设计PC机软件时没有直接对该系统获取的光谱数据进行波长标定,所以图4中的横坐标是光谱仪上线阵CCD的像素点而不是波长,纵坐标是线阵CCD输出的光的强度信号。图5表示的是使用控温去噪处理后的水样品光谱曲线图,从图中可以看出水样品光谱曲线上仍然还存在锯齿型噪声[10],只是相对于原始光谱曲线的噪声幅度稍微减弱了。这说明硬件降温去噪的方法在实际应用中不能完全滤除由线阵CCD产生的散粒噪声,只能减弱CCD的暗电流噪声。
2最小二乘自适应滤波器的算法构建
自适应滤波就是利用性能评价函数(代价函数)对前一时刻得到的滤波器输出结果与期望得到的结果进行性能评价,并根据评价的结果来自动调节现在时刻的滤波器的抽头系数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。实现自适应滤波器的方法有很多种,比如递推最小二乘法、卡尔曼滤波法、最小均方误差法等,其中递推最小二乘法的抑制处理效果及工程实现得到了很好的应用。实验中采用了递推最小二乘法,其结构如图6所示。图中输入信号是由线阵CCD光谱采集系统采集到的水样品光谱数据提供,这些原始光谱数据在已知n=0时刻滤波器抽头系数的情况下即刚开始时横向滤波器的抽头系数,通过简单更新,求出n=1时刻下滤波器的抽头系数。再由n=1时刻滤波器的抽头系数更新n=2时刻的滤波器抽头系数,直到n时刻,其中n为横向滤波器的阶数。而整个更新滤波器抽头系数的过程就是递推最小二乘算法。
3测量实验与结果
3.1FIR滤波器结构选取
实验中用递推最小二乘自适应滤波方法对水样品数据进行去噪时,通常需要选取合适的横向滤波器作为整个滤波算法的基础。通用的滤波器设计方法有窗函数法和频率取样法。窗函数法是从时域进行设计的,而频率取样法是从频域进行设计的。从设计复杂度比较,窗函数法要比频域取样法简单。从滤波效果比较,窗函数法设计的滤波器在通带和阻带的性能优于频率抽样法[7],所以试验中采用了窗函数法设计FIR滤波器。常见的窗函数有矩形窗、Hann(汉纳)窗、Hamming窗、Blackman(布莱克曼)窗、Kaiser(凯泽)窗,其中矩形窗、Hann(汉纳)窗、Hamming窗、Blackman(布莱克曼)窗的窗函数是固定的,因而一旦选则了某一种窗函数,设计出的FIR滤波器在阻带的衰减就是确定的。Kaiser窗是一种应用广泛的可调窗,可以根据滤波器的衰减指标来确定窗函数的形状[1112]。由于实验中线阵CCD光谱采集系统中的噪声的频带是存在于整个频率范围内的,而且所测量光谱信号的频率范围也是不确定的,这就让我们无法预知要滤除的噪声的频带范围,由于Kaiser(凯泽)窗具有可调性,所以实验中通过PC机端编写的软件,选择Kaiser窗作为FIR横向滤波器的主要框架。表1中第一行数据表示的是使用Kaiser(凯泽)窗,在通带截屏为0.001和阻带截屏为0.1时的滤波器抽头系数,从表中可以看出该滤波器的阶数是20阶。
3.2递推最小二乘自适应滤波器对水样品去噪处理结果
从上面的FIR滤波器中得到的抽头系数共有20阶,选取最小二乘自适应滤波器的遗忘因子λ为0.99。在递推最小二乘算法中需要给出一个理想的光谱数据作为期望值然后减去FIR滤波器输出的数据从而得到误差因子,进而计算并更新下一时刻滤波器抽头系数。所以期望值的选取是算法中重要的环节。由于各种物质的光谱数据事先是不知道的,期望值的选取就变得很困难,为了避免选取的期望值引入其它噪声和误差,实验中首先在暗室里测得了线阵CCD光谱采集系统的背景噪声,由于在理想环境下线阵CCD在无光照条件下输出值是0,所以实验中用d(i)=a作为期望值。其中i=0,1,…,n;a为常量,n为滤波器的阶数。然后对背景噪声进行递推最小二乘滤波得到一组滤波抽头系数,再用该组抽头系数对水样品数据进行去噪。最后用去噪后的水样品数据作为水样品的期望值,对同样的水样品进行自适应去噪。图7为背景噪声和用最小二乘滤波法滤波后的曲线图。
表1中第二行数据表示对线阵CCD光谱采集系统进行自适应滤波后抽头系数的改变情况。图8所示的是用对背景噪声自适应去噪后的滤波器抽头系数对原始水样品数据进行FIR滤波后的曲线图,并用该曲线的光谱数据作为期望值。实验中保持水样品不变,连续采集9组光谱数据。由于每次采集,线阵CCD光谱采集系统上产生的噪声都不一样,所以得到的效果如图9所示。分别对这9组原始光谱数据进行自适应滤波,得到的效果如图10所示。
从图9、图10中可以看出对于线阵CCD光谱采集系统每次产生的不同的随机散粒噪声,该算法都能够对其进行自适应滤波。由于光源氙灯发光的不稳定,影响了线阵CCD的光强输出。所以图中看到的曲线的光强幅度会有些波动。从表1中的数据也可以看出随着取样次数的不同,每次的滤波器抽头系数也不同,而且最小二乘自适应滤波器让原始光谱数据在可容许的最小误差范围内使其逐渐向期望的光谱数据收敛。
4结论
通过对线阵CCD光谱采集系统采集的初始水样品的光谱数据进行硬件温控去噪和最小二乘自适应滤波去噪。从二者所处理的光谱曲线图来看自适应滤波算法的去噪效果比硬件去噪效果好,通过计算两种去噪结果的RMS值,硬件温控的S/N为2581∶1,而自适应滤波算法的S/N为3081∶1,因此自适应滤波去噪可以有效的提高光谱数据的可靠性,在实际仪器制造中能够节约设计成本。不足的是使用最小二乘自适应滤波算法对原始水样品进行去噪所消耗的时间为0.598 s,对于速度要求较高的场合不适于在PC机端选择最小二乘自适应滤波方法进行去噪。
参考文献:
[1]黄福荣,罗云瀚,郑仕富,等.全血胆固醇、甘油三酯近红外光谱分析与模型优化[J].光学学报,2011,31(10):1030001.
[2]李正刚.微小型光谱仪低噪声、大动态范围方法研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2010.
[3]李慧,蔺启忠,王钦军,等.基于小波包变换和数学形态学结合的光谱去噪方法研究[J].光谱学与光谱分析,2010,30(3):644648.
[4]蔡剑华,王先春.基于经验模态分解的近红外光谱预处理方法[J].光学学报,2010,30(1):267271.
[5]严衍禄.近红外光谱分析基础与应用[M].北京:中国工业出版社,2005:103107.
[6]李素文,谢品华,李玉金,等.基于小波变换的差分吸收光谱数据处理方法[J].光学学报,2006,26(11):16011604.
[7]陈从,卢启鹏,彭忠琦.基于NLMS自适应滤波的近红外光谱去噪处理方法研究[J].光学学报,2012,32(5):053000116.
[8]佟首封,阮锦,郝志航.CCD图像传感器降噪技术的研究[J].光学 精密工程,2000,8(2):140145.
[9]田岩涛,常丹华,张彦.线阵CCD信号的小波去噪方法研究[J].传感技术学报,2005,18(2):250253.
[10]周丹,王钦军,田庆久,等.小波分析及其在高光谱噪声去除中的应用[J].光谱学与光谱分析,2009,29(7):19411945.
[11]姚海燕.FIR数字滤波器设计窗函数法与频率抽样法比较[J].安阳工学院学报,2007(6):5153.
[12]陈后金,薛健,胡健.数字信号处理[M].2版.北京:高等教育出版社,2008:158197.
线性自适应滤波算法综述 篇4
关键词:自适应滤波算法,最小均方误差算法,最小二乘算法,变换域,仿射投影,共轭梯度,子带分解
随着信号处理理论和技术的迅速发展, 自适应信号处理理论和技术已经发展成为这一领域的一个新分支, 并且在通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等领域获得越来越广泛的应用。对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。
1 变步长自适应滤波算法
最小均方误差LMS算法最早由Widrow和Hoff于20世纪60年代提出, 由于其结构简单, 性能稳定, 计算复杂度低, 便于硬件实现等特点, 一直是自适应滤波经典算法之一。LMS算法的优点是结构简单, 鲁棒性强, 其缺点是收敛速度很慢。固定步长的自适应滤波算法在收敛速度、时变系统跟踪速度与收敛精度方面对算法调整步长因子的要求是相互矛盾的。为了克服这一矛盾, 人们提出了许多变步长自适应滤波算法。Yasukawa等[1]提出了使步长因子正比于误差信号的大小。吴光弼[2]提出了在初始收敛阶段或未知系统参数发生变化时, 步长比较大, 以便有较快的收敛速度和对时变系统的跟踪速度;而在算法收敛后, 不管主输入端干扰信号有多大, 都应保持很小的调整步长以达到很小的稳态失调噪声, 根据这一步长调整原则, 许多学者设计了多种变步长自适应滤波算法, 分别能够满足不同场合的应用。
2 基于最小二乘准则的RLS算法
基于最小二乘准则RLS算法对输入信号的自相关矩阵的逆进行递推估计更新收敛速度快, 其收敛性能与输入信号的频谱特性无关。但是, RLS算法的计算复杂度很高, 不利于适时实现。许多文献提出了改进的RLS算法, 如快速RLS算法, 快速递推最小二乘格型算法等。这些算法的计算复杂度低于RLS算法, 但它们都存在数值稳定性问题。文献[7]为避免RLS类算法递推估计更新自相关矩阵的逆的不足, 基于最小二乘准则, 利用最陡下降法, 得到一种新的梯度型自适应滤波算法, 该算法计算复杂度较低, 收敛性能良好。
3 变换域自适应滤波算法
对于强相关的信号, LMS算法的收敛性能降低, 这是由于LMS算法的收敛性能依赖于输入信号自相关矩阵的特征值发散程度。输入信号自相关矩阵的特征值发散程度越小, LMS算法的收敛性能越好。经过研究发现, 对输入信号作某些正交变换后, 输入信号自相关矩阵的特征值发散程度会变小。于是, Dentin等1979年首先提出了变换域自适应滤波的概念。其基本思想是把时域信号转变为变换域信号, 在变换域中采用自适应算法。
4 仿射投影算法
射投影算法最早由K.Ozeki和T.Umeda提出, 它是归一化最小均方误差 (NLMS) 算法的推广。仿射投影算法的性能介于LMS算法和RLS算法之间, 其计算复杂度比RLS算法低。归一化最小均方误差 (NLMS) 算法是LMS算法的一种改进算法, 它可以看作是一种变步长因子的LMS算法, 其收敛性能对输入信号的能量变化不敏感。而仿射投影算法的计算复杂度比NLMS算法高很多。Gay等提出的快速仿射投影算法大大降低了仿射投影算法的计算复杂度。
5 共轭梯度算法
虽然RLS算法收敛速度快, 但其计算复杂度很高, 因为它需要估计逆矩阵。假如被估计的逆矩阵失去正定性, 就会引起算法发散;并且算法实现所需的存储量极大, 不利于实现。一些快速RLS算法虽降低了RLS算法的计算复杂度, 但都存在数值稳定性问题。共轭梯度自适应滤波算法不含有RLS算法中的矩阵运算, 也没有某些快速RLS算法存在的数值稳定性问题, 它保留了RLS算法收敛速度快的特点。
6 基于子带分解的自适应滤波算法
子带分解技术用于自适应滤波算法主要是基于以下考虑:对于强相关输入信号自相关矩阵的特征值发散程度很大, 使得所采用的自适应滤波算法的收敛速度和跟踪速度都很慢, 并且权值的自适应滤波器的计算量很高。
基于子带分解自适应滤波的基本原理是将输入信号与参考信号经过分解滤波器组抽取进行子带分解, 对信号按频带划分, 然后在各个子带上分别进行自适应滤波, 再将子带信号内插后通过合成滤波器组得到最后的合成信号。其中, 由于对信号进行了抽取, 使完成自适应滤波所需的计算量得以减小;而在子带上进行自适应滤波使收敛性能又有所提高。
7 结语
本文对各种类型的自适应滤波算法进行了分析总结, 可以看出, 收敛速度快、计算复杂度低、数值稳定性好是这些算法努力追求的目标, 算法与实现结构有着密切的联系, 每个算法都存在不同的等效结构, 结合实际应用还有不少问题需要研究, 在实际应用中应根据具体环境和系统要求, 结合各种算法的特点以达到最优的滤波效果。
参考文献
[1]Yasukawa H, Shimada S, Furukrawa I, et al.Acoustic echo canceller with highspeech quality[C]//Proc.ICASSP’87, 1987, 2125~2128.
[2]吴光弼, 祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报, 1994, 22, 1:55~60.
[3]Luo xiaodong, Jia zhenhong, Wangqiang.Variable step size LMS adaptivefiltering algorithm[J].Acta ElectronicaSinica, 2006, 34 (6) :1123~1126.
[4]孙恩昌, 李于衡, 张冬英, 等.自适应变步长LMS滤波算法及分析[J].系统仿真学报, 2007, 19 (14) :3172~3175.
自适应空域滤波 篇5
基于多模自适应滤波的无人机控制系统故障诊断
建立了无人机控制系统传感器和执行器的全局故障和局部故障的模型,在此基础上应用多重模型自适应卡尔曼滤波方法对其传感器和执行器的各种软硬故障进行诊断,应用所建立的数学模型与方法,对无人机的三个传感器和两个执行器的.局部与全局故障进行了仿真计算.在仿真过程中发现,此方法的诊断准确度高,无延迟报警,算法简单,仿真结果验证了该种方法的有效性.
作 者:贾彩娟 祝小平周洲 JIA Cai-juan ZHU Xiao-ping ZHOU Zhou 作者单位:西北工业大学365所,西安,710072刊 名:系统仿真学报 ISTIC PKU英文刊名:JOURNAL OF SYSTEM SIMULATION年,卷(期):17(6)分类号:V249关键词:无人机 故障检测与隔离(FDI) 多模自适应滤波(MMAF) 故障诊断
自适应空域滤波 篇6
关键词:最小均方误差,自适应滤波,扩展目标
雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。对于单散射中心回波的处理, 可通过传统的匹配滤波来获得其目标距离像。当输入端出现信号与加性高斯白噪声时, 通过匹配滤波可在输出端产生最大可实现瞬时SNR[1,2]。但对于多散射中心的目标, 脉冲压缩后可能会出现强散射中心的距离旁瓣掩盖邻近位置若散射中心的情况, 同时也会带来散射中心复幅度估计的误差。此时, 要求雷达接收滤波器对回波进行自适应滤波处理, 以便更好地抑制旁瓣、完整地提取目标各个散射中心和相应的复幅度。
为减小卷积距离像对目标距离像提取的影响, 已经提出了多种旁瓣抑制的方法。其中, 常用的方法是失配滤波器[3], 其主旁瓣比可达30~35 d B, 但将有1~3 d B的信噪比损失, 而失配滤波器仍只能稍微减缓旁瓣遮掩的问题, 且只有在特定的发射波形条件下有好的旁瓣抑制性能, 这会降低雷达的抗截获能力。所以, 雷达接收滤波器应对回波进行自适应滤波处理。最小均方 (LS) 算法[4]通过对相邻单元的去耦合来实现对旁瓣的抑制。LS法是最小均方意义下的最优方法, 但LS模型并未考虑到所有的卷积距离像, 因此对于距离窗外的散射中心无法实现有效提取。CLEAN算法[5,6]通过估计散射中心所在位置来消除距离旁瓣的影响, 这种方法虽可稳健地消除距离旁瓣, 但对弱散射中心的提取效果影响较大。RMMSE算法[7,8]是以最小均方误差 (MMSE) 为准则, 将雷达回波根据奈奎斯特采样速率得到离散的回波序列, 以递归的方式得到每个距离单元上的目标距离像估计值。通过仿真验证, RMMSE法克服了失配滤波器和LS算法未能解决的问题, 考虑了距离窗外的散射中心对目标距离像的影响问题, 能够有效地提取目标多个散射中心。本文将推导RMMSE算法的原理, 并给出该算法的具体实现步骤, 最终通过仿真试验将RMMSE算法的性能与传统匹配滤波算法、LS算法性能进行比较分析, 验证RMMSE算法的有效性和稳健性。
1 MMSE模型建立
雷达连续点的回波序列可以表示为
其中, y (l) =[y (l) , y (l+1) , …, y (l+N-1) ]T为雷达回波信号连续N点的采样序列;s=[s0, s1, …, sN-1]T为发射信号离散序列;n (l) =[n (l) , n (l+1) , …, n (l+N-1) ]T为连续N点的加性噪声序列;矩阵A (l) 为N×N的距离像响应矩阵
从式 (2) 可看出, 如果h (l) 为一个点目标, 矩阵A (l) 可简化为一个对角矩阵。此时, 匹配滤波器的输出将是最大信噪比值。但在一般情况下, 对于一个多散射中心的目标, 矩阵A (l) 的非对角元素对对角元素影响较大。因此, 不能忽略卷积距离像的影响。
用w (l) 表示长度为N的MMSE滤波器。以最小均方误差为准则, 可得到均方误差性能函数[9]
其中, E[·]表示求期望。式 (3) 的值越小, 就意味着滤波器输出得到的目标距离像估计值与真实值的误差越小。J (l) 是w (l) 的二次性能函数, 让性能函数达到最小的最佳滤波器响应向量w (l) 可以用对其求梯度的方法得到
假设目标距离像响应与噪声不相关, 则
其中, ρ (l) =h (l) 2, R=E[n (l) nH (l) ]表示N×N的噪声相关矩阵, C (l) =E[AT (l) ssHA* (l) ]表示维数为N×N的矩阵, 矩阵C (l) 的表达式为
其中, λ=max{δρ (l) , σn2/N}为点目标相邻距离单元的功率期望值。当点目标信噪比较大时, λ取δρ (l) ;当目标信噪比较小时, λ取σn2/N, σn2/N表示归一化的噪声功率, 显然这种情况下, 目标的距离旁瓣已淹没于噪声中。将式 (6) 代入式 (5) 中, MMSE滤波器表示为
假设发射信号的相关函数旁瓣较低, 此时发射信号向量sn和sm (n≠m) 可近似看作正交向量, 根据矩阵求逆定理, 式 (7) 可简化为
可以看出, 对于点目标信噪比较大的情况下, MMSE滤波器近似为归一化的匹配滤波器, 即w≈ (1-N) s, 滤波器的输出wH (h (l) s) ≈h (l) , 即点目标距离像的复幅度值。说明MMSE滤波器对于点目标的距离像估计是适用的。
2 RMMSE算法实现
式 (8) 中, MMSE滤波器的响应函数是关于各个距离像功率的函数。由于缺少关于目标多散射中心距离像的先验知识, 采取递归步骤逐步得到对目标多散射中心距离像较精确的提取估计。初始迭代过程中, 假设R=0, 且初始估计目标距离像功率ρ (l) =1。因此初始滤波器为
图1为3步RMMSE算法实现自适应距离旁瓣抑制的过程, 其中下标代表迭代次数。如图1所示, 每一次迭代后估计距离像长度减小2 (N-1) 个距离单元。将图1中3步迭代过程推广到M步, 具体步骤如下:
(1) 根据迭代次数M, 将长度为L的目标距离单元进行扩展, 在其前后各扩展M (N-1) 个距离单元, 截取的回波信号为{y (- (M-1) (N-1) ) , …, y (L-1+M (N-1) ) }。
(2) 将w作为初始脉冲压缩滤波器对y (l) 进行滤波, 得到长度为2 (M-1) (N-1) +L的距离单元的估计值。
(3) 计算功率估计值。在此基础上计算每个距离单元上的滤波器w (l) , 然后将其对y (l) 进行脉冲压缩, 得到新的目标距离像估计值。
(4) i=i+1, 重复步骤 (3) , 直到得到长度为L的距离像估计值。
以下通过分析RMMSE算法、LS算法和匹配滤波的乘法次数来估算运算复杂度。距离单元个数为L, 则匹配滤波的运算复杂度为O (LN) 。LS算法需要矩阵求逆, 其运算复杂度为O (L3) 。RMMSE算法的递归次数为M, 其运算复杂度约为O ( (M-1) LN3) 。可以看出, RMMSE算法的运算量最大。因此, 如何在保证散射幅度的估计精度下, 降低滤波算法的运算量, 仍需进一步研究。
3 仿真结果与性能分析
为了验证RMMSE算法的有效性, 本文设计了3种情况下的仿真试验并将试验结果与匹配滤波器和LS滤波器进行比较。试验1是在高信噪比条件下对单散射中心的提取, 试验2和试验3是对多散射中心的提取。仿真试验中设目标距离像长度L=100 (距离单元) , 使用的发射波形为N=30的Lewis-Kretschmer P3码。
试验1假设在距离窗第50个距离单元上有0 d B的散射中心, 噪声此时设为-40 d B的零均值白噪声, 回波经过匹配滤波以及RMMSE算法的结果如图2所示。从图中可明显看出, RMMSE算法在3次迭代后, 旁瓣被抑制到-40 d B以下, 而匹配滤波的旁瓣约抑制到-25 d B。在高信噪比条件下, RMMSE算法的优越性表现明显, 对旁瓣的抑制效果要优于匹配滤波。
试验2假设目标在距离单元处分别有-5 d B, -16 d B, 0 d B, -20 d B的散射中心, 噪声为-60 d B的零均值高斯白噪声, 如图3所示为真实目标距离像。经匹配滤波器、RMMSE算法以及LS算法后的结果如图4所示。经过匹配滤波后在距离单元为50和80处得弱散射中心很难被提取。而RMMSE算法和LS算法的性能均较好, 可提取出各个散射点, 但RMMSE算法总体抑制旁瓣的性能要优于LS算法。
试验3假设目标在距离L=35, 50, 55, 75处分别有-5 d B, -3 d B, 0 d B, -10 d B, 此外L=-10, 110在距离窗外处分别有两个0 d B的强散射中心, 噪声为-60 d B的零均值高斯白噪声, 真实的目标距离像如图5所示。经过匹配滤波、RMMSE算法以及LS算法后的结果如图6所示, 在距离窗外存在散射中心的情况下, RMMSE算法的提取性能要高于匹配滤波和LS算法。经过3次迭代后, RMMSE算法可轻易地抑制旁瓣而提取出散射中心, 且由于RMMSE算法包括了距离窗外的卷积距离像, 从而抑制了距离窗外散射中心的影响。
表1所示为采用不同滤波算法得到的散射中心幅度估计误差。可以看出, 相比匹配滤波和LS算法, RMMSE算法在不同试验条件下均能实现目标散射幅度的有效估计, 且估计精度最高。由此证明了该算法的有效性。
4 结束语
针对扩展目标多散射中心的提取和估计问题, 文中研究了以递归最小均方误差 (RMMSE) 为准则的自适应滤波方法。该方法可对单散射中心目标和在高信噪比背景下对多散射中心目标, 以及在距离窗外存在强散射中心的情况下对多散射中心目标均能有效地进行提取估计, 从而获得较为精准的目标距离像模型。仿真结果表明, 与匹配滤波器和LS滤波器相比, 该方法可更为有效地抑制距离旁瓣来提取弱小散射中心, 实现了目标散射中心的有效提取以及散射幅度的精确估计。但该算法运算量大, 且容易受到设置参数的影响, 仍需进一步地研究改进。
参考文献
[1]丁鹭飞, 耿富录.雷达原理[M].3版.西安:西安电子科技大学出版社, 2002.
[2]张明友.雷达系统[M].2版.北京:电子工业出版社, 2006.
[3]BLINCHIKOFF H J.Range sidelobe reduction for thequadriphase codes[J].IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (2) :711-718.
[4]ZRNIC B, ZEJAK A, PETROVIC A.Range sidelobe suppression for pulse compression radars utilizing modified RLS algorithm[C].IEEE International Symposium on Spread Spectrum Techniques and Applications, 1998, 1008-1011.
[5]BOSE R, FREEDMAN A, STEINBERG B D.Sequence CLEAN:A modified deconvolution technique for microwave imaging of contiguous targets[J].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (1) :89-97.
[6]HAI D.Effective CLEAN algorithms for performance-enhanced detection of binary coding radar signals[J].IEEE Transactions on Signal Processing, 2004, 52 (1) :72-78.
[7]BLUNT S D, GERLACH K.Adaptive pulse compression via MMSE estimation[J].IEEE Transactions on Aerospace and Electronic Systems, 2006, 42 (2) :572-584.
[8]张大冬, 金郁颉.基于MMSE准则的自适应脉冲压缩[J].中国电子科学研究院学报, 2012, 7 (4) :398-402.
自适应空域滤波 篇7
自适应滤波技术在系统辩识、自适应噪声消除、信道均衡、雷达和自适应波速形成等领域得到了广泛应用[1,2]。收敛速度、稳态失调、时变系统跟踪能力和鲁棒性是衡量自适应滤波算法优劣的重要技术指标。由于Widrow和Hoff最小均方(LMS)算法,因其计算量小,鲁棒性好,易于实现等优点而被广泛使用。但LMS算法在收敛速度和稳态失调对步长μ的选择方面存在矛盾:步长大,则收敛快,但失调大;步长小,则失调小,但收敛慢。
为了解决这一矛盾,人们提出了多种变步长LMS自适应滤波算法。这些算法之间的区别在于改变步长的机制不同。文献[3,4,5]提出了三种与误差信号成非线性关系的步长设计方法,这些算法均引入了多个调整参数,因而步长因子不易设计和控制;文献[6,7,8]提出了三种易于实现的变步长LMS算法,并进行了性能分析。
在回声消除、信道均衡等领域,自适应滤波器的输入信号往往是有色的。众所周知,LMS算法在有色输入信号作用下,其收敛速度较慢。而文献[3,4,5,6,7,8]的算法均为基于LMS的变步长算法,因此这类算法未能解决在有色信号输入情况下,其收敛速度较慢的问题。研究表明,使用NLMS算法的自适应滤波器,在有色信号输入情况下,有时能够得到比LMS算法更快的收敛速度,但缺点是有时增加了稳态失调[2]。
为了克服变步长LMS算法和NLMS算法存在的不足,本文提出了一种变步长NLMS自适应滤波算法。该算法使用的变步长因子,能够很好地匹配自适应滤波器的收敛特性,在有色信号输入的条件下,既能保持较快的收敛速度,又能够得到较低的稳态失调。
1 变步长NLMS自适应滤波算法
图1为自适应滤波器原理框图。WO(z)为未知系统模型,信号x(n)输入该系统后输出f(n),该输出被测量噪声v(n)干扰,生成d(n)。为了辨识该未知或时变系统抽头权值,将x(n)通过一个抽头权值可调的滤波器W(z),根据某种算法准则,自适应地调整该滤波器抽头权值,使得输出误差e(n)的均方值最小化,经迭代收敛后,W(z)即为WO(z)的辨识模型。
为使得算法具有较好的收敛性能,在输出误差较大时,步长因子应较大,以便得到较快的收敛速度;而在输出误差较小时,步长因子应较小,以达到较低的稳态失调。基于这一思想,本文提出如下的变步长NLMS自适应滤波算法:
e(n)=d(n)-wT(n)x(n) (1)
其中,w(n)为自适应滤波器的权值向量,x(n)为输入信号向量。M为滑动平均的窗宽度,μopt为使相应定步长NLMS算法初始阶段收敛最快的步长因子,α和β为调整因子,其取值范围限定为10-1<α<1,10-2<β<1。γ为平滑因子,取值范围为0≤γ<1;δ为使算法稳定的很小的正常数,σ
2 收敛条件分析
令ε(n)=wO-w(n),D(n)=E[||w(n)||2],则NLMS算法收敛的步长取值范围[1]为:
使NLMS算法达到最快收敛速度的理论步长取值为:
由10-2<β<1可知:
在10-1<α<1的条件下,由式(3)和式(8)可得:
因此,只要选定使定步长NLMS算法收敛速度最快的步长因子μopt,本文设计的变步长因子就必定稳定。
3 变步长因子作用原理分析
下面,我们来分析本文的步长因子对算法收敛性能的影响。如图2所示,根据自适应滤波器原理[1],在自适应滤波的任意阶段,输出误差的均方值必定大于测量噪声的方差,即有:
E[e2(n)]>σ
由于E[e2(n)]无法直接求得,因此,我们使用式(2)的滑动平均来近似,即有
将式(11)代入式(10),可得:
1) 在算法初始迭代阶段,由于w(n)与wO相距甚远,必有
上式说明,在自适应滤波器初始迭代阶段,本文算法的变步长因子能够达到定步长NLMS算法在稳定范围内的最佳值μopt,从而能够达到最快的收敛速度。
2) 在自适应滤波器迭代收敛阶段,由于w(n)与wO近似相等,从而使得
上式说明,在自适应滤波器迭代的收敛阶段,本文算法能够根据输出误差和噪声方差的大小,匹配地、自适应地减小变步长因子的值,从而达到较低的稳态失调。
上述的匹配过程可通过图2来说明:在初始迭代阶段,步长因子几乎保持最佳值μopt不变,滤波器以最快的速度收敛,其作用范围为ab;在滤波器迭代收敛阶段,步长调整机制影响增大,随着误差越来越小,步长因子也越来越小,从而使得稳态失调较小,其作用范围为bc。b点为交界点,其位置由调整因子α和β来确定。
为了减小步长因子的波动,最后,我们使用式(4)的μ(n)来代替式(3)的
4 计算机仿真结果及分析
利用NLMS算法和本文算法辨识一个未知系统。仿真条件为:使用Matlab中的randn函数,随机产生未知系统WO(z)的抽头权值,其长度为256;使用有色信号x(n)作为滤波器的输入,x(n)被建模为一阶自回归过程,即x(n)=0.09x(n-1)+u(n),其中u(n)是均值为0、方差为0.01的高斯白噪声信号;测量噪声v(n)为均值为0、方差为σ
使用均方误差(MSE)学习曲线来比较两种算法的收敛性能,所有MSE学习曲线均为200次独立实验取平均、平滑后的结果。第一组实验的结果如图3所示;第二组实验的结果和图4所示。
由图3和图4可知:1)与NLMS算法具有相同收敛速度的情况下,本文算法比NLMS算法具有更低的稳态失调;2)与NLMS算法具有相同稳态失调的情况下,本文算法具有更快的收敛速度。
5 结束语
本文提出了一种变步长NLMS自适应滤波算法,与定步长NLMS算法相比,本文算法对于有色信号输入,能够得到更快的收敛速度和更低的稳态失调。理论分析和仿真结果的一致性,证明了本文算法的有效性。在输入信号为有色信号、需要得到较低稳态失调的自适应滤波应用领域,本文算法具有一定的实用价值。
摘要:将步长因子μ与误差信号e(n)之间的一种非线性函数关系引入归一化最小均方(NLMS)自适应滤波器,提出了一种变步长NLMS算法。与一些已有算法相比,算法的步长因子易于设计和控制,对于有色输入信号,能够得到较快的收敛速度和较低的稳态失调。仿真结果和理论分析相一致,证实了算法的有效性。
关键词:NLMS算法,自适应滤波,变步长,系统辨识
参考文献
[1]Haykin S.Adaptive Filter Theory,Fourth Edition[M].Upper SaddleRiver,NJ:Prentice Hall,2002.
[2]Diniz P S R.Algorithms and Practical Implementation,Second Edition[M].Boston:Kluwer Acad-emic Publishers,2002.
[3]Aboulnasr T,Mayyas K.A robust variable step-size LMS algorithm:a-nalysis and simulations[J].IEEE Trans.On Signal Processing,1997,45(3):631-639.
[4]Pazaitis D I,Constantinides A G.A novel kurtosis driven variable step-size adaptive algorithm[J].IEEE Trans.On Signal Processing,1999,47(3):864-872.
[5]Mader A,Puder H,Schmidt G U.Step-size control for acoustic echocancellation filters-An over-view.Signal Processing,2000,80(9):1697-1719.
[6]覃景繁,欧阳景正.一种新的变步长LMS自适应滤波算法[J].数据采集与处理,1997,12(3):171-174.
[7]高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001,29(8):1094-1097.
[8]罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126.
自适应空域滤波 篇8
关键词:自适应中值滤波,×字形窗口,Matlab语言,数字图像处理
0 引 言
由于种种原因,图像在生成、传输、变换等过程中往往会受到各种噪声的污染,从而导致图像质量退化。噪声信号的滤波是图像处理的基本任务之一,主要有线性滤波和非线性滤波两种方法。线性滤波方法一般具有低通特性,而图像的边缘信息对应于高频信号,因此线性滤波方法往往导致图像边缘模糊,不能取得很好的复原效果[1]。中值滤波是一种使边缘模糊较轻的非线性滤波方法,是由Tukey发明的一种非线性信号处理技术,早期用于一维信号处理,后来很快被用到二维数字的图像平滑中。该算法不仅能够去除或减少随机噪声和脉冲噪声干扰,而且能够很大程度地保留图像的边缘信息,近年来在图像平滑和数据分析与处理等多个领域中得到广泛应用[2]。尽管如此,由于它对窗口和数据点的高度依赖,使其在处理空间密度较大的冲激噪声时,处理效果和效率受到了限制[3]。文献[4]提出一种自适应中值滤波算法,通过扩大窗口来相对减少冲激噪声空间密度,但它是基于方形窗口的,当窗口尺寸增大时,计算量将按平方增大,因此在速度方面还不够理想。在数字图像处理中,作为一种典型的非线性滤波方法,中值滤波应用得非常广泛,因而对提高其算法效率是非常有意义的[5]。本文对Matlab工具箱中的中值滤波算法进行改进,提出一种基于×字形滤波窗口的自适应中值滤波算法,在有效去除噪声的同时,较好地保持了图像细节,缩短了运行时间。
1 中值滤波的基本原理及传统算法
信号中值(medians)是按信号值大小顺序排列的中间值。长为n的一维信号{Xn,n∈N}的中值用下式表示:
相对二维图像信号{Xij:i,j∈N},二维中值滤波器定义为:
式(1)、式(2)中:N表示自然数集;A为截取图像数据的窗口尺寸;r为窗口水平尺寸;s为窗口垂直尺寸;Xij为被处理图像平面上的一个像素点,坐标为 (i,j);Yij是以Xij为中心,窗口W所套中范围内像素点灰度的中值,即中值处理的输出值。窗口A可以采用不同的形式,通常有线段窗、方形窗、圆形窗、十字窗和圆环窗等。文献[6]对中值滤波的多种形态及其发展有详细的介绍。
中值滤波就是选择一定形式的窗口,使其在图像的各点上移动,用窗内像素灰度值的中值代替窗中心点处的像素灰度值[7]。它对于消除孤立点和线段的干扰十分有用,能减弱或消除傅里叶空间的高频分量,但也影响低频分量。高频分量往往是图像中区域边缘灰度值急剧变化的部分,该滤波可将这些分量消除,从而使图像得到平滑的效果。对于一些细节较多的复杂图像,还可以多次使用不同的中值滤波。传统中值滤波算法的具体实现过程如下[8]:
(1) 选择一个(2n+1)×(2n+1)的窗口(通常为3×3或5×5),并用该窗口沿图像数据进行行或列方向的移位滑动;
(2) 每次移动后,对窗内的诸像素灰度值进行排序;
(3) 用排序所得中值替代窗口中心位置的原始像素灰度值。
图1是传统中值滤波算法的框图。其中,M, N分别表示滤波图像的行数和列数。
2 自适应中值滤波的基本原理及改进算法
中值滤波是当前应用最广泛的滤波方法之一,然而,中值滤波的去噪效果和处理速度依赖于滤波窗口的大小及参与中值计算的像素点数目[9]。当脉冲噪声概率小于0.2时,中值滤波是很有效的方法,当脉冲噪声概率超过0.2时,则使用自适应中值滤波方法[3]。
×字形窗口的自适应中值滤波算法是对中值滤波的一种改进。相对于中值滤波而言,它能够处理空间密度更大的冲激噪声,并且在平滑非冲激噪声时,还可保存更多的图像细节;效率方面也较一般的自适应中值滤波有所改善。常见窗口及本文提出窗口如图2所示。
基本原理如下[3]:
首先,采用3×3的×字形窗口进行计算,计算图像的中值滤波值Zmed、最大值滤波值Zmax和最小值滤波值Zmin,并判断噪声敏感度,即:如果Zmed不在Zmax和Zmin之间就自动增加×字形窗口的大小,然后重复以上的过程;对于Zmed在Zmax和Zmin之间的点先用原像素值与最大滤波值和最小滤波值进行判断,如果在其间,原值不做修改,反之就用Zmed取代原值。这一过程有如下的作用:
(1) 使得未受脉冲噪声污染的点不用修改,很好地保护了图像的点、线等细节及边界信息;
(2) 当检测到的噪声很强时,自动增大窗口,提高了去噪能力;
(3) 当检测到的噪声不是很强时,就不用增加窗口的大小,既体现出自适应性,又减少了时间开销,提高了速度。
其中,×字形窗口的实现方法如下:
(1) 先得到一个对角矩阵A;
(2) 将对角矩阵A从左向右翻转,得到一个矩阵B;
(3) 将矩阵A与矩阵B取或运算,得到×字形矩阵C。
3基于×字形窗口自适应中值滤波算法的Matlab实现
中值滤波是数字图像处理中一个很重要的部分,Matlab工具箱中有该函数,用到中值滤波算法时可直接调用。因此,用Matlab编程具有简单、方便、快捷等优点。另外,还可以对其内部函数进行改进。本文的算法就是通过另外编程修改中值滤波有关的内部函数实现的。下面就是自适应中值滤波算法的实现流程,添加新的库函数——adpmedianXzi对图像处理工具箱进行扩展,以实现数字图像自适应中值滤波(部分伪代码)。
4 实验结果及其分析
在实验中,选择了大小为256×256像素、灰度为256级的Lena图像。实验环境为IBM R52,Matlab7.0软件。实验结果如图3、图4所示。
图3(b)显示了被“椒盐”噪声污染了的图像,该噪声的概率为Pa=Pb= 0.25。这里噪声水平非常高,能够模糊图像的大部分细节。作为比较的基础,图像首先用7×7的中值滤波器进行滤波,消除大部分可见的脉冲噪声痕迹(见图3(b))。虽然噪声被有效消除了,但是滤波器在图像上也引起了明显的细节损失。
图3(d)显示了使用Smax=7的方形窗口自适应中值滤波器的效果,噪声消除水平同中值滤波器相似。图3(e)为基于×型窗口的自适应中值滤波效果。自适应滤波器保持了点的尖锐性和细节。可见,改进是很明显的,而且通过对比方形窗口与×字形窗口发现,×字形窗口的运行效率也提高了不少。
5 结 语
通过对Matlab图像处理工具箱中算法的改进,实现了一种快速自适应中值滤波算法。在对图像滤波前,首先判断是否为脉冲,然后采取变化×字形窗口大小来对噪声进行滤波,这样既有效消除了噪声,也很好地保持了图像细节。实验结果表明,基于×字形的滤波方法比一般自适应中值滤波效率有了一定程度的提高。算法原理简单、稳定、实用。若进一步研究,可针对不同噪声采取更加智能的处理措施,如CWMF&ANFIS(自适应模糊神经中值滤波系统)[10],用以达到更好的处理效果。
参考文献
[1]董付国,原达,王金鹏.中值滤波快速算法的进一步思考[J].计算机工程与应用,2007,43(26):48-64.
[2]郭炜.多级非线性加权平均中值滤波改进算法[J].现代电子技术,2006,29(19):159-161.
[3]ABDULLAH T,INAN G.Impulse noise reduction in medi-cal images with the use of switch mode fuzzy adaptive medi-an filter[J].Digital Signal Processing,2007,17:711-723.
[4]袁西霞,岳建华,赵贤任.Matlab在中值滤波改进算法中的应用[J].广东工业大学学报,2007,24(1):33-35.
[5]曹治华,宋斌恒.多种形状窗口下的中值滤波算法[J].计算机应用研究,2006,23(3):86-88.
[6]刘丽梅,孙玉荣,李丽.中值滤波技术发展研究[J].云南师范大学学报,2004,24(1):23-27.
[7]隋雪莉,梅园.基于中值滤波的指纹增强算法[J].现代电子技术,2009,32(10):107-109.
[8]张明艳,吴莉,谢玉鹏.一种图像快速中值滤波算法[J].吉林省教育学院学报,2007,23(1):91-92.
[9]吴玉莲.图像处理的中值滤波方法及其应用[D].西安:西安电子科技大学,2006.
自适应空域滤波 篇9
图像的编码及传输中,经常经过含有噪声的线路或被电子感应噪声污染时,会使图像染上一定程度的椒盐噪声(即脉冲噪声)[1]。中值滤波因其与输入信号序列的映射关系,在去除脉冲噪声上有比较好的效果,很多学者针对中值滤波技术进行研究,提出了很多改进算法。如加权中值滤波方法(WM)[2]、中心权值中值滤波器(CWM)[3]、三态中值滤波器(TSM)[4]模糊多极中值滤波方法[6]等,以及基于上述若干方法的改进策略[7]。文献[8]介绍了一种改进的自适应中值滤波方法(AM),取得了不错的滤波效果,但其对于高密度噪声图像以及纹理细腻图像的边缘处理能力不佳。本文将基于该种方法(AM),并通过分析图像噪声信息,提出一种基于噪声检测的自适应中值滤波,以克服对于高密度噪声及多细节图像去噪不理想的问题。实验结果表明,新算法对于细节丰富的图像以及高密度噪声的图像滤波效果良好,有效地提高图像的峰值信噪比,其去噪效果明显优于其他方法。
1 中值滤波法简介
早在1974年,Tukey提出了一维的中值滤波器,之后有学者针对将其发展至二维图像。标准中值滤波(SM)采用滑动窗口划分子图像,再对子图像进行二维中值滤波,当前窗口中心的像素点即为需要进行去噪处理的像素点。滤波过程中,窗口大小可以设定为不同的值,一般是采用3×3的方形窗口进行滤波。对于该滑动窗口内的像素点进行灰度值的排序,取中值作为当前像素点的灰度值。由于缺乏判断像素点是否有被噪声影响的机制,采用该方法时需对所有像素点进行一次滤波操作,在一定程度上对图像的边缘、细节信息造成破坏。
2 噪声点的检测
椒盐噪声在图像中表现为极大值或者极小值。在去噪处理之前,针对图像灰度值受椒盐噪声影响分布情况的特殊性,先将像素点分成非噪声点、噪声点和图像细节点,一方面减少系统开销,另一方面避免破坏原图像中的非噪声点。噪声点的监测室通过全局检测和局部检测两个层次来判定。
2.1 全局检测
在受椒盐噪声影响的图像中,噪声点的灰度值分布在图像灰度值的极大值端或者极小值端。若某点图像灰度值处在极值中间,则可以断定当前点未被噪声干扰,无需去噪处理。当然,对于处于极值的像素点,还不能确定其是否是噪声点。
设图像灰度值中极大值为Gmax,极小值为Gmin,对于当前像素点灰度值G,若满足式(1),则可以说明当前像素点并未受到噪声污染,无须进行滤波操作,其中T为设定的阈值。
|G-Gmin|>T并且|G-Gmax|>T (1)
2.2 局部检测
在图1中,大量分布条纹是黑白相间的,即原图中存在大量的极值。因此对于该幅图像而言,大部分中值滤波方法所得到的结果都不是很理想。 如何保证非噪声极值点不被滤波,或者滤波后不至于与周围差异较大的像素点进行错位,这需要充分结合像素点周围的信息进行分析。
如图2所示,以3×3窗口为例,对于图2(a),因为窗口中心点灰度值与相邻点差值较大,噪声点的可能性较大;而对于图2(b),由于差值较小(为0),非噪声点的可能性较大。
2.3 噪声点检测算法
由上述分析,可归纳出完整的噪声点检测算法。
算法1 噪声点检测算法
输入:图像的全局极大值为Gmax,极小值为Gmin,滤波窗口最大值为Wmax,像素点P(a,b)及其灰度值G,阈值T。
输出:对像素点P(a,b)的判定。
(1) 若满足|G-Gmin|>T且|G-Gmax|>T,则转(6)。
(2) 以P为中心,设置窗口大小w为3的滤波窗口。
(3) 计算该窗口内标准中值滤波结果,记为SM;若满足Gmin<SM<Gmax,则转到(5)。
(4) 设置窗口大小扩展为w+2;若w>Wmax,则转到(5),否则转到(3)。
(5) 对于当前滤波窗口,计算像素点P与另外w×w-1个像素点灰度值差值的均值Gmean;若Gmean<T1,转(6),否则转(7)。
(6) 点P为非噪声点。
(7) 点P为噪声点。
2.4 自适应窗口策略
在噪声点的监测过程中,滤波窗口大小影响巨大:若窗口取值较小,可有效地保护图像细节信息,而去噪效果相对较弱;反之,滤波器的去噪效果较强,而滤波后图像模糊程度则会加大。
图3表示的是噪声图像中某局部区域灰度值矩阵,当图像中噪声密度较大时,较小的窗口则无法保证Gmean正确表示出窗口中心值与其他像素点的关系。如图3(a)中,3×3窗口内含有6个噪声点,但极值都为极大值,因此窗口中心与其它8个像素点的差额均值仍为20左右,此时窗口中心被判断为非噪声点;而当窗口扩大后,噪声点虽然增加了,但极大值与极小值的比例发生变化,从而降低了噪声极值点对Gmean的影响,所求得的Gmean也正确地反映了窗口中心值为噪声点,在图3(b)中可以看出,当采取5×5窗口时,Gmean经计算是大于T1的,可以判定窗口中心为噪声点。
对于滤波窗口大小的选取原则是使窗口内噪声点对Gmean的影响最小。此处采用标准中值滤波SM的值进行比较。若SM的值处于极大值与极小值之间,则可以说明极大值与极小值在该滤波窗口中的分布较均匀。
滤波窗口的自适应调整的作用不仅仅体现在噪声点判断上,对于噪声的滤除操作方面,窗口自适应也有着重要的作用,这一内容将在下文中详细说明。
3 噪声点的滤除
自适应窗口策略还可以更精确地区分噪声点与图像细节点,从而更好地保护了图像细节信息,并且能够更好地调整滤波器的去噪性能,有效地弥补了一般滤波器对于含有高密度噪声的图像处理上的不足。
图4展示了噪声密度0.2的lena图采用AM滤波器的去噪情况,其中图4(a)为原图,图4(b)采用3×3窗口,图4(c)采用5×5窗口,图4(d)采用9×9窗口。可以看出,采用3×3窗口时一次滤波后噪声点无法完全滤除,而采用9×9窗口后,虽然噪声都已经滤除,但图像相对于原图有了较大的模糊。由此可知,窗口的大小对于滤波器去噪效果有重要的影响。当滤波窗口越小时,图像细节的保留越丰富,但去噪性能不佳;而当窗口增大时,去噪性能有了明显提升,但图像细节也随之被模糊。
当图像所含噪声密度较高时,窗口大小的影响更为明显。如图5所示,当噪声密度达到0.8时,该3×3窗口中经过SM的中值及其左右邻值全都为噪声点,此时进行任何滤波操作也不会改变其灰度值,滤波也失去其意义了。此时需要扩大窗口大小,以获取更多的图像信息来弥补噪声带来的影响。
在噪声去除过程中,采用的窗口变化策略与噪声检测机制中介绍的自适应窗口策略基本一致,不同之处在于判断是否需要将窗口扩展时,采用AM进行判断。因为AM的输出值与窗口中值及其左右邻值相关,因此可以假定当AM滤波结果非极值时,此时的窗口大小即可作为去噪所用的窗口。经过分析可以发现,该种条件比噪声检测机制中的窗口变化条件更宽松:当SM值非极值时,AM值也非极值;但当SM值为极值时,由于AM是通过SM值与其左右邻值进行判定,AM值也极有可能不是极值[8]。因此采用这种判定方法有可能获得更小的窗口进行滤波。通过前文分析我们知道,较小的窗口,保留图像细节能力更强,因此采用该策略会达到更好的效果。
文献[8]介绍的AM噪声滤除算法所引入的线性自适应策略可以很好的去除噪声,但对于高密度噪声及细节丰富图像的处理效果相对于其它算法要差。而动态窗口策略则可以自适应选取合适的滤波窗口进行处理,有效地处理高密度噪声及细节丰富图像。在本文中针对此缺陷所设计的基于动态窗口的自适应中值滤波方法(VAM)即是对其的有效改进。
算法2 噪声点检测算法
输入:图像的全局极大值为Gmax,极小值为Gmin,滤波窗口最大值为Wmax,像素点P(a,b)及其灰度值G,阈值T。
输出:对像素点P(a,b)的判定。
(1) 根据算法1,若点P为非噪声点,则结束,否则转(2)。
(2) 以P为中心,设置窗口大小w为3的滤波窗口。
(3) 计算当前滤波窗口下,采用AM滤算法的结果,记为AM;若满足Gmin<AM<Gmax,则转到(5)。
(4) 设置窗口大小扩展为w+2;若w>Wmax,则转到(5),否则转到(3)。
(5) 记当前AM为VAM,作为像素点P的滤波结果,并将VAM更新为像素点P滤波后的灰度值。
4 仿真结果以及分析
采用lena、barb以及text进行仿真分析,以验证本文提出的新方法的有效性。其中,lena的图像较为平缓,平坦区域多;而barb图则是细节信息非常丰富,难以处理;text则为文本截图,使得图像中灰度值与椒盐噪声接近。
4.1 噪声检测机制性能分析
对于2.1节中提到的阈值T1取不同值,采用VAM滤波器对512×512的barb图进行滤波去噪,计算信噪比(PSNR),绘制曲如图6所示。可以发现,T1的取值在10到20之间时,去噪效果最佳,当T1不断上升时,去噪效果随之递减。
在T1取值为15的情况下,分别对barb图像和lena图像加入一定密度的噪声,再进行噪声检测操作,统计其发现的噪声点数量以及发现的噪声密度如表1所示。可以看出,该噪声检测机制效果良好,检测结果与实际噪声密度误差较小。
4.2 VAM滤波器去噪效果分析
表2展示的是噪声密度为0.2和0.4时,lena、barb和boat三幅图采用不同滤波算法的去噪结果。可以看出,AM滤波器相对于其他算法有较好的改进,但对于纹理复杂的boat图所得到的结果要比其它算法偏差。而本文提出的VAM算法则对于各种特点不同图像都有较好的去噪效果,这是由于VAM在保留了AM处理平缓图像的优越性的同时,克服了AM在细节丰富时的不足,加强了图像细节的保留能力以及图像的去噪能力。
为了验证VAM中自适应调整窗口策略比之于固定窗口策略在处理高密度噪声图像上的优势,图7展示了对于含80%噪声的lena图像处理情况。其中(b)、(c)、(d)分别是WM、TSM、AM以及AVM的滤波结果。可以明显看出,具有自适应调整窗口大小功能的VAM算法对于高密度噪声仍然有很强的处理能力,噪声可以准确滤除,并且图像细节及边缘信息保留良好。
5结语
本文提出了自适应中值滤波方法。新算法采用合理的噪声检测机制可以有效地区分噪声点与非噪声点,从而保护图像的细节边缘信息。同时本文所设计的噪声滤除方案,由于加入窗口自适应以及模糊多极值策略,对于已检测出的噪声点,可以高效地滤除。经过实验分析,本文所介绍的噪声滤波算法相对于其他典型算法,在噪声处理及细节保护上有明显的改进,对于高密度噪声的图像,则优势更加明显。
参考文献
[1]陆天华.数字图像处理[M].北京:清华大学出版社,2007.
[2]Brownrigg D R K.The weighted median filter[J].Communications ofthe ACM,2004,27(8):807-818.
[3]Ko S J,Lee Y H.Center weighted median filters and their applicationsto image enhancement[J].IEEE Transactions on Circuits and Systems,2006,38(9):984-993.
[4]Tao Chen,Kai Kuang Ma,Li Hui Chen.Tri-State Median Filter for Im-age Denoising[J].IEEE Transactions on Image Processing,2003,8(12):1834-1838.
[5]Hwang H,Haddad R A.Adaptive median filters:new algorithm and re-sults[J].IEEE Transaction on Image Processing,1995,4(4):499-502.
[6]Yang X H,Toh P S.Adaptive fuzzy multilevel median filter[J].IEEETransaction on Image Processing,1995,4(5):680-682.
[7]Eng H L,Ma K K.Noise adaptive soft-switching median filter[J].IEEE Transaction on Image Processing,2001,10(2):242-251.
自适应空域滤波 篇10
噪声可能造成图像退化, 从而导致图像特征被掩盖, 对图像分割、跟踪、特征提取以及识别等后续工作的准确性有很大的影响。因此, 抑制图像噪声, 提升图像质量是图像处理和分析的前提。
传统的中值滤波和均值滤波可有效地减少图像中的椒盐噪声和高斯噪声, 但是这两种滤波方法都一致地应用于整个图像, 而没考虑图像中的各部分像素是否受到污染。因此, 可能破坏图像的一些重要细节。为了克服传统中值和均值滤波的不足, 一些学者提出了多种改进方法。针对中值滤波的改进有开关中值滤波 (SM) 滤波[1]、递进开关中值滤波[2]、基于minmax算法的改进中值滤波[3]、迭代中值滤波[4]、极值中值 (EM) 滤波[5]、递进开关中值 (PSM) 滤波[6]、自适应开关中值 (ASM) 滤波[7]以及基于模糊指标改进的自适应中值滤波[8]等。针对均值滤波的改进, 有改进均值滤波 (MTM) [9]、自适应中心加权的改进均值滤波 (ACWMTM) [10]、中心加权的改进均值滤波 (CWMTM) [11]、基于人类视觉的自适应均值滤波算法[12]以及非线性滤波[13]等。除此之外, 还有一些其他的去噪方法, 比如小波方法[14]、脊波方法[15]以及神经网络方法[16]等。以上介绍的滤波算法都是针对图像噪声的。图像椒盐噪声的最大特点是对应的灰度值一般是图像像素值的最大值或者最小值;而高斯噪声的最大特点是, 不管原图像直方统计分布图是怎样的, 噪声发生的概率密度有多大, 但最终被污染后的图像的直方统计分布图大多近似服从高斯分布[17]。
通常某种去噪方法只对某一类噪声的去除较为有效, 如均值滤波或针对均值滤波的改进算法对高斯噪声的去除较适合, 但对椒盐噪声的去除并不是很有效。同样, 中值滤波或针对中值滤波的改进算法较适用于椒盐噪声的去除, 而不适用于高斯噪声的消除。以上介绍的滤波方法大多是针对单一噪声滤除的, 对于同时适用于两种噪声滤除的滤波方法探讨较少。这里根据传统中值滤波和均值滤波的不足, 以及文献[7,13]中滤波算法的优点, 研究了一种自适应去除图像数据中椒盐噪声和高斯噪声的混合滤波方法, 该方法包括减少图像数据椒盐噪声和高斯噪声两部分。这种滤波算法在滤除图像椒盐噪声时, 采用自适应扩大滤波窗口的方法, 来判断待滤波点是否受到椒盐噪声污染, 以及待滤波窗口内是否含有噪声块;在滤除投影数据高斯噪声时, 采用自适应选择阈值的方法, 即:迭代计算滤波前后的MSE值。最小的MSE值对应的阈值即为最佳的滤波阈值, 此时的滤波输出为一个相对稳定的结果。计算机仿真实验证实, 该方法不仅有效地滤除图像数据中的混合噪声, 而且能够较多保留图像中的细节。
1椒盐噪声的自适应过滤
设待处理的灰度图像为8位的灰度图, 灰度等级为[0, 255]。椒盐噪声点在图像中有两个与一般信号点不同的特征。椒盐噪声一个特点是:噪声灰度值非常大或非常小, 如果设定一个阈值α, 可把[255, 255-α]与[0, α]作为图像中椒盐噪声的灰度范围, 在这一范围的像素点就可能为噪声点;而椒盐噪声的另一个特点是:噪声点与邻域内信号点灰度值相差较大。
块状噪声[8]:在滤波窗口内, 如果半数以上的图像数据受椒盐噪声污染, 则该滤波窗口内的噪声组成块状噪声。设图像数据为:
式中:M为图像的行数;N为图像列数, 其图像数据的总数L=M·N。
选择大小为3×3的小滤波窗口, 记为SmallWindow。扩大的滤波窗口尺寸为5×5, 大滤波窗口用BigWindow表示, 大滤波窗口内图像数据的中值用BigWindowmed表示。设x (t) =Image (u, v) 为待滤波的图像数据, 待滤波图像点在小滤波窗内邻域点的总数为PSmall=3×3-1, 其灰度值用xi (t) , i=1, 2, …, PSmall表示。小滤波窗口内图像点数目的一半记为λ=[ (3×3+1) /2], 其中[]为取整符号。小滤波窗口内, 灰度值在[255, 255-α]范围内的点的个数记为Numberhigh;灰度值在[0, α]范围内的点的个数记为Numberlow。待滤波图像点的邻域点灰度值不在[0, α]范围内的最小值记为min, 不在[255, 255-α]范围内的最大值记为max。
改进的自适应中值滤波算法如下:
(1) 如果待滤波图像数据x (t) 既不在[0, α]的范围内, 又不在[255, 255-α]的范围内, 说明待滤波图像数据未受椒盐噪声污染, 直接输出该数据。否则, 进入流程 (2) 。
(2) 当图像数据x (t) ∈[0, α]或x (t) ∈[255-α, α], 说明待滤波图像点有可能受到白椒盐噪声和黑椒盐噪声的污染。对滤波窗口内的块状噪声和点状噪声分类进行处理:
① 统计小滤波窗口内的点数Numberhigh和Numberlow, 如果Numberhigh≥λ或Numberlow≥λ, 说明滤波窗口内有可能出现白椒盐噪声块和黑椒盐噪声块, 进一步判断:
如果Numberhigh≥λ, 说明小滤波窗口内可能出现白椒盐噪声块。通过下面方法判断是否存在:如果x (t) -max<T, 说明在小滤波窗口内, 待滤波图像点与邻阈点很相近, 判定该点未被白椒盐噪声污染, 小滤波窗口内不存在白椒盐噪声块, 直接输出待滤波图像数据;否则说明该点受到白椒盐噪声污染, 小滤波窗口内存在白椒盐噪声块, 此时利用扩大的滤波窗口的中值取代该点。
如果Numberlow≥λ, 说明小滤波窗口内可能出现黑椒盐噪声块。通过下面方法判断是否存在:如果min-x (t) <T, 说明在小滤波窗口内, 待滤波图像点与邻阈点很相近, 判定该点未被黑椒盐噪声污染, 小滤波窗口内不存在黑椒盐噪声块, 直接输出待滤波图像数据;否则说明该点受到黑椒盐噪声污染, 小滤波窗口内存在黑椒盐噪声块, 此时利用扩大的滤波窗口的中值取代该点。
② 说明小滤波窗口内不可能出现噪声块, 但是待滤波图像点有可能受到白椒盐噪声或黑椒盐噪声污染。
如果x (t) ∈[0, α], 说明待滤波图像点可能受到黑椒盐污染, 进一步判断:如果min-x (t) <T, 说明在小滤波窗口内, 待滤波图像点与邻阈点很相近, 判定该点未被黑椒盐噪声污染, 直接输出待滤波图像数据;否则说明该点受到黑椒盐噪声污染, 此时滤波后的输出值用min取代。
如果x (t) ∈[255-α, 255], 说明待滤波图像点可能受到白椒盐污染, 进一步判断:如果x (t) -max<T, 说明在小滤波窗口内, 待滤波图像点与邻阈点很相近, 判定该点未被白椒盐噪声污染, 直接输出待滤波图像数据;否则说明该点受到白椒盐噪声污染, 此时滤波后的输出值用max取代。
如果被椒盐噪声污染的图像数据比例过重, 有些噪声块或噪声点在一次滤波过程中未被检测到, 可以通过迭代使用本节的方法检测, 并过滤这些噪声点或噪声块。
2高斯噪声的自适应过滤
利用上节算法对含噪图像数据中的椒盐噪声滤波后, 将滤波后的图像数据归一化到0~255 (为了适应本节的方法) 。再用本节的方法对图像数据中的高斯噪声进行滤波处理。
令x (t) 为待滤波的图像数据, 滤波窗口大小为3×3×3, 待滤波图像点在滤波窗口内邻域点的总数为PSmall=3×3×3-1, 其值用xi (t) , i=1, 2, …, PSmall表示。
去除图像数据高斯噪声的算法如下:
(1) 自适应选取阈值h:对h从1, 2, …, kmax循环。在滤波窗内, 统计待滤波图像点的值与其邻域点的值的差的绝对值, 大于阈值h的个数, 记为LocalThreshold。其中取h循环的上限hmax=20。
(2) 如果LocalThreshold小于或等于数值τ1 (τ=PSmall×3/8) , 则认为该点未被高斯噪声污染, 直接输出待滤波图像点的值;
(3) 如果LocalThreshold大于数值τ1、小于等于数值τ2 (τ2=PSmall×5/8) , 则认为该滤波窗口内的点局部被高斯噪声污染, 利用高斯滤波后的输出值取代原始图像点的值;
(4) 如果LocalThreshold大于数值τ2, 则判断该滤波窗口内的点大量被高斯噪声污染。统计待滤波图像点的值与其邻域点的值的差的绝对值, 大于阈值h的邻域点。将这些邻域点的均值赋给待滤波图像数据, 该均值记为aver。
(5) 计算第h次滤波后图像数据相对于第h-1次滤波后的图像数据的均方误差变化值 (ΔMSE (h) ) 。其中ΔMSE (h) 的计算公式为:
Output (h-1) (u, v) ]2 (1)
式中:Output (h) (u, v) 为第h次滤波后的图像数据。
3计算机仿真实验及结果分析
3.1 仿真模型
为了验证图像数据去噪的混合滤波算法的有效性, 采用的图像为256×256的Lena图。编译环境为VC++6.0。
3.2 仿真结果
图1显示了几种不同滤波器的处理结果。图1 (a) 为理想的Lena图;图1 (b) 为理想图加入20%的高斯噪声、20%的椒噪声和20%的盐噪声后的图像。图1 (c) ~ (g) 为滤波后的图像。采用的滤波方法分别为传统中值滤波 (c) 、传统均值滤波 (d) 、多次中值滤波与小波硬阈值方法的结合 (e) ;多次中值滤波与小波软阈值方法的结合 (f) ;本文方法 (g) 。
从图1可以看出, 当图像受椒盐噪声和随机噪声污染的比例过重, 传统的中值滤波和均值滤波过滤效果不是很好;多次中值滤波与小波方法相结合虽然可以较好过滤椒盐噪声, 但是得到图像模糊;自适应混合滤波不仅可以较好地过滤图像噪声, 而且较好地保留了图像细节。
另外, 计算重建图像的评价值, 包括均方误差 (MSE) 和信噪比 (SNR) 。均方误差MSE的计算公式为:
信噪比SNR的计算公式为:
式中:Image (u, v) , Output (u, v) 分别表示原始图像体数据和重建图像体数据, 图像尺寸为M×N。
从表1可以看出, 利用本文的方法得到的误差明显小于利用中值滤波、均值滤波、中值与均值滤波方法结合、中值滤波与小波硬阈值方法结合、中值滤波与小波软阈值方法结合的方法。
4结语
图像数据含有噪声对图像分割、跟踪、特征提取以及识别等后续工作有很大的影响。针对图像椒盐噪声和高斯噪声的特点, 在此研究了一种自适应去除图像数据中椒盐噪声和高斯噪声的自适应混合滤波方法。这种滤波算法在滤除图像椒盐噪声时, 采用自适应扩大滤波窗口的方法来判断带滤波点是否受到椒盐噪声污染以及待滤波窗口内是否含有噪声块;在滤除投影数据高斯噪声时, 采用了自适应选择阈值的方法。计算机仿真实验证实, 该方法不仅能有效滤除图像数据中的混合噪声, 而且能够较多地保留图像中的细节。