多元判别分析(精选5篇)
多元判别分析 篇1
1 引言
世界经济的大萧条触发了国际上对企业预警管理的研究。随着企业经济环境、竞争环境、经营情况的复杂化和多样化, 引起了许多专家学者进行企业危机、企业风险管理等方面的研究, 目前企业预警管理已成为企业管理研究的一个热点。本文采用实证分析的方法, 对财务危机状况进行预测分析。
2 企业财务预警系统的构成
2.1 预警指标
预警指标选择得好, 预警系统就能真正起到预知危机、控制危机的作用;预警指标选得不好, 财务预警系统形同虚设, 起不到防患于未然的作用。
2.2 预警判断
包括财务预警模型的建立和警戒线的判断。在上述财务预警指标设计和选择原则指导下, 笔者认为, 完整反映企业经济运行状况的财务预警指标体系, 应该包括的内容有:
(1) 反映企业偿债能力的指标。为了评价债权人关注的资产负债水平和偿债能力, 应该选择流动比率、速动比率、现金比率、资产负债率、产权比率、利息保障倍数等指标, 用来分别反映企业短期偿债能力和长期偿债能力。
(2) 反映企业盈利能力的指标。为了评价投资者关注的盈利能力, 应该选择销售利润率、总资产报酬率、资本权益率、成本利润率等指标。
(3) 反映企业营运能力的指标。为了评价企业运用资产进行生产经营活动的能力 (即资产的周转、利用程度) , 应该选择对资产周转、利用程度影响较大的应收账款周转率和存货周转率等指标。
(4) 反映企业发展能力的指标。为了评价企业经营规模、资本增值、支付能力、生产经营成果、财务成果的增长情况, 从而评价企业的营运能力和获利能力, 应该选择利润增长率、销售增长率、总资产增长率、固定资产增长率、资本积累率、资本保值增值率等指标。
3 企业财务预警系统的模式
根据国外企业的成功经验, 建立企业财务预警系统主要有两种模式:
3.1 单变量模式
通过单个财务比率走势, 预测财务危机。这种模式最早由威廉·比弗提出, 他认为按综合性和预测能力大小, 预测企业财务风险的比率主要有:
(1) 债务保障率=现金流量/负债总额;
(2) 资产收益率=净收益/资产总额;
(3) 资产负债率=负债总额/资产总额;
(4) 资产安全率=资产变现率/资产负债率。
3.2 多变量模式
这种模式最初由美国爱德华·阿尔曼提出, 用以计量企业破产的可能性。
本文着重讨论多变量模式, 即应用多元统计方法。
4 多元统计的方法
多元统计的方法主要有:因子分析法、主成分分析法、聚类分析法和判别分析法。
4.1 因子分析法 (Factor Analysis)
因子分析法是主成分分析法的推广, 是将错综复杂的随机变量综合为数量较少的随机变量, 来描述变量之间的相关关系, 再现原始指标与变量之间的关系。这少数几个随机变量是不可观察的, 通常称为因子。因子分析法也可以认为是将评价指标按原始数据的内在联系进行分类, 同类指标的相关程度高, 不同类指标的相关程度低。因子分析法又分为R型因子分析法和Q型因子分析法, R型因子分析法是从相关系数矩阵出发进行分析, Q型因子分析法是从相似系数矩阵出发进行分析。因子分析方法一般用于评价企业整体财务状况, 具体步骤如下:
(1) 选择评价指标, 建立评价指标体系;
(2) 将指标值转化为指标体系值;
(3) 确定各指标在评价指标体系中的权重;
(4) 将指标评价值加权平均, 求得综合评价值。
一般选择流动比率、速动比率、资产负债率、存货周转率、净资产收益率、应收账款周转率、主营业务利润率、总资产收益率、总资产周转率等9项指标对企业财务状况进行综合评价。
通过因子分析法, 可以清楚地观察到影响企业财务状况各影响因素之间的关系, 找出能明确反映不同侧面问题的因子提供的重要程度信息, 并将其提炼成一个新的综合因子, 依次实现对企业财务状况的综合评价。
4.2 主成分分析 (Principal Components Analysis, PCA)
主成分分析旨在利用降维的思想, 把多指标转化为少数几个综合指标。
我们在分析企业的财务状况、经营成果和现金流量时, 为了能全面、系统地分析企业的整体状况会考虑众多的影响因素, 这些影响因素一般常以指标形式表现。虽然每个财务指标都从不同方面、不同程度反映了企业的财务信息, 但各指标之间具有一定的相关性, 这必然会导致所统计的数据反映的信息在一定程度上有所重叠。而且研究的指标变多, 势必会增加计算量, 同时更会引起分析问题的复杂性。主成分分析比较理想地解决了这一问题, 使我们在定量分析企业整体的财务状况时, 能将所研究的变量减少, 但又保持较多的信息量。
比如, 我们采用杜邦分析法, 以ROE (净资产收益率) 为核心指标, 通过它的展开, 可以得到销售净利率、总资产周转率和权益乘数, 这样我们就充分利用了资产负债表和利润表中的数据, 同时对企业的盈利能力、资产管理能力和偿债能力进行了分析。这种仅利用一个核心综合指标 (ROE) 来综合反映企业状况的处理方法与主成分分析有着相同的基本思想, 也是主成分分析方法应用的一种表现。
由此可见, 主成分分析方法在对企业的各方面能力 (如盈利能力、资产管理能力、偿债能力、经营发展能力、资本结构等) 的分析中起着极为重要的作用, 是压缩评价指标数的有效方法。
4.3 聚类分析 (Cluster Analysis)
聚类是将数据分类到不同的类或者簇的一个过程, 所以同一个簇中的对象有很大的相似性, 而不同簇间的对象有很大的相异性。聚类分析的目标就是在相似的基础上收集数据来分类。通俗地讲, 聚类分析是依据事物的性质和特征的相似程度, 将彼此相近的样本分在一类, 差异较大的分在不同的类。因此, 我们可以通过聚类分析, 把财务状况较好的公司与较差的公司分在不同的类, 以此来判断公司财务状况的好坏。
4.4 判别分析 (Discriminatory Analysis)
判别分析的任务是根据已掌握的一批分类明确的样品, 建立较好的判别函数, 使产生错判的事例最少, 进而对给定的1个新样品, 判断它来自哪个总体。根据资料的性质, 判别分析分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则, 又有费歇、贝叶斯、距离等判别方法。
费歇 (Fisher) 判别思想是通过投影, 使多维问题简化为一维问题来处理。选择一个适当的投影轴, 使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小, 而不同类间的投影值所形成的类间离差尽可能大。
贝叶斯 (Bayes) 判别思想是根据先验概率求出后验概率, 并依据后验概率分布做出统计推断。所谓先验概率, 就是用概率来描述人们事先对所研究的对象的认识程度;所谓后验概率, 就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近做出判别。即根据资料建立关于各母体的距离判别函数式, 将各样品数据逐一代入计算, 得出各样品与各母体之间的距离值, 判样品属于距离值最小的那个母体。
在此, 本文着重讨论多元判别分析法。
5 多元判别分析法
5.1 判别分析的基本步骤:
我们应用SPSS来进行判别分析模型的构建, 其过程为, 对于分为k组的研究对象, 可建立 (k-1) 个典型判别函数 (原始自变量的线性组合) 和k个Fisher线性判别函数, 然后将各样品的自变量回代到判别函数中, 计算其判别分数或者属于各组的概率, 根据数值的大小判别样品所属组别, 对比样品的原始组别给出错分率。具体步骤如下:
(1) 选择自变量和组变量;
(2) 计算各组单变量描述统计量, 包括组内均值、组内标准差、总均值、总标准差、各组协方差矩阵、组间相关矩阵, 并对组间均值相等及协方差矩阵相等的零假设进行检验;
(3) 推导判别系数, 给出标准或未标准化的典型判别函数系数, 并对函数显著性进行检验;
(4) 建立Fisher线性判别模型;
(5) 按照一定的规则进行分组;
(6) 进行样本回判分析, 计算错分率;
(7) 输出结果;
(8) 结合实际情况进行分析。
5.2 建立模型的数据假定与原始数据的选择
在财务分析的指标中, 最常见的指标有流动比率、速动比率、净资产收益率、总资产周转率等。如果公司的这些财务比率较低, 则容易陷入财务困境中。为此, 本文应用多元统计分析中的判别分析来建立判别函数:
Z=a0+a1×流动比率+a2×速动比率+a3×净资产收益率+a4×总资产周转率
式中, Z为判断函数;a0为常数项;a1为流动比率对判断函数的影响系数;a2为速动比率对判断函数的影响系数;a3为净资产收益率对判断函数的影响系数;a4为总资产周转率对判断函数的影响系数。每个系数可以根据历史资料进行回归得出。为了使建立的模型具有有效性, 本文假定流动比率、速动比率、净资产收益率、总资产周转率数据都服从正态分布。为了得到a0、a1、a2、a3、a4, 我们从网上随机下载若干财务数据, 按流动比率、速动比率、净资产收益率、总资产周转率的假定, 进行整理, 如表1所示。
备注:类别1为非ST组, 类别2为ST组。
a.87.5%of original grouped cases correctly classified
a.87.5%of original grouped cases correctly classified
表2、表3给出了典型判别函数的未标准化系数与标准化系数。由此, 我们构建典型判别模型如下:
Z=-4.069+2.588x1+0.303x2+6.980x3-0.547x4 (未标准化)
Z=0.838x1+0.096x2+0.548x3-0.199x4 (标准化)
由表4可知, p=0.002<0.05, 说明在0.05的显著水平下, 典型函数是显著的。
表5给出了Fisher线性判别函数系数, 据此建立Fisher线性判别模型如下:
非ST组:Z1=-16.667+6.952x1+9.835x2+39.464x3+4.662x4
ST组:Z2=-4.908-1.749x1+8.815x2+15.997x3+6.502x4
表6给出了逐步判别分析小结, 公司破产的正确分组率为90%, 错分率为10%;公司未破产的正确分组率为83.3%, 错分率为16.7%。表7给出了全模型法的判别分析小结, 公司破产的正确分组率为80%, 错分率为20%;公司未破产的正确分组率为83.3%, 错分率为16.7%。
6 结语
本文采用全模型判别分析法的判别效果低于逐步判别分析法的判别效果, 这说明选择对判别贡献大的变量, 建立判别模型要优于未加选择的使用。从判别的结果来看, 本文选择的上市公司判别的效果较好, 但如果各公司判别的效果不太好, 建议进一步收集数据, 同时引入其他的指标变量再建立模型。另外, 本文所用的样本偏少, 如果要得到更精确的结果, 建议样本控制在30个以上。
参考文献
[1]陈晓, 等.财务困境研究的理论、方法与应用[J].投资研究, 2001 (6) .
[2]苗润生.公司财务预警系统研究[J].中央财经大学学报, 2003 (8) .
[3]徐锡意.上市公司财务危机的预警模型[J].统计与决策, 2003 (4) .
[4]卫海英.SPSS10.0在经济管理中的应用[M].北京:中国统计出版社, 2001.
[5]王学民.应用多元分析[M].上海:上海财经大学出版社, 2007.
多元判别分析 篇2
【关键词】主分量分析;Fisher线性判别;距离判别法
【Abstract】As to an object of multi dimension, we always hope to make its dimension reduced in order to facilitate the study on it。 Principal component analysis and Fisher linear discriminant analysis are two common methods widely used in various fields of pattern recognition。 This article reduced the dimension of original data, by the principal component analysis at first, and then use Fisher linear discriminant analysis to reduce the dimension once again, obtaining lower-dimensional data, finally experimental results demonstrated the effectiveness of two methods’ combination。
【Key words】Principle compoment analysis; Fisher linear discriminant analysis; A method of differentiating distances
引言
多元判别分析 篇3
上世纪90年代以来, 循环经济与知识经济一起, 成为国际上两个重要的发展趋势。对于我们这样一个资源和环境容量有限的人口大国, 循环经济更有重大的意义。一直以来循环经济板块增长稳定、估值适中, 往往能够在市场波动时对冲市场风险。概念性投资泡沫消退后, 循环经济企业较高的成长性将逐渐被市场认同, 具有较高的投资价值。证券市场从行业、地域、时间、概念股票等多种角度对股票进行划分, 本文选择对概念板块中的循环经济的38家上市公司进行基本面分析。
2 聚类分析与判别分析方法概述
2.1 聚类分析
聚类分析又称群分析, 是研究对样品或指标进行分类的一种多元统计方法。所谓的聚类, 通俗地说就是相似元素的集合, 即建立一种分类方法, 将一批样本或变量按照它们在性质上的相似、疏远程度进行科学的分类。通常描述样品或变量间相似、疏远程度有两种思路:一是把每个样品看成是P维空间的一个点, 在P维坐标系中, 确定点与点的某种距离;另一种是用某种相似系数来描述变量之间的相似或疏远程度。
本文采用系统聚类方法中的Q型聚类方法, 基本思路为:开始时先将n个样本点各自作为一类, 然后将距离最近的两类合并为一个新类, 再计算新类与其他类的距离, 重复进行两个最近类的合并, 直至所有的样品合并为所需类数为止。Q型系统聚类的方法也有很多种, 主要为:最短距离法、最长距离法、中间距离法、重心法、类平均法和离差平方和法等, 选择不同的方法聚类结果也不同。本文采用离差平方和法 (Ward’method) 。
2.2 判别分析
判别分析就是在研究对象用某种方法分好若干类的情况下, 确定新样品属于已知类别中的哪一类的方法。而本文用判别分析方法主要是对聚类分析的结果进行校验, 同时得到判别函数, 对以后进入该板块的上市公司可以直接判别分类。与聚类分析不同的是, 判别分析是在已知研究对象分成若干类型 (或组别) 并已取得各种类型的一批已知样品观测数据, 在此基础上根据某种准则建立判别函数式, 然后对未知类型的样品进行判别分类。因此判别分析往往同聚类分析方法结合起来运用。
用判别分析方法处理问题时, 通常要给出一个衡量新样品 (样本点) 与已知组别接近程度的描述指标, 即判别函数, 同时也指定一种判别规则, 用来判定新样品的归属, 判别规则可以是统计性的, 决定新样品所属类别时用的是显著性检验;也可以是确定性的, 决定样品的归属时, 只考虑判别函数值的大小。
判别分析的方法主要有距离判别法、Fisher判别法、逐步判别法、贝叶斯 (Bayes) 判别法等。本文采用Fisher判别法。
3 指标的选取和原始数据导入
对上市公司的聚类分析应该本着全面性、科学性、公正性以及可操作性的原则, 这也就要求在制定指标体系和选择数据的时候要尽量能够全面、真实的反映企业的经营状况。本文共采用了每股净资产 (x1) 、每股收益 (x2) 、每股公积金 (x3) 、每股经营现金流 (x4) 、主营业务利润率 (x5) 、净资产收益率 (x6) 、总资产 (x7) 和净利润 (x8) 8个指标。
其中通过主营业务利润率 (x5) 、每股收益 (x2) 、净利润 (x8) 、净资产收益率 (x6) 考察股票的盈利能力;通过总资产 (x7) 考察股票的规模;通过每股净资产 (x1) 、每股公积金 (x3) 考察股本的扩张能力;通过每股经营现金流 (x4) 考察股票的支付能力。所有上市公司的财务数据均选自2011第三季度的财务报表。
4 实证分析
4.1 聚类分析
聚类分析立足于对股票基本面的量化分析, 弥补了定性分析的不足。首先运用SPSS16.0软件对数据进行标准化处理, 对得到的标准化数据进行Q型系统聚类, 聚类方法采用“离差平方和”法, 测量尺度选择“欧式距离的平方”, 得出聚类谱系图, 如图1。
38个样本大体分为4类。第1类:澄星股份、东湖高新、泰达股份、贵糖股份、凯迪电力、创元科技、创业环保、海泰发展、苏州高新、金鹰股份、安源股份、新疆天业、莱钢股份、民和股份、包钢股份、首钢股份、樊钢钒钛、河北钢铁、株冶集团、东华能源、亚泰集团、精诚铜业、铜陵有色共23个样本;第2类:福建水泥、美利纸业、ST甘化、山西焦化、ST鲁北共5个样本;第3类:龙净环保、天原集团、格林美共3个样本;第4类:江西铜业、鞍钢股份、盘江股份、祁连山、五粮液、西山煤电、南海发展共7个样本。
4.2 判别分析
(1) 分类结果。
通过Fisher判别发现, 最终分类结果同聚类结果完全一致。即此分类为完美分类, 如果有新进入的样本, 可以通过此分类进行判别。通过各组的均值及其他指标的分析我们可以得出结论:第1类股票的盈利能力、规模、股本扩张能力和支付能力均处于低等水平;第2类股票的相应指标比第一类表现的较为乐观, 但仍处于较低的水平上;第3类股票的盈利能力、股本的扩张能力较好, 规模和股票的支付能力欠缺;第4类股票属于这些股票中表现最好的一类股票, 盈利能力、规模、股本的扩张能力以及股票的支付能力均较好。
(2) 判别函数。
由表1可知本文预测变量为8个, 类别数为3个, 即判别函数为3个。
(3) 显著性检验。
显著性检验结果见表2, 由Sig.知, 它们存在显著性差异。
(4) Fisher线性判别函数。
由Fisher线性判别函数系数得如下分类函数:
Function 1=-2.246+0.673a+0.272b-3.367c-0.918d-0.592e-1.175f+1.813h-2.706i
Function 2=-9.741-4.736a+3.042b-1.566c-0.353d-2.635e-6.997f+0.185h+03.105i
Function 3=-19.823+3.995a-10.714b+14.162c+2.079d+4.739e+7.766f-9.034h+7.499i
Function 4=-13.891-0.541a+1.526b+6.112c+2.379d+1.795e+5.529f-2.216h+7.895i
运用Fisher判别函数时, 只要将各指标标准化值代入上述4个判别函数, 以函数值的大小来比较, 哪一组的分类函数值大, 就将该观测值判入该组。 (其中a、b、c、d、e、f、g分别为样本的每股净资产、每股收益、每股公积金、每股经营现金流、主营业务利润率、净资产收益率、总资产和净利润的标准化值) 。
参考文献
[1]张树敏, 朱和平, 等.基于基本面的中小企业板上市公司股票投资价值初探[J].商业现代化, 2008, (3) :191-192.
[2]张晓东.沪深两市金融保险行业股票业绩的聚类分析[J].统计与咨询, 2009, (1) :56-57.
[3]于华.上市公司综合评估的聚类与主成分分析[J].西南金融, 2007, (9) :49-50.
[4]李建军, 虞跃.基于主成分分析的股票投资策略[J].长春师范学院学报 (自然科学版) , 2009, (1) :12-14.
卷烟主流烟气的判别分析 篇4
1 材料与方法
1.1 样品与数据
样品及数据来源:选取某三类卷烟生产的20个批次 (10个标准样品, 10个输出样品) 卷烟主流烟气检测数据作为训练样本, 选取了抽吸口数 (X1) 、总粒相物 (X2) 、烟碱 (X3) 、水分 (X4) 、CO (X5) 和焦油 (X6) 等六项指标作为判别变量。
1.2 判别分析
判别分析法是用于判别个体所属群体的一种统计方法, 其特点是根据已知类别的若干样本数据信息, 总结出客观事物分类的规律性, 建立判别函数, 然后对未知类别的样品进行判别分类[1~2]。
2 结果与分析
2.1 建立判别函数
采用距离判别法对样品进行判别分类, 建立判别函数, 判别结果见表1。
得到两个不同来源样本的判别函数为:
作判别时, 将样本的烟气指标代入2个判别函数计算函数值, 哪个函数值最大就说明样本属于哪个来源。
2.2 判别效果检验
对于判别分析, 所建立的判别函数用来判别时的准确率是至关重要的[3], 用自身验证法和交互验证法对原样品进行回判。准确率分别为100%和95%, 可见基于所选分析变量建立的判别函数结果可靠。结果见表2。
[注1]:“1”代表标样样本;“2”代表输出样本;下同。
好的判别效果不仅要求建立的判别函数适用于训练样本, 而且要具有普遍应用能力, 这也是建立判别函数要达到的目的。因此, 用新样本进行回判分析是必要的[4]。分别取6个标准样本和输出样本作为新样品, 将其相应烟气指标代入判别函数, 根据判别函数值判别卷烟样品的来源。判别准确率达到95.0%。因此, 判别函数具有实际应用价值。
3 结论
(1) 由于判别分析允许较小的误差存在, 因此, 在误判许可范围内, 可以认为判别效果是好的。文中, 由于判对率均在90%以上, 故可认为所选的分析变量合理, 所得的判别方程有效, 结果理想。
(2) 通过对卷烟主流烟气指标的判别分析, 可以较好的区分出样品不同来源, 该分析方法作为卷烟主流烟气的一致性评价具有一定的指导意义。
参考文献
[1]任若恩, 王惠文.多元统计数据分析——理论、方法、实例[M].北京:国防工业出版社, 1997.
[2]于秀林, 任雪松.多元统计分析[M].北京:中国统计出版社, 1999.
[3]李庆华, 王玉, 余振华, 等.卷烟烟丝化学指标的逐步判别分[J].中国烟草学报, 2009, 15 (6) :27-30.
反馈电路类型的判别分析 篇5
如何正确地判断放大电路中的反馈组态与反馈极性,通过多年的实践,在理解基本概念的同时,抓住反馈电路结构的特点,直观地看反馈网络在输入端、输出端的连接关系,总结归纳出一套比较直观、简单、快速的判别方法,对分立元件电路和集成运放电路,单级、多级放大电路都适用,现将这种方法介绍如下:
1 反馈的基本概念
1.1 反馈的概念
所谓反馈,就是将电路中输出信号(电压或电流)的一部分或者全部通过一定的电路,以一定方式引回到输入端与输入信号(电压或电流)相叠加的过程。用框图表示则为图1所示。其中Xi为输入信号,Xo为输出信号,Xf为反馈信号,Xi′为净输入信号。
1.2 反馈的类型
(1) 按反馈的极性分:
正反馈和负反馈;
(2) 按反馈在输出端的取样分:
电压反馈和电流反馈;
(3) 按反馈在输入端的接法分:
并联反馈和串联反馈;
(4) 按反馈的属性分:
交流反馈和直流反馈。
2 反馈的判别
2.1 有无反馈的判别
方法:存在输出端与输入端之间的通路,并且影响放大电路的净输入,则存在反馈。两个条件都具备,才可说明有反馈存在,缺一不可。如图2电路所示:虽然存在输出端与输入端之间的通路,但这不影响放大电路的净输入,所以就不存在反馈。又如图3电路所示:存在输出端与输入端之间的通路,并且影响了放大电路的净输入,则存在反馈。
2.2 正反馈与负反馈的判别
正反馈:引回的反馈信号使净输入信号增大的为正反馈。
负反馈:引回的反馈信号使净输入信号减小的为负反馈。
判别反馈极性通常采用瞬时极性法:规定输入端对地的极性,并逐级判断个相关点的极性(高于地电位的正,反之为负),从而得到输出端的极性;根据输出端的极性判断反馈信号的极性;根据正负反馈的概念判断出反馈的类型。对于分立元件构成的放大电路,可以通过判断净输入电压ube或净输入电流ib因反馈的引入是增大还是减小来判断反馈的极性。如图4所示的电路:规定输入端对地的电位为正,晶体管T的基极的电位为正,输入与输出电位相反则为负,即集电极的电位为负,发射极的电位为正,即反馈信号Re上的电压Vf为正,从而Vf的引入使净输入信号Vi′减小,根据正负反馈的概念判断为负反馈。
2.3 直流反馈与交流反馈的判别
交流反馈:只在交流通路中存在的反馈,反馈信号是交流量,会影响电路的交流性能。
直流反馈:只在直流通路中存在的反馈,反馈信号是直流量,会影响电路的直流性能,如直流负反馈能稳定静态工作点。
在放大电路的反馈网络中,一般只包含电阻和电容元件,电阻元件的阻值在交直流时是相同的,而电容具有隔直通交的作用,所以要判断是直流反馈还是交流反馈,就要看反馈电路中有无电容元件。若反馈电路中接有电容元件,我们就要考虑是否有直流与交流反馈的区分,然后观察电容在电路中的接法。一般来说,若反馈元件(或反馈电路)两端并接电容使得反馈信号中的交流成分不能送回到输入回路,则为直流反馈;反馈元件与电容串联构成的反馈电路为交流反馈,此外的情况是既有直流反馈,又有交流反馈。
3 放大电路中的负反馈
3.1 负反馈的类型
根据放大电路中,反馈电路与电路的输入端和输出端连接方式的不同,可以把负反馈电路分为4种基本反馈类型:电流串联反馈、电流并联反馈、电压串联反馈、电压并联反馈。
串联反馈和并联反馈是根据反馈电路在输入端的接法进行分类的:
(1) 串联反馈:反馈信号与输入信号相串联,在电路组成上的特点是:反馈电路的输出端与放大电路的输入端串联,输入信号与反馈信号加在放大器的不同输入端上,此时的反馈信号总是以电压的形式在输入端出现。
(2) 并联反馈:反馈信号与输入信号并联,在电路组成上的特点是:反馈电路的输出端与放大电路的输入端并联,输入信号与反馈信号并接在同一个输入端上,此时的反馈信号总是以电流的形式出现在输入端。
电流反馈和电压反馈是根据反馈信号在输出端的取样进行分类的:
(1) 电压反馈:反馈信号取自输出电压并与之成正比,反馈电路的输入端与基本放路的输出端并联。
(2) 电流反馈:反馈信号取自输出电流并与之成正比,反馈电路的输入端与基本放大电路的输出端串联。
3.2 负反馈的类型的判别
负反馈的类型的判别方法:反馈电路直接从输出端引出的为电压反馈,从负载电阻RL靠近地端引出的为电流反馈;输入信号和反馈信号分别加在两个输入端的为串联反馈,加在同一个输入端的为并联反馈。
如图5所示电路中,Rf构成负反馈电路,他直接从输出端引出,为电压反馈;Rf引回的反馈信号与输入信号同时加在运放器的反向输入端,为并联反馈,所以此电路负反馈类型为电压并联负反馈。如图6所示电路中,Rf构成负反馈电路,他是从负载电阻RL靠近地输引出,为电流反馈;Rf引回的反馈信号与输入信号分别加在运放器的两个输入端,为串联反馈,所以此电路负反馈类型为电流串联负反馈。
对于分立式元件组成的电路来说:如果反馈电路是和输出端从同一个电极引出的则为电压反馈,从不同电极引出的则为电流反馈;如果反馈电路引入到输入端的基极,为并联反馈,引入到发射极的为串联反馈。
如图4所示的由晶体管构成的负反馈放大电路:输出信号从集电极引出,而反馈电路是从发射极引出,两者不是从同一个电极引出,所以为电流反馈;反馈电路引入到了放大器的发射极,所以为串联反馈,所以次负反馈为电流串联负反馈。
4 反馈类型的判别步骤
(1) 判别有无反馈;
(2) 判别是直流反馈还是交流反馈;
(3) 判别是正反馈还是负反馈;
(4) 判别是电压反馈还是电流反馈,是串联反馈还是并联反馈,进而确定负反馈的组态。
下面通过两个例子来说明如何判别一个放大电路的反馈类型。
如图7所示的放大电路,由A1和A2组成一个多级放大电路,在整个电路的输入和输出之间由R5和R6构成了反馈回路,并且因为没有电容存在,所以交直流反馈并存。根据瞬时极性法,见图中的“⊕”、“⦵” 号,可知是负反馈。因反馈信号直接从输出端引出,故为电压反馈;因反馈信号和输入信号加在运放A1的两个输入端,故为串联反馈。所以此电路反馈为交直流电压串联负反馈。
如图8所示的放大电路,由T1和T2组成一个多级放大电路,在整个电路的输入和输出通过电阻Rf连接,并且因为没有电容存在,所以交直流反馈并存。根据瞬时极性法,见图中的“⊕”、“⦵”号,可知是负反馈。因反馈信号和输出信号从不同电极引出,故为电流反馈;因反馈信号和输入信号同时加在晶体管T1的基极,故为并联反馈。所以此电路反馈为交直流电流并联负反馈。
5 结 语
在实践过程中,通过抓住反馈电路结构的特点,利用上述的方法,我们将会对负反馈有更深、更全面的认识,并都能快速、正确判断电路的反馈类型。
参考文献
[1]康华光.电子技术基础(模拟部分)[M].北京:高等教育出版社,1999.
[2]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,1999.