【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 全称量词与存在量词 参考教案

2024-06-05|版权声明|我要投稿

【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 全称量词与存在量词 参考教案

【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 全称量词与存在量词 参考教案 篇1

1.3 全称量词与全称命题

一、创设情境

在前面的学习过程中,我们曾经遇到过一类重要的问题:给含有“至多、至少、有一个┅┅”等量词的命题进行否定,确定它们的非命题。大家都曾感到困惑和无助,今天我们将专门学习和讨论这类问题,以解心中的郁结。问题1:请你给下列划横线的地方填上适当的词

①一

纸;②一

牛;③一

狗;④一

马;⑤一

人家;⑥一

小船 分析:①张②头③条④匹⑤户⑥叶

什么是量词?这些表示人、事物或动作的单位的词称为量词。汉语的物量词纷繁复杂,又有兼表形象特征的作用,选用时主要应该讲求形象性,同时要遵从习惯性,并注意灵活性。不遵守量词使用的这些原则,就会闹出“一匹牛”“一头狗”“一只鱼”的笑话来。

二、活动尝试

所有已知人类语言都使用量化,即使是那些没有完整的数字系统的语言,量词是人们相互交往的重要词语。我们今天研究的量词不是究其语境和使用习惯问题,而是更多的给予它数学的意境。问题2:下列命题中含有哪些量词?(1)对所有的实数x,都有x2≥0;(2)存在实数x,满足x2≥0;

(3)至少有一个实数x,使得x2-2=0成立;(4)存在有理数x,使得x2-2=0成立;

(5)对于任何自然数n,有一个自然数s使得s=n×n;(6)有一个自然数s使得对于所有自然数n,有s=n×n;

分析:上述命题中含有:“所有的”、“存在”、“至少”、“任何”等表示全体和部分的量词。

三、师生探究

命题中除了主词、谓词、联词以外,还有量词。命题的量词,表示的是主词数量的概念。在谓词逻辑中,量词被分为两类:一类是全称量词,另一类是存在量词。

等词可统称为全称量词,记作x、y等,表示个体域里的所有个体。(2)存在量词

日常生活和数学中所用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,记作x,y等,表示个体域里有的个体。

3.含有全称量词的命题称为全称命题,含有存在量词的命题称为存在性命题。全称命题的格式:“对M中的所有x,p(x)”的命题,记为:xM,p(x)存在性命题的格式:“存在集合M中的元素x,q(x)”的命题,记为:xM,q(x)注:全称量词就是“任意”,写成上下颠倒过来的大写字母A,实际上就是英语“any”中的首字母。存在量词就是“存在”、“有”,写成左右反过来的大写字母E,实际上就是英语“exist”中的首字母。存在量词的“否”就是全称量词。

五、巩固运用

例1判断以下命题的真假:

(1)xR,x2x(2)xR,x2x

(3)xQ,x280(4)xR,x220 分析:(1)真;(2)假;(3)假;(4)真; 例2指出下述推理过程的逻辑上的错误: 第一步:设a=b,则有a2=ab

第二步:等式两边都减去b2,得a2-b2=ab-b2 第三步:因式分解得(a+b)(a-b)=b(a-b)第四步:等式两边都除以a-b得,a+b=b 第五步:由a=b代人得,2b=b 第六步:两边都除以b得,2=1 分析:第四步错:因a-b=0,等式两边不能除以a-b

第六步错:因b可能为0,两边不能立即除以b,需讨论。

心得:(a+b)(a-b)=b(a-b)a+b=b是存在性命题,不是全称命题,由此得到的结论不可靠。

同理,由2b=b2=1是存在性命题,不是全称命题。

例3判断下列语句是不是全称命题或者存在性命题,如果是,用量词符号表达出来。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:用假如一词写的语句下一篇:安童生童话

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题