中考数学猜想证明题

2024-12-10

中考数学猜想证明题(共10篇)

中考数学猜想证明题 篇1

2012年的8个解答题的类型

一实数的计算、整式的化简求值、分式的化简求值、解分式方程、解二元一次方程组、解不等式组并在数轴上表示解集

二画图与计算、圆的证明与计算、三角函数应用题

三统计应用题、用列表法或树形图求某以事件的概率、统计与概率的综合应用题

四一次与反比例函数的数形结合、二次函数的数形结合、列方程或方程组解应用题

五、猜想与证明题

六、综合应用题

七、探索发现应用题

八、动点应用题

现在举出典例来领悟猜想与证明题的解题思路:

中考数学中的“归纳猜想” 篇2

例1 (2015·淮安)将连续正整数按如下规律排列:

若正整数565位于第a行,第b列,则a+b=______.

【分析】根据题意可知每行都有4个数,所以用565除以4,根据商和余数的情况判断出正整数565位于第几行;然后根据奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,判断出565在第几列.

【解答】∵565÷4=141…1,

∴正整数565位于第142行,即a=142.

∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,

∴正整数565位于第五列,即b=5,

∴a+b=142+5=147.

【点评】此题主要考查了探索数列规律问题,注意观察总结出规律,并能正确地应用规律,

例2 (2015·徐州)如图1,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为_______.

【分析】首先求出AC、AE、AG的长度,然后猜测命题中的数学规律,即可解决问题.

【解答】根据正方形的性质,知:

【点评】此题主要考查探索图形变化规律的问题,需要结合正方形的性质、勾股定理及其应用,归纳得出正方形边长的变化规律.

例3 (2015·盐城)设△ABC的面积为1,如图2(1)将边BC、AC分别2等分,BE1、AD1交于点O,△AOB的面积记为S1;如图2(2)将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;……;依此类推,则Sn可表示为______.(用含n的代数式表示,其中n为正整数)

【点评】此题考查的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,解题关键是根据题意作出辅助线,得出相似三角形.

例4 (2015·衢州)已知,正六边形ABCDEF在直角坐标系的位置如图4所示,A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B的坐标是______.

【分析】每6次翻转为一个循环组循环,用2015除以6,根据商和余数的情况确定点B的位置,然后求出翻转前进的距离,过点B作BG⊥x轴于G,求出∠BAG=60°,然后求出AG、BG,再求出OG,最后写出点B的坐标即可.

【解答】因为正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,所以每6次翻转为一个循环组循环,因为2015÷6=335余5,所以经过2015次翻转为第336循环组的第5次翻转,点B处于在开始时点C的位置,如图5.因为A(-2,0),所以AB=2,所以翻转前进的距离为2×2015=4030.过点B作BG⊥x轴于G,则

中考数学复习几何证明压轴题 篇3

几何证明压轴题

1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)

求证:DC=BC;

(2)

E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;

(3)

在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.[解析]

(1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以.即DC=BC.(2)等腰三角形.证明:因为.所以,△DEC≌△BFC

所以,.所以,即△ECF是等腰直角三角形.(3)设,则,所以.因为,又,所以.所以

所以.2、已知:如图,在□ABCD

中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形

BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

[解析]

(1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD

∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD

∴AE=CF

∴△ADE≌△CBF

(2)当四边形BEDF是菱形时,四边形

AGBD是矩形.

∵四边形ABCD是平行四边形,∴AD∥BC

∵AG∥BD,∴四边形

AGBD

是平行四边形.

∵四边形

BEDF

是菱形,∴DE=BE

∵AE=BE,∴AE=BE=DE

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.

∴∠2+∠3=90°.

即∠ADB=90°.

∴四边形AGBD是矩形

3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

图13-2

E

A

B

D

G

F

O

M

N

C

图13-3

A

B

D

G

E

F

O

M

N

C

图13-1

A(G)

B(E)

C

O

D(F)

[解析](1)BM=FN.

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴

∠ABD

=∠F

=45°,OB

=

OF.

又∵∠BOM=∠FON,∴

△OBM≌△OFN

BM=FN.

(2)

BM=FN仍然成立.

(3)

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.

∴∠MBO=∠NFO=135°.

又∵∠MOB=∠NOF,∴

△OBM≌△OFN

BM=FN.

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。

(1)若,求CD的长;

(2)若

∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。

[解析]

(1)因为AB是⊙O的直径,OD=5

所以∠ADB=90°,AB=10

在Rt△ABD中,又,所以,所以

因为∠ADB=90°,AB⊥CD

所以

所以

所以

所以

(2)因为AB是⊙O的直径,AB⊥CD

所以

所以∠BAD=∠CDB,∠AOC=∠AOD

因为AO=DO,所以∠BAD=∠ADO

所以∠CDB=∠ADO

设∠ADO=4x,则∠CDB=4x

由∠ADO:∠EDO=4:1,则∠EDO=x

因为∠ADO+∠EDO+∠EDB=90°

所以

所以x=10°

所以∠AOD=180°-(∠OAD+∠ADO)=100°

所以∠AOC=∠AOD=100°

5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.

(1)求证:点F是BD中点;

(2)求证:CG是⊙O的切线;

(3)若FB=FE=2,求⊙O的半径.

[解析]

(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF

∴,∵HE=EC,∴BF=FD

(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO

∴∠OCF=90°,∴CG是⊙O的切线---------6′

方法二:可证明△OCF≌△OBF(参照方法一标准得分)

(3)解:由FC=FB=FE得:∠FCE=∠FEC

可证得:FA=FG,且AB=BG

由切割线定理得:(2+FG)2=BG×AG=2BG2

在Rt△BGF中,由勾股定理得:BG2=FG2-BF2

由、得:FG2-4FG-12=0

解之得:FG1=6,FG2=-2(舍去)

∴AB=BG=

∴⊙O半径为26、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线平行于轴,点P在直线上运动.

(1)当点P在⊙O上时,请你直接写出它的坐标;

(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]

解:

1点P的坐标是(2,3)或(6,3)

2作AC⊥OP,C为垂足.∵∠ACP=∠OBP=,∠1=∠1

∴△ACP∽△OBP

在中,又AP=12-4=8,∴

∴AC=≈1.94

∵1.94<2

∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,C

A

B

D

O

E

DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=∠OAC.[解析]

证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)

∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=∠OAC.8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为.

1求AO与BO的长;

2若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;

②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’=,试求AA’的长.

[解析]

1中,∠O=,∠α=

∴,∠OAB=,又AB=4米,∴米.米.--------------

(3分)

2设在中,根据勾股定理:

-------------

(5分)

∵  ∴

-------------

(7分)

AC=2x=

即梯子顶端A沿NO下滑了米.----

(8分)

3∵点P和点分别是的斜边AB与的斜边的中点

∴,-------------

(9分)

∴-------

(10分)

-----------------------

(11分)

∴-----

(12分)

∴米.--------

(13分)

9.(重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.

(1)

求直线AB的解析式;(2)

当t为何值时,△APQ与△AOB相似?

(3)

当t为何值时,△APQ的面积为个平方单位?

解:(1)设直线AB的解析式为y=kx+b

由题意,得

解得

所以,直线AB的解析式为y=-x+6.

(2)由AO=6,BO=8

得AB=10

所以AP=t,AQ=10-2t

当∠APQ=∠AOB时,△APQ∽△AOB.

所以 =

解得 t=(秒)

当∠AQP=∠AOB时,△AQP∽△AOB.

所以 =

解得 t=(秒)

(3)过点Q作QE垂直AO于点E.

在Rt△AOB中,Sin∠BAO==

在Rt△AEQ中,QE=AQ·Sin∠BAO=(10-2t)·=8

-t所以,S△APQ=AP·QE=t·(8-t)

=-+4t=

解得t=2(秒)或t=3(秒).

(注:过点P作PE垂直AB于点E也可,并相应给分)

点拨:此题的关键是随着动点P的运动,△APQ的形状也在发生着变化,所以应分情况:①∠APQ=∠AOB=90○②∠APQ=∠ABO.这样,就得到了两个时间限制.同时第(3)问也可以过P作

PE⊥AB.

10.(南充,10分)如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.

(1)写出y与x的函数关系,并确定自变量x的范围.

(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由.

解:(1)过动点P作PE⊥BC于点E.

在Rt⊿ABC中,AC=10,PC=AC-AP=10-x.

∵ PE⊥BC,AB⊥BC,∴⊿PEC∽⊿ABC.

故,即

∴⊿PBC面积=

又⊿PCD面积=⊿PBC面积=

即 y,x的取值范围是0<x<10.

(2)这个判断是正确的.

理由:

由(1)可得,⊿PAD面积=

⊿PBC面积与⊿PAD面积之和=24.

中考数学猜想证明题 篇4

1.如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H分别是BE,BC,CE的中点.

12BC,E H(1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EFBC,且EF

证明平行四边形EGFH 是正方形.

2、已知:如图,D是△ABC的边BC上的中点,DE⊥AC,DF⊥AB,垂足

分别为E、F,且BF=CE.当∠A满足什么条件时,四边形AFDE是正

方形?请证明你的结论.

3、已知:如图,在正方形ABCD中,AC、BD交于点O,延长CB

到点F,使BF=BC,连结DF交AB于E.求证:OE=()BF(在括号中填人一个适当的常数,再证明).

B D

F C4、(12分)已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.

(1)试猜想线段AE与BF有何关系?说明理由.

(2)若△ABC的面积为3 cm2,请求四边形ABFE的面积.

(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.

5、如图,正方形ABCD的边长为1,G为CD边上的一

个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于H。

(1)求证:①△BCG≌△DCE。②BH⊥DE.(2)试问当点G运动到什么位置时,BH垂直平分DE?请说明理由。

6、如图,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分线EF交AD于G,交BA的延长线于F,连结CG,且∠D=45o,(1)试说明ABCG为矩形;(2)求BF的长度。(6分)

7、已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8。求:梯形两腰AB、CD的长。

8、已知:如图,四边形ABCD是平行四边形,DE//AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF。

B

第7题图形

C

B9、四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;

(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.

10、(2011•海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;

(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).

11、如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;

(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.

12、将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.(1)求证:△ABE≌△AD’F

(2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.D’

D

B13、如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.

(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

14.如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合),△ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE.A(1)求证:△AEB≌△ADC;

(2)四边形BCGE是怎样的四边形?说明理由.15.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并什么理由.B

D

中考数学猜想证明题 篇5

例12013年上海市黄浦区中考模拟第24题

已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3).

(1)求此二次函数的解析式;

(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.

①求正方形的ABCD的面积; ②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA.

动感体验 请打开几何画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

请打开超级画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

思路点拨

1.数形结合,用抛物线的解析式表示点A的坐标,用点A的坐标表示AD、AB的长,当四边形ABCD是正方形时,AD=AB.

2.通过计算∠PAE与∠DPO的正切值,得到∠PAE=∠DPO=∠PDA,从而证明△PAD∽△PEA.

满分解答

(1)将点P(0, 1)、Q(2, -3)分别代入y=-x2+bx+c,得

c1,b0,解得 c1.42b13.

所以该二次函数的解析式为y=-x2+1.

(2)①如图1,设点A的坐标为(x, -x2+1),当四边形ABCD恰为正方形时,AD=AB.

此时yA=2xA. 解方程-x2+1=2x,得x1所以点A

1.因此正方形ABCD的面积等于1)]212

②设OP与AB交于点F,那么PFOPOF11)31)2.

PF所以tanPAE1.

AF又因为tanPDAtanDPO

OD

1,OP

所以∠PAE=∠PDA.

又因为∠P公用,所以△PAD∽△PEA.

图1图

2考点伸展

事实上,对于矩形ABCD,总有结论△PAD∽△PEA.证明如下:

如图2,设点A的坐标为(x, -x2+1),那么PF=OP-OF=1-(-x2+1)=x2.

PFx2

所以tanPAEx.

AFx

又因为tanPDAtanDPO

OD

x,OP

所以∠PAE=∠PDA.因此△PAD∽△PEA.

例22013年江西省中考第24题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)操作发现:

在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是__________(填序号即可).

①AF=AG=

AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.

2(2)数学思考:

在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?请给出证明过程;

(3)类比探究:

在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.答:_________.

1动感体验

请打开几何画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

请打开超级画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

思路点拨

1.本题图形中的线条错综复杂,怎样寻找数量关系和位置关系?最好的建议是按照题意把图形规范、准确地重新画一遍.

2.三个中点M、F、G的作用重大,既能产生中位线,又是直角三角形斜边上的中线. 3.两组中位线构成了平行四边形,由此相等的角都标注出来,还能组合出那些相等的角?

满分解答

(1)填写序号①②③④.

(2)如图4,作DF⊥AB,EG⊥AC,垂足分别为F、G.

因为DF、EG分别是等腰直角三角形ABD和等腰直角三角形ACE斜边上的高,所以F、G分别是AB、AC的中点.

又已知M是BC的中点,所以MF、MG是△ABC的中位线.

所以MF

1AC,MGAB,MF//AC,MG//AB. 2

2所以∠BFM=∠BAC,∠MGC=∠BAC.

所以∠BFM=∠MGC.所以∠DFM=∠MGE.

因为DF、EG分别是直角三角形ABD和直角三角形ACE斜边上的中线,所以EG

AC,DFAB. 22

所以MF=EG,DF=NG.

所以△DFM≌△MGE.所以DM=ME.

(3)△MDE是等腰直角三角形.

图4图5

考点伸展

第(2)题和第(3)题证明△DFM≌△MGE的思路是相同的,不同的是证明∠DFM=∠MGE的过程有一些不同.

如图4,如图5,∠BFM=∠BAC=∠MGC.

中考22题四边形证明 篇6

(中考解答题22题四边形证明题专题训练)

B90°,C45°,AD1,BC4,E为AB的中点,EF∥DC1.如图,在梯形ABCD中,AD∥BC,交BC于点F,求EF的长.

A E F

C

2.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB6,AE9,DE2,求EF的长.

3.(本题满分10分)

A

D F

B

C

公园里有一块形如四边形ABCD的草地,测得BCCD10米,BC120°,A45°.请你求出这块

草地的面积.

B

C

4.如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD4,DH5,EF6,求FG的长.

5.如图,在△ABC中,ACB90°,ACBC.CE⊥BE,CE与AB相交于点F.AD⊥CF于点D,且AD平分FAC.请写出图中两对全等三角形,并选择其中一对加以证明...

C

第4题

E

B

A

6.已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AEAC.

(1)求证:BGFG;

(2)若ADDC2,求AB的长.

G

C

7.(本题7分)

如图,点P是正方形ABCD的对角线BD上一点,连结PA、PC.(1)证明:PABPCB;

24题图

(2)在BC上取一点E,连结PE,使得PEPC,连结AE,判断△PAE的形状,并说明理由.

D

8.(本题满分10分,每小题满分各5分)

如图4,在梯形ABCD中,AD∥BC,ABDC8,B60°,BC12,联结AC.(1)求tanACB的值;

(2)若M、N分别是AB、DC的中点,联结MN,求线段MN的长.

C

(第24题)

B

9.(本小题满分8分)

4C

如图,在梯形ABCD中,AD∥BC,C90°,E为CD的中点,EF∥AB交BC于点F.(1)求证:BFADCF;

(2)当AD1,BC7,且BE平分ABC时,求EF的长.

第2题图

10.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)

已知梯形ABCD中,AD//BC,ABAD(如图7所示).BAD的平分线AE交BC 于点E,联结DE.

D(1)在图7中,用尺规作BAD的平分线AE(保留作 图痕迹,不写作法),并证明四边形ABED是菱形;(2)若ABC60,EC2BE,求证:EDDC.

11.如图,菱形ABCD的对角线AC与BD相交于点O,点E、F分别为边AB、AD的中点,连接EF、OE、OF.求证:四边形AEOF是菱形.F

12.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;

(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊

四边形?并证明你的结论.

D

F

13.(6分)

已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.(1)求证:△ABF≌△DAE;

(2)找出图中与△ABM相似的所有三角形(不添加任何辅助线).

B

M

B

O

D

B

3C

第19题图

A

FDEC

B

14.(7分)如图所示,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.(1)求证:BEDG.

(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.

15.为了向建国六十周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,……

请你根据①②步骤解答下列问题:(1)找出图中∠FEC的余角;(2)计算EC的长. .

16.(本小题满分8分)

已知:如图,在ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BEDG;

(2)若B60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.

17.(本小题满分8分)

B

E F

第21题图

C B

F

E C

A

D

BC20cm,6mc宽AB1

A B

F

C

G

D

如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B的位置,AB与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;

(2)若AB8,DE3,P为线段AC上任意一点,PGAE于G,PHEC于H.试求PGPH的值,并说明理由.

C

P

中考数学猜想证明题 篇7

如图:已知青AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。

分析:本题有好多种证明方法,由于新课标主

要用对称、旋转方法证明,但平行四边形的性

质、平行线性质等都是证题的好方法,我在这

里向初中三年级同学面对中考需对平面几何

证明题的证明方法有一个系统的复习和提高。

下边我将自己证明这道题的方法给各位爱好

者作以介绍,希望各位有所收获,仔细体会每中方法的异同和要点,从中能得到提高。我是

一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱:.证法一∧≌∠⊥∥△□°

证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故FD=DE;

证法二A

证明:过F点作FM∥AE,交BD于点M,则∠1=∠2 = ∠B所以BF=FM,又∠4=∠3∠5=∠E

所以△DMF≌△DCE,故 FD=DE。

F

C

证法三 E

以BC为对称轴作△BDF的对称△BDN,连

接NE,则△DBF≌△DBN,DF=DN,BN=BF,NF⊥BD,∠FBD=∠NBD,又因为∠C=∠FBD

所以∠NBD=∠C。BN∥CE,CE=BF=BN,所以四边形BNCE为平行四边形。故NF∥BC,所以NF⊥NE,因FN衩BD垂直平分,故D

EN是FE的中点,所以FD=DE。(也可证明D是直角△NEF斜边的中点)。

证法四:

证明:在CA上取CG=CE,则CG=BF,AF=AG,所以FG∥DC,又因为∠1=∠2,所以FBCG为等腰梯形,所以

FG∥DC,故DC是△EGF的中位线。所以 FD=DE。

E

证法五

证明:把△EDC绕C点旋转180°,得△GMC,则△EDC≌△GMC

M

CE=GC=BF

连接FG,由于GC=BF,从而AF=AG,∠1=∠AFG FG∥BC,所以FBMG为等腰梯形,所以 FG∥DC,故DC是△EGF的中位线。所以 FD=DE。证法六

证明:以BC为对称轴作△DCE的对称△DCN,则和△DCE≌△DCN;CN=CE=BF ∠2=∠3;又∠1=∠3,∠B=∠1所以

∠2=∠B,BF∥CN,所以四边形BCNF为平

行四边形,DC ∥FG,∠1=∠4,所以 ∠2=∠4=∠CNG,所以 CG=CN=CE; 故DC是DC是△EGF的中位线。所以 FD=DE。

证法七

证明:延长AB至G,使BG=CE,又因AB=AC,BF=CE则AG=AE

ABAG

ACAE

所以BC∥GE,则BD是△FGE

G

初中数学证明题 篇8

2.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC。求证:AE=BE。

.3.如图,△ABC中,AD

平分∠BAC,BP⊥AD于P,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB。

B 图1 P B C

4.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.

15.点D、E在△ABC的边BC上,AB=AC,AD=AE 求证:BD=CE

6.△ABC中,AB=AC,PB=PC.求证:AD⊥

BC A B D E C

7.已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:

HB=HC如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角

形.9.如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F。

(1)求证:AN=BM;

(2)求证:△CEF是等边三角形

A如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD的中线,CF

平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.11.如图:Rt△ABC

中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.

12.已知:如图,△BDE是等边三角形,A在BE延长线上,C在BD的延长线上,且AD=AC。求证:DE+DC=AE。

13.已知ΔACF

初中数学圆证明题 篇9

1.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD

2.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.

3.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

4.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,弧ABAF,BF和AD交于E,求证:AE=BE.

5.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.

6.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.求∠ACM的度数.

7.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.若点O沿CA移动,当OC等于多少时,⊙O与AB相切?

如图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.

(1)求证:OP∥CB;

(2)若PA=12,DB:DC=2:1,求⊙O的半径.

如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE•的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.

如图,BC是半圆O的直径,EC是切线,C是切点,割线EDB交半圆O于D,A是半圆O上一点,AD=DC,EC=3,BD=2.5

考研数学证明题题目11 篇10

这次的这个不等式大家看见了一定不会陌生,因为思路很容易就拿出来了。就是转化成求一个函数的极值问题。然后解法一就诞生了。

上面的方法估计是绝大多数人都会采用的方法,算是一种通法了。也是必须得掌握的重要思想方法之一。

然而,是不是这个题目除了这种方法就没有其他的办法来做了呢?答案是否定的。

注意到需要证明的不等式可以先化成e^x>x^2-2ax+1,而左边的式子要和幂函数联系起来,很容易想到的就是马克劳林展开。于是可以尝试着看看是否能够利用这个来做。

首先可以试着将e^x展开到二阶的,然后看看是否能够证明需要的不等式。发现不行,然后再继续多展开一阶。于是,解法二横空出世。

说句实话,就这道题而言,这种方法确实挺复杂的,而且还没有求导的方法精确。不过,这种思想方法对于一些题目来说,却可能是重要的突破口!下面看看一道习题吧。

由于这道题目比较难,所以直接给出解答。

上一篇:cpa经济法讲义第二章下一篇:健康知识分享