提公因式法分解因式的教学设计(精选6篇)
提公因式法分解因式的教学设计 篇1
提公因式法分解因式的教学设计
教学目标
(一)知识认知要求
进一步让学生掌握用提公因式法分解因式的方法.(二)能力训练要求
进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求
通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.教学重点
能观察出公因式是多项式的情况,并能合理地进行分解因式.教学难点
准确找出公因式,并能正确进行分解因式.教学过程
一、创设问题情境,引入新课
上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.二、新课讲解
[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)
从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.解:(1)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)
(2)6(m-n)3-12(n-m)2 =6(m-n)3-12[-(m-n)]2 =6(m-n)3-12(m-n)2 =6(m-n)2(m-n-2).二、做一做
请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).解:(1)2-a=-(a-2);(2)y-x=-(x-y);(3)b+a=+(a+b);(4)(b-a)2=+(a-b)2;
:(5)-m-n=-(m+n);
三、课堂练习
1.把下列各式分解因式:(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)(5)2(y-x)+3(x-y)(6)mn(m-n)-m(n-m)2.补充练习:把下列各式分解因式(1)5(x-y)3+10(y-x)2(2)m(a-b)-n(b-a)
(3)m(m-n)(p-q)-n(n-m)(p-q)(4)(b-a)2+a(a-b)+b(b-a)
四.课时小结
本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.五、课后作业(略)六.活动与探究
把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)
教学反思:
《数学课程标准》提出学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者,本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索,共同探究、解决问题.在教学中能注意充分调动学生的学习积极性、主动性,坚持做到以人为本,以学生为先,立足于让学生先看、先想、先说、先练,根据自己的体验,用自己的思维方式,通过实验、思考、合作、交流学好知识.
提公因式法分解因式的教学设计 篇2
那么, 为什么说十字相乘法是“巧妙”的因式分解方法呢?原因如下:
例1.2X2+3X-5在进行因式分解时, 利用新课改后的教材上的方法根本无法分解, 如果在解2X2+3X-5=0这个一元二次方程到时候就只能采求根公式的方法。如果老师在学习因式分解的时候讲了十字相乘法, 那么在后面学习一元二次方程的时候就变得很简单了。
2X2+3X-5= (X-1) (2X+5) 方法是:
把二次项系数2分解成1×2常数项-5分, 解成-1×5, 然后十字交叉相乘, -1×2=-2, 1×5=5, 如果-2与5的和等于一次项系数, 则即可进行分解, 分解的结果为 (X-1) (2X+5) 。
某些公式法分解因式也可以采用十字相乘法, 像完全平方公式、平方差公式等。
例2.把4X2+12X+9进行因式分解。
该题是利用完全平方和公式进行分解的, 分解的结果为 (2X+3) 2。而实际上该题运用十字相乘法也很简单。
把二次项系数4分解成2×2常数项9分, 解成3×3, 然后十字交叉相乘, 2×3=6, 2×3=6, 6与6的和等于一次项系数12, 即可分解为 (2X+3) 2。
例3.把X2-9进行因式分解。
该题应该利用平方差公式进行因式分解, 分解的结果为 (X+3) (X-3) , 而这道题也可以采用十字相乘法进行分解。
把二次项系数1分解成1×1常数项9分, 解成-3×3, 然后十字交叉相乘, 1×3=3, -1×3=-3, 而-3与3的和等于一次项系数0, 即可分解为 (X+3) (X-3) 。
事实上采用十字相乘法分解的时候, 是把二次项完全分解, 把常数项完全分解, 而十字交叉后得到是一次项, 而上面的几个问题都是把二次项系数进行分解, 实际上是省略了未知数。有的时候我们是不能省略的。
例4.把5X2-2XY-7Y2进行因式分解。
该题也可以采用十字相乘法进行因式分解, 具体分解的时候要把X2看成二次项, 把Y2看成常数项, 其余的看成是一次项。
把二次项5X2分解成5X乘以X, -7Y2分解成-7Y乘以Y, 然后十字交叉相乘, -7XY+5XY等于中间项-2XY, 因此最后分解为 (5X-7Y) (X+Y) 。
一些复杂的多项式利用分组分解法后再利用十字相乘法也可以进行分解因式。
例5.把6X2-5XY-6Y2+7X-17Y-5分解因式。
该题在计算的时候先分组, 把前三项 (二次项) 分成一组, 最后的常数项为一组, 剩余的两项 (一次项) 为一组, 前三项分成组后先利用十字相乘法分解为 (2X-3Y) (3X+2Y) , 后面两组不动, 则原式变为 (2X-3Y) (3X+2Y) + (7X-17Y) -5
然后再利用十字相乘法
而 (-3X-2Y) + (10X-15Y) =7X-17Y, 因此分解后的结果为 (2X-3Y-1) (3X+2Y+5) 。
例6.把X2-Y2+2Y-1进行因式分解。
该类型题经常出现在初中教材中, 一般解法为先把后三项分组后利用完全平方公式分解为 (Y2-2Y+1) = (Y-1) 2, 再利用平方差公式即可分解为 (X+Y-1) (X-Y+1) 。
但是有的同学一眼就发现X2-Y2要是分成一组可以先利用平方差公式, 可能有的老师就会说, 这样分组后面不能再分解了, 是错误的分组方法, 事实上这样分组也是完全可以的。
然后利用十字相乘法即可以分解
而 (-X+Y) + (X+Y) =2Y, 因此原式可分解为 (X+Y-1) (X-Y+1) 。
综上所述, 我认为十字相乘法在因式分解中相当重要, 不应该从教科书中删除, 即使删除了, 作为思维的扩展教师也应该把这个方法教授给学生, 如果学生真的学懂了, 学透了, 那么对今后的学习将是受用无穷。
参考文献
提公因式法分解因式“五注意” 篇3
一、提公因式需完整
例1 分解因式8x3+4x2+4x。
分析 8x3+4x2+4x=2x(4x2+2x+2)是错误的,错解中只是找到了公约数2,但2不是最大公约数。
解 8x3+4x2+4x=4x(2x2+x+1)。
点评 确定公因式时要对系数和字母分别进行考虑,当各项系数都是整数时,把它们的最大公约数提出来,把各项都含有的字母的最低次幂的积提出来。
二、首项为负勿忘提
例2 把-4m3+16m2-26m分解因式。
分析 此多项式第一项的系数是负数,应先提负号转化,然后再提公因式,提负号时,注意添括号法则。
解 -4m3+16m2-26m=-(4m3-16m2+26m)=-2m(2m2-8m+13)。
点评 通过此例可以看出,应用提公因式法分解因式时,应先观察第一项系数的正负,如是负号时,运用添括号法则提出负号,此时一定要把每一项都变号,然后再提公因式。
三、提公因式后勿漏项
例3 把3x2-6xy+x分解因式。
分析 3x2-6xy+x=x(3x-6y)是错误的,当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉。
解 3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1)。
点评 这类题可以利用恒等变形分析错误原因。还应提醒同学们注意:提公因式后,因式的项数应与原多项式的项数一样,这样可以检查是否漏项。
四、 整体代换可省力
例4 分解因式3(x-y)2-(y-x)3。
分析 3(x-y)2-(y-x)3=3(x2-2xy+y2)-(y3+3yx2-3y2x-x3),如果合并同类项再分解,由于代数式较为复杂,无法继续。观察多项式中的每一项都含有多项式(x-y),同时注意(y-x)3=-(x-y)3,且(x-y)的最低次数是2,所以多项式的公因式是(x-y)2。
解 3(x-y)2-(y-x)3=3(x-y)2+(x-y)3=(x-y)2·[3+(x-y)]=(x-y)2·(3+x-y)。
点评 当一个多项式的公因式是以多项式的形式出现时,可将多项式作为一个整体提出来。
五、括号里面要分到“底”
例5 把4x4y2-5x2y2-9y2分解因式。
分析 4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)是错误的,括号里面没有分解到“底”,因式(4x2-9)还可以用平方差公式分解。
解 4x4y2-5x2y2-9y2=y2(x2+1)(4x2-9)=y2(x2+1)(2x+3)(2x-3)。
分解因式法教学设计 篇4
一元二次方程
4.分解因式法
山东省青岛市崂山第六中学 宋彩霞
一、学生知识状况分析
学生的知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了解一元一次方程的方法,熟练掌握了解一元一次方程的步骤;在八年级学生学习了分解因式,掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,切实提高了应用意识和能力,也感受到了解一元二次方程的必要性和作用;同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
教科书基于用分解因式法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:能根据已有的分解因式知识解决形如“x(x-a)=0”和“x2-a2=0”的特殊一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次递进的课堂组成,因而具体的课堂教学也应满足于远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《分解因式法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“经历由具体问题抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。”同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是: 知识与技能目标
1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性;
2、会用分解因式法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程;
3、通过分解因式法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。过程与方法目标
1、通过学生探究一元二次方程的解法,使学生知道分解因式法是解一元二次方程的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;
2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方
法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。情感与态度目标
1、经历观察,归纳分解因式法解一元二次方程的过程,激发好奇心;
2、进一步丰富数学学习的成功体验,使学生在学习中培养良好的情感、态度和主动参与、合作交流的意识,进一步提高观察、分析、概括等能力。
三、教学过程分析
本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。
第一环节:复习回顾
内容:
1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。
2、用公式法解一元二次方程应先将方程化为一般形式。
3、选择合适的方法解下列方程: ①x2-6x=7 ②3x2+8x-3=0 目的:以问题串的形式引导学生思考,回忆两种解一元二次方程的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫。
实际效果:第一问题学生先动笔写在练习本上,有个别同学少了条件“n≥0”。第二问题由于较简单,学生很快回答出来。
第三问题由学生独立完成,通过练习学生复习了配方法及公式法,并能灵活应用,提高了学生自信心。
第二环节:情景引入、探究新知
内容:
1、师:有一道题难住了我,想请同学们帮助一下,行不行? 生:齐答行。
师:出示问题,一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?
说明:学生独自完成,教师巡视指导,选择不同答案准备展示。附:学生A:设这个数为x,根据题意,可列方程 x2=3x ∴x2-3x=0 ∵a=1,b=-3,c=0 ∴ b2-4ac=9 ∴ x1=0, x2=3 ∴ 这个数是0或3。
学生B::设这个数为x,根据题意,可列方程 x2=3x ∴ x2-3x=0 x2-3x+(3/2)2=(3/2)2(x-3/2)2=9/4 ∴ x-3/2=3/2或x-3/2=-3/2 ∴ x1=3, x2=0 ∴这个数是0或3。
学生C::设这个数为x,根据题意,可列方程 x2=3x ∴ x2-3x=0 即x(x-3)=0 ∴ x=0或x-3=0 ∴ x1=0, x2=3 ∴ 这个数是0或3。
学生D:设这个数为x,根据题意,可列方程 x2=3x 2 两边同时约去x,得
∴ x=3 ∴ 这个数是3。
2、师:同学们在下面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么? 说明:小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。
超越小组:我们认为D小组的做法不正确,因为要两边同时约去X,必须确保X不等于0,但题目中没有说明。虽然我们组没有人用C同学的做法,但我们一致认为C同学的做法最好,这样做简单又准确.学生E:补充一点,刚才讲X须确保不等于0,而此题恰好X=0,所以不能约去,否则丢根.师:这两位同学的回答条理清楚并且叙述严密,相信下面同学的回答会一个比一个棒!(及时评价鼓励,激发学生的学习热情)
3、师:现在请C同学为大家说说他的想法好不好? 生:齐答好
学生C:X(X-3)=0 所以X1=0或X2=3 因为我想3×0=0, 0×(-3)=0,0×0=0反过来,如果ab=0,那么a=0或b=0,所以a与b至少有一个等于0
4、师:好,这时我们可这样表示:
如果a×b=0,那么a=0或b=0 这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”。
所以由x(x-3)=0得到x=0和x-3=0时,中间应写上“或”字。
我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a×b=0,则a=0或b=0,把一元二次方程变成一元一次方程,从而求出方程的解。我们把这种解一元二次方程的方法称为分解因式法,即
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我门就采用分解因式法来解一元二次方程。
目的:通过独立思考,小组协作交流,力求使学生根据方程的具体特征,灵活选取适当的解法.在操作活动过程中,培养学生积极的情感,态度,提高学生自主学习和思考的能力,让学生尽可能自己探索新知,教师要关注每一位学生的发展.问题3和4进一步点明了分解因式的理论根据及实质,教师总结了本节课的重点.实际效果:对于问题1学生能根据自己的理解选择一定的方法解决,速度比较快。第2问让学生合作解决,学生在交流中产生了不同的看法,经过讨论探究进一步了解了分解因式法解一元二次方程是一种更特殊、简单的方法。C同学对于第3问的回答从特殊到一般讲解透彻,学生语言学生更容易理解。问题4的解决很自然地探究了新知——分解因式法.并且也点明了运用分解因式法解一元二次方程的关键:将方程左边化为因式乘积,右边化为0,这为后面的解题做了铺垫。
说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。
第三环节 例题解析
内容:解下列方程(1)、5X2=4X(仿照引例学生自行解决)(2)、X-2=X(X-2)(师生共同解决)(3)、(X+1)2-25=0(师生共同解决)学生G:解方程(1)时,先把它化为一般形式,然后再分解因式求解。解:(1)原方程可变形为
5X2-4X=0 3 ∴ X(5X-4)=0 ∴ X=0或5X-4=0 ∴ X1=0, X2=4/5 学生H:解方程(2)时因为方程的左、右两边都有(x-2),所以我把(x-2)看作整体,然后移项,再分解因式求解。解:(2)原方程可变形为
(X-2)-X(X-2)=0 ∴(X-2)(1-X)=0 ∴ X-2=0或1-X=0 ∴ X1=2,X2=1 学生K:老师,解方程(2)时能否将原方程展开后再求解
师:能呀,只不过这样的话会复杂一些,不如把(x-2)当作整体简便。
学生M:方程(x+1)2-25=0的右边是0,左边(x+1)2-25可以把(x+1)看做整体,这样左边就是一个平方差,利用平方差公式即可分解因式。解:(3)原方程可变形为 [(X+1)+5][(X+1)-5]=0 ∴(X+6)(X-4)=0 ∴ X+6=0或X-4=0 ∴ X1=-6,X2=4 师:好﹗这个题实际上我们在前几节课时解过,当时我们用的是开平方法,现在用的是因式分解法。由此可知:一个一元二次方程的解法可能有多种,我们在选用时,以简便为主。问题:
1、用这种方法解一元二次方程的思路是什么?步骤是什么?(小组合作交流)
2、对于以上三道题你是否还有其他方法来解?(课下交流完成)目的:例题讲解中,第一题学生独自完成,考察了学生对引例的掌握情况,便于及时反馈。第2、3题体现了师生互动共同合作,进一步规范解题步骤,最后提出两个问题。问题1进一步巩固分解因式法定义及解题步骤,而问题2体现了解题的多样化。
实际效果:对于例题中(1)学生做得很迅速,正确率比较高;(2)、(3)题经过探究合作最终顺利的完成,所以学生情绪高涨,讨论热烈,思维活跃,正是因为这,问题1、2学生们有见地的结论不断涌现,叙述越来越严谨。
说明:在课本的基础上例题又补充了一题,目的是练习使用公式法分解因式。
第四环节:巩固练习内容:
1、解下列方程:(1)(X+2)(X-4)=0(2)X2-4=0(3)4X(2X+1)=3(2X+1)
2、一个数平方的两倍等于这个数的7倍,求这个数?
目的:华罗庚说过“学数学而不练,犹如入宝山而空返”该练习对本节知识进行巩固,使学生更好地理解所学知识并灵活运用。
实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习基本能用分解因式法解一元二次方程,收到了较好的效果。
第五环节 拓展与延伸 师:想不想挑战自我? 学生:想
内容:
1、一个小球以15m/s的初速度竖直向上弹出,它在空中的速度h(m),与时间t(s)满足关系:h=15t-5t2 小球何时能落回地面?
2、一元二次方程(m-1)x2 +3mx+(m+4)(m-1)=0有一个根为0,求m 的值 说明:a学生交流合作后教师适当引导提出两个问提,1、第一题中小球落回地面是什么意思?
2、第二题中一个根为0有什么用?
b这组补充题目稍有难度,为了激发优秀生的学习热情。
目的:学生在对分解因式法直接感知的基础上,在头脑加工组合,呈现感知过的特点,使认识从感知不段发展,上升为一种可以把握的能力。同时学生通过独立思考及小组交流,寻找解决问题的方法,获得数学活动的经验,调动了学生学习的积极性,也培养了团结协作的精神,使学生在学习中获得快乐,在学习中感受数学的实际应用价值。
实际效果:对于问题1,个别学生不理解问题导致没列出一元二次方程;问题2由于在配方法时接触过此类型的题目,因此掌握比较不错。
说明:小组内交流时,教师关注小组中每个学生的参与积极性及小组内的合作交流情况。
第六环节 感悟与收获 内容:师生互相交流总结
1、分解因式法解一元二次方程的基本思路和关键。
2、在应用分解因式法时应注意的问题。
3、分解因式法体现了怎样的数学思想? 目的:鼓励学生结合本节课的内容谈自己的收获与感想。
实际效果:学生畅所欲言,在民主的氛围中培养学生归纳概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我、欣赏他人。
第七环节 布置作业
1、课本62页习题2.7 1、2(2)(3)
2、预习内容:P62—P64
3、预习提纲:如何列方程解应用题
四、教学反思
评价的目的是为了全面了解学生的学习状况,激励学生的学习热情,促进学生的全面发展.所以本节课在评价时注重关注学生能否积极主动的思考,能否清楚的表达自己的观点,及时发现学生的闪光点,给予积极肯定地表扬和鼓励增强他们对数学活动的兴趣和应用数学知识解决问题的意识,帮助学生形成积极主动的求知态度
提公因式法教案 篇5
教学流程:
一、导入及板书课题:
复习巩固整式的乘法。板书课题:提公因式法因式分解
二、学习目标:
1.了解因式分解的概念;
2.理解公因式的概念,会用提公因式法对多项式进行因式分解。
三、教学过程:
(一)自学指导:
1、自己认真看课本第42页到第43页的内容;
2、时间(5分钟)
3、自学方法:结合课本例题和云图中问题,独立思考,标出看不懂的地方,可以和同桌小声交流试一试的图形意思
4.你能用吗提公因式法对多项式进行因式分解吗?
(二)自学检测(8分钟)
1、找四名学生书写两数和与两数差的公式
2、挑各组学生进行板演。
3、兵教兵(2分钟)
要求:各小组组长要切实负起责任,组长要落实好组员的学习情况,组长也讲不清的可以问教师。
4、教师点拨(2分钟)
①、公因式的系数是各项系数的最大公因数;
②、字母是各项中相同的字母,指数取各字母指数最低的;
③、要善于发现较隐蔽的公因式,如(X-Y)与(Y-X)是一对相反数,但它们可以变为相同的因式。
课堂作业:活页试题
数学教案-提公因式法 篇6
请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.
注意:公因式是各项都含有的公共的因式.
又如:a是多项式a2-a各项的`公因式.
ab是多项式5a2b-ab2各项的公因式.
2mn是多项式4m2np-2mn2q各项的公因式.
根据乘法的分配律,可得
m(a+b+c)=ma+mb+mc,
逆变形,便得到多项式ma+mb+mc的因式分解形式
ma+mb+mc=m(a+b+c).
这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式 ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.
定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多 项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:
(1)ax+ay+a (a)
(2)3mx-6mx2 (3mx)
(3)4a2+10ah (2a)
(4)x2y+xy2 (xy)
(5)12xyz-9x2y2 (3xy)
例3 把8a3b2-12ab3c分解因式.
分析:分两步:第一步,找出公因式;第二步,提公因式.
先引导学生按确定公因式的方法找出多项式的公因式4ab2.
解:8a3b2-12ab3c=4ab2・2a2-4ab2・3bc=4ab2(2a2-3bc).
说明:
(1)应特别强调确定公因式的两个条件以免漏取.
(2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.
例4 把3x2-6xy+x 分解因式.
分析:先引导学生找出公因式x,强调多项式中x=x・1.
解:3x2-6xy+x
=x・3x-x・6y+x・1
=x(3x-6y+1).
说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.
课堂练习:(投影)
把下列各式分解因式:
(l)2πR+2πr;
(2)
(3)3x3+6x2;
(4)21a2+7a;
(5)15a2+25ab2;
(6)x2y+xy2-xy.
例5 把-4m3+16m2-26m分解因式.
分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提-号时,注意添括号法则.
解:-4m3+16m2-26m
=-(4m3-16m2+26m)
=-2m(2m2-8m+13).
说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.
课堂练习:(投影)
把下列各式分解因式:
(1)-15ax-20a;
(2)-25x8+125x16;
(3)-a3b2+a2b3;
(4)-x3y3-x2y2-xy;
(5)-3ma3+6ma2-12ma;
(6)
(三)小结
1.因式分解的意义及其概念.
2.因式分解与整式乘法的联系与区别.
3.公因式及提公因式法.
4.提公因式法因式分解中应注意的问题.
六、作业
教材 P.10中 1、2、3、4.
【提公因式法分解因式的教学设计】推荐阅读:
《运用平方差公式法分解因式》教学设计09-24
因式分解公式法(导学案)12-07
分解因式论文11-16
理解因式分解的意义09-08
用完全平方公式分解因式教学反思07-09
八年级因式分解的应用10-17
因式分解复习教案10-02
人教版因式分解教案07-30
数学思想在因式分解教学中的渗透与应用12-08
因式分解练习题经典06-01