数学专业基础课(共12篇)
数学专业基础课 篇1
《国家中长期教育改革和发展规划纲要 (2010—2020年) 》明确提出, “以中青年教师和创新团队为重点, 建设高素质的高校教师队伍。大力提高高校教师教学水平、科研创新和社会服务能力”。目前, 我国教育对高校教师专业素质的关注达到了前所未有的高度。民办高校数学公共基础课教师承担着高校重要的公共基础课程, 其专业发展有着一定的特殊性, 迥异于其他专业教师的专业发展。
一、数学教师专业发展的含义
一般地, 教师专业发展被理解为一个可持续发展的过程, 在这一过程中, 教师应当不断提升自己的专业意识, 加强新知识的学习, 逐步提高自己的专业能力。专业意识、专业知识和专业能力等诸多因素构成了教师专业素养。教师专业素养经历着循序渐进、螺旋式的发展过程, 即由一个专业新手发展成为研究型教师或教育家型教师的发展过程[1]。
数学教育观念的形成、数学知识结构的完善、数学课程资源的开发、多维性教学思维的塑造等方面的特殊性决定着数学教师专业发展的特殊性[2]。数学学科内容和课程地位决定了数学教师专业发展的特殊性。数学教师提升专业素养时应当突出数学属性, 不能淡化数学味道。数学教师发展的内容不应当局限于教学, 科研创新和社会服务能力同样是数学教师发展的重要内容。数学教师也可以开展一些类似数学家的研究, 例如解题研究、教学研究和学习研究等等, 这些研究属于广义上的科研创新, 研究成果可以服务社会。
基于以上的分析, 对数学教师专业发展做如下界定:教学方面, 不断接受数学教育的专业训练, 完善自己的数学学习观和数学教学观, 发展自己数学教育的专业素养, 由教学新手逐渐成长为教学专家;科研方面, 不断完善自己的数学观, 提高自己数学研究和数学教学研究水平;社会服务方面, 利用自己的教学和科研, 服务社会, 促进社会文化经济发展。
二、数学公共基础课教师专业发展面临的问题
受制于民办高校教师专业发展机会、民办高校经费投入和民办高校教师教育的实效性等因素的影响, 民办高校教师的专业发展存在以下的困境[3]:专业知识“先天不足”、专业技能有待提高、专业情意遭受轻视和教育科研素养存在明显不足之处。民办高校数学公共基础课教师专业发展在面临上述困境的同时, 也遇到了相对特殊的问题。
(一) 专任教师数量少且缺少教学发展激励机制
在很多民办高校, 专职数学教师的数量较少, 并且普遍年轻。与专业课教师相比, 数学教师承担着大量繁重的数学公共基础课教学;外出参加培训和学习交流机会较少。为了尽快加强专业学科建设, 民办高校师资队伍建设的重点是专业课教师, 相关政策也向专业课教师倾斜。在申报一些有名额限制的省市级精品课和教学成果奖时, 即便数学公共基础课综合实力较强, 民办高校往往会优先照顾专业学科课程。
数学公共基础是各专业后续课程的重要基础课程, 对很多后续专业课程的教学起着重要的作用。但是, 在民办高校, 数学教师普遍缺乏了解学生的专业特点, 不清楚学生后续课程尤其是专业课程中应用哪些数学内容和思想方法以及如何应用。加强与后续专业课程教学衔接成为数学教师忽视的一个重要问题。
(二) 缺少科研创新的动力
与专业课教师相比, 数学教师年复一年地重复公共基础课的教学, 教学内容几乎没有任何创新。加之教学任务繁重, 数学教师缺少科研动力和闲暇时间。数学公共基础课教师没有机会指导学生的毕业论文。在科研项目申报时, 学校通常会把名额分配给专业课教师, 数学方面的课题很难通过单位审核。课题很难申报成功, 这在一定程度上影响了数学教师的科研创新热情。
(三) 缺少参与社会服务的意识
很多数学教师认为自己的社会职责就是完成教学任务, 大学生社会实践活动、“科教强省”、“文化强市”等与己无关。数学公共基础课的教学和科研也能履行高校社会服务功能?很多数学教师对此深表质疑。
三、数学公共基础课教师专业发展路径
(一) 加强伙伴协作
1. 增进与校内外同事交流。
校内外同事互动是促进数学教师专业发展的重要途径。数学同事之间经常讨论课堂教学问题以及科研创新等问题, 这是专业发展最好的契机。每一位教师在教学专业发展方面获得提高的最主要推动力就是同事之间的相互交流, 分享彼此的经验, 启发彼此的灵感。这种互动形式在解决核心教学问题情况下运作得最好, 成为教师长期专业发展的有效机制。
2. 融入网络学习共同体中。
网络时代给教师专业发展营造了非常便利的学习条件。网络环境也可以融合同伴互助、专业引领以及培训课程, 构建一个网络学习共同体, 提高教师专业学习的持续性[4]。最近几年, 高校教师网络培训逐渐成为高校教师专业发展的一个重要方式。通过登陆“教师发展在线”, 高校教师可以在线观看获得全国高校教学名师奖和主持国家精品课程的教学名师主讲的培训课程, 培训内容包括先进教学理念、经验、技术和方法。在线培训过程中, 既可以与数学教学名师进行交流, 也可以与全国各地其他高校数学教师进行互动。这是一条经济实惠、非常便捷并且实效性非常强的专业发展路径。
(二) 注重项目驱动
1. 教学技能竞赛项目。
一般地, 民办高校每年都开展青年教师教学基本功竞赛, 并将竞赛结果作为教师考评的重要内容和依据。北京市和海南省等省市高校教育主管部门每年都组织省市内高校开展青年教师教学比赛。2012年, 中国教科文卫体工会全国委员会组织开展了首届全国青年教师教学竞赛。无论是精心准备参与竞赛的数学教师, 还是观摩比赛的其他数学教师无疑都能在教学技能方面获得一定的收益[5]。参加和观摩教学技能竞赛是一次集中学习文理工各学科优秀教师教学优点的机会。虽然学科不同, 处理课堂教学的方式和手段也有所差异, 但是在相互观摩、比较和学习的过程中, 数学教师可以获得一些教学启发, 这对其专业成长的促进作用不言而喻。
2. 教学科研项目。
承担公共基础课的数学教师可以根据学生实际情况和课程教学要求开展一些教学改革项目, 例如大学数学分层次教学的研究与实践、民办高校大学生数学素质教育研究等。数学教师可以先积极申报学校教改项目、省市级民办教育协会课题和教育科学规划课题, 积累了一定的研究成果和基础后再进一步申报教育厅和教育部课题等等。总之, 民办高校数学公共基础课教师同样可以在课题申报方面取得一系列的成果。科研过程中, 数学教师既要考虑数学教育对学生未来步入社会后的深远意义, 也应当紧紧围绕“科教强省”、“文化强市”等地方发展战略, 密切关注社会政治经济文化建设和发展的热点、难点和重点问题。例如运用数学建模探讨企业生产计划的优化问题、公交集团公共车调度问题、疾病传播问题、企业养老金问题等等。数学教师可以利用数学知识参与这些问题的解决, 其咨询建议有可能为地方社会发展提供智力支持, 为政府决策提供参考, 实现履行服务社会的社会职责。
3. 学生竞赛指导项目。
为促进学生能力的提高, 民办高校每年都会组织学生参加全国大学生数学建模竞赛和全国大学生高等数学竞赛等赛事。在指导学生参加这些数学竞赛的过程中, 数学教师必然会产生强烈的紧迫感:高等数学竞赛不局限于日常的数学课堂教学内容, 数学教师需要深入研究高等数学思想方法和解题技巧;数学建模竞赛强调的是运用数学思想方法解决实际问题的能力, 突出数学思想方法和数学软件的创新运用, 这就需要数学教师学习大量新知识。在指导学生参赛的过程中, 数学教师能够从各个方面了解其他院校的教学方向和水平, 获得与其他学校数学教师交流学习的机会, 进而提高自己综合的专业能力和水平。
(三) 提高专业发展的自主意识
表面上, 由于受制于各种条件限制, 民办高校数学公共基础课教师的专业发展空间有限。事实上, 正如前面所述, 这一特殊教师群体仍可以主动创造很多的专业发展机会。关键是数学教师是否具备专业自主发展的意识, 是否善于捕捉和挖掘专业发展的机会。教师应当科学合理地制订自己短期、中期和长期专业发展规划。只有明确了专业发展目标, 才能在日常教学和科研工作中不断反思自己。专业发展的机遇无处不在, 数学教师缺少的是专业发展的自主意识。唯有提高专业发展的自主意识, 教学教师才能在与校内外同事交流过程中获得专业发展的机会, 为自己创造专业发展的项目, 比如寻找适合的科研项目、指导学生竞赛等等。
参考文献
[1]赵昌木.教师专业发展[M].济南:山东人民出版社, 2011:8.
[2]喻平, 徐文彬.PME关于数学教师专业发展的研究及启示[J].数学通报, 2012, (5) .
[3]杜志强, 欧阳梦琴.我国民办高校教师专业发展之理性审视[J].教育探索, 2012, (1) .
[4]王兄.用于数学教师专业发展的网络学习共同体——机遇与挑战[J].现代教育技术, 2010, (5) .
[5]王凤春.民办高校教师专业成长路径探讨[J].今日湖北:下旬刊, 2011, (9) .
数学专业基础课 篇2
学科门类:07 理学
一级学科:0701 数学
专业名称:070101 基础数学
北京:(10001)北京大学(10002)中国人民大学(10004)北京交通大学(10010)北京化工大学
(10027)(10028)(10052)(11413)(80001)(82817)
天津:(10055)南开大学(10056)天津大学(10065)天津师范大学
河北:(10075)河北大学(10094)河北师范大学
山西:(10108)山西大学(10110)中北大学
内蒙古:(10135)内蒙古师范大学
辽宁:(10141)大连理工大学(10145)东北大学(10165)辽宁师范大学(10167)渤海大学 吉林:(10183)吉林大学(10184)延边大学(10200)东北师范大学(10201)北华大学(10203)
黑龙江:(10212)黑龙江大学(10213)哈尔滨工业大学(10214)哈尔滨理工大学(10231)
上海:(10246)复旦大学(10247)同济大学(10252)上海理工大学(10255)东华大学(10269)(10270)
江苏:(10284)南京大学(10285)苏州大学(10286)东南大学(10287)南京航空航天大学(10288)南京理工大学(10290)中国矿业大学(10299)江苏大学(10319)南京师范大学
(10320)(10332)(11117)
浙江:(10335)浙江大学(10336)杭州电子科技大学(10338)浙江理工大学(11646)宁波大学
(10345)(10346)
安徽:(10357)安徽大学(10358)中国科学技术大学(10373)淮北煤炭师范学院(10370)安徽师范大学
福建:(10384)厦门大学(10385)华侨大学(10386)福州大学(10394)福建师范大学(10402)漳州师范学院
江西:(10403)南昌大学(10414)江西师范大学(10418)赣南师范学院
四川:(10610)四川大学(10613)西南交通大学(10621)成都信息工程学院
(10636)
贵州:(10657)贵州大学(10663)贵州师范大学
云南:(10673)云南大学(10681)云南师范大学(10691)云南民族大学
陕西:(10697)西北大学(10698)西安交通大学(10699)西北工业大学(10718)陕西师范大学
(10719)延安大学
甘肃:(10730)兰州大学(10731)兰州理工大学(10732)兰州交通大学(10736)西北师范大学
青海:(10746)青海师范大学
专业群公共基础课建设探讨 篇3
关键词:基础课建设 方法能力 专业群 项目评价
中图分类号:G712文献标识码:A文章编号:1673-9795(2012)09(b)-0123-01
高职院校分院或系部有许多相似专业,这些专业既有共同的课程,又各具特色。在学生就业岗位方面属于同一类岗位群,这些年各个院校都在开展专业群的建设。笔者所在的浙江经贸职业技术学院信息技术系有5个专业,分别是软件、电商、动漫、计算机和网络专业。在系部开展的专业群建设中,开设了一门新的课程—— IT职业技能实训课程。本文以此新课程为例来说明建设专业群基础课程中的一些实践和思考。
1 大类招生的背景下,专业群基础课程应该作为专业分流的一个依据
在大类招生的背景下,学生学完基础课程后,要有相应的分流。分流的依据关系到学生的发展以及资源的公平合理分配。让学生能了解到可能的专业方向,让学生自己探索自己的兴趣,并且让学生和专业在分流中能有一个有效的参考是课程结构设置和项目内容设置的一个基本原则。
(1)建设的IT职业技能实训课程应满足学生了解各个不同专业的需求。这样学生在学完相应的基础课以后,能根据自己所学的内容,对自己的兴趣有所了解,给自己一个相对清晰的方向。因此,我们在新课程开发过程中考虑了范围的覆盖,课程中的视频后期特效与剪辑项目,倾向于多媒体方向;手动杀毒项目,倾向于网络安全方向;电子商务网站编辑项目,倾向于电子商务营销方向;计算机组装与维修项目,倾向于系统维护方向。
(2)课程的项目需要有探索性和拓展性。通过课程的设计,使学生并不仅仅只是根据教师给定的资源来完成一个项目,还能主动查找相关IT方向的资料,在查找资料的过程中发觉自己的兴趣。比如系统安全维护项目,我们给出了有递进特点的项目任务,使用杀毒软件杀毒——使用手动杀毒工具——根据系统扫描信息和注册表进行杀毒。经过这个递进的任务,有兴趣的同学在完成前两个任务后,查询更多的资料来完成第三个任务,这个过程中包含病毒特点的分析、系统的安全维护等内容。
(3)对课程的各个项目进行独立的评价,这个评价成绩作为在学生选专业分流过程中一个参考的依据。专业群的基础课完成以后,学生面临一个选择专业的问题,在客观的师资和硬件环境下,每个不同的专业会有一定的人数限制,学生和专业的选择是一个双向互动的关系。这个过程中不同项目的评价成绩,作为学生的一个参考,同时在专业对学生的选择中也作为一个指标。
2 学生方法能力的培养在基础课中应该有充分体现
高职院校这些年特别重视课程的改革,突出能力教育,突出学生学习的主体地位。很多的专业课程的教学方法也进行了改进,摆脱了教师授课、学生记笔记的刻板学习方法,纷纷开展基于工作过程的项目化教学。新的教学模式的变化需要有一个基础,这个基础就是学生要养成良好的学习态度和习惯。作为专业群的基础课,则需要主要培养学生的方法能力。方法能力的学习包含很多方面,我们就具体实践过程中主要培养的方面做以下分享和讨论。
小组合作学习在方法能力中应该首先被考虑。在各种各样的面试过程中,人力资源部门在考核一个新人的时候,团队合作能力是一个重要的考量角度。我们课程一个重要的课程目标就是要培养学生的团队协作习惯。在分组学习方面,考虑人员结构和人数两个因素。小组人员的组成可以采用教师指定和随机结合方式,在教师对学生有充分了解的前提下,教师可以根据学生的性格特点进行小组分组。我们实践的方法是每组3~4人,采用自由结合的方式,要求每组男女生都要有,这主要是考虑到男学生和女学生不同的性格特点,男学生动手能力偏强,女学生则在文档写作和秩序化条理方面有一定的优势。
沟通表达能力也是需要培养的一项重要能力。为了提高学生这个方面的水平,我们课程中设置了3个环节。要求每组学生有讨论记录,让学生能充分有效地参与讨论,倾听别人,发表自己的观点和看法。在项目汇报过程中,要求每组派一名同学上台汇报内容。在组间评价阶段,我们会提问其他小组成员,让他们发表他们的评价。
想象力和创造力的培养能给学生多角度的思路。创造力的培养,一直是一个永恒的话题,如何在课程中实践,也是作为高校教师要思索的问题。我们在设置项目设置的过程中,某些项目应该有学生充分发挥的自由,结果可以有多个,让学生充分发挥他们的想象力和创造力。
3 项目的考核评价
对学生学习的考核有两个作用,其一,对学生有一个客观的评价,作为一个参考指标;其二,给学生适当的压力,产生学习动机。小组作为一个团队进行考核,我们把这个考核成绩分为三部分:第一部分是小组自评,这个过程中让学生充分对自己的项目过程和项目结果进行总结;第二部分是小组互评,这个过程让其他小组说出自己的建议,并且给予他们打分的权利,提高他们在参与过程的积极性;第三部分是教师评价,教师应该对每个小组完成课程模块学习后有一个评价,提出优点和缺点。这三部分比例可以根据情况进行适当调整,我们在IT职业技能实训课程中的比例是1∶4∶5。
每一个小组只有一个成绩有没有什么弊端呢?结合我们的课程开发实践,小组考核如果采取平均主义的话,则会出现有些同学偷懒,依赖其他积极的同学的现象。长期下来,特别碰到难度比较大的项目时,则会影响整体的积极性。我们的课程在进行到两年后,开始了组内考核,小组成员给其他成员打分,根据这个分数调整每一个组员的得分比例。
组间的合作:小组之间进行讨论,共同解决一下问题,拓展他们看问题的角度,这也是很有意义的事情。在实践过程中,我们对有些比较开放性的项目,我们采取并组讨论的方式进行。让两个小组的学生一起讨论,然后再分开完成小组项目内容。比如我们有一个项目是讨论学生学业规划的项目,这个是开放性项目。
4 结语
我们课程已经开发三个年头,课程项目的内容也进行了几次更新。学生普遍认为课程在一定程度上改良了他们的学习习惯,使他们学习更加主动。针对小组的考核,我们已开发了项目评价系统,并应用于实践教学中,取得了良好的效果。
参考文献
[1]李玲霞.按大类招生下专业分流的具体实践[J].吉林教育,2008(16).
[2]徐生,王怀奥,梁蓓.高职专业群背景下的学习领域课程开发与实施[J].职业技术教育,2010(23).
数学专业基础课 篇4
一、高职院校数学基础课应服务于学生专业课
1. 高职院校数学基础课的定位
高职数学基础课在高职人才培养中的作用是文化基础课程他能起到的为高职学生提供专业工具、能力支撑等各方面的作用, 其是不可或缺的。在高职院校中数学基础课的定位:
首先, 它是文化基础课程, 所谓“基础”, 引申来说是事物的本源、事业的根本。用于高职院校数学基础课来说, 指的是学生在终身学习、工作、生活中所应具备的必备文化知识。现代社会是信息时代, 是科学技术高度发达的时代, 科学技术是第一生产力, 其中数学已经成为了当今社会学习一切自然科学和社会科学的基础, 是现代社会工作与生活中学习掌握其他学科知识的必备工具。同时, 数学在现代社会的角色扮演中它是我们职业生涯中起到奠基作用的知识, 它又使得培养出的高职技术应用型人才不断跟上日新月异的科学与新技术的发展。所以作为高层次的职业教育, 学生要学习和掌握现代化的生产、管理或服务技术, 就必须在已有的高中阶段数学知识的基础上进一步拓宽。
其次, “数学的作用与应用, 是指它作为一般的科学方法和工具, 作为各门科学的辩证辅助工具, 为科学、技术提供了表达思维的语言、论证问题的手段以及精确计算的方法等”。加里宁曾说, “数学是思维的体操。”高职数学知识具有逻辑性强、推理严谨、定量精确等特点。通过数学知识的学习, 对学生各种基础能力的培养, 尤其是逻辑思维与创造思维能力等有非常明显的效果, 同时也培养了学生分析问题、论证问题、解决问题的综合能力。高职数学基础课是我们专业课不可或缺的知识储备, 能力支撑。
2. 高职院校数学基础课与专业课的辩证关系
高职数学作为学习专业理论和技术的工具, 其应用极其广泛。根据高等职业教育传统的培养目标, 数学课程的任务是:一方面使学生再进一步学习和掌握本课程的基础知识和基本能力 (基本运算能力、基本计算工具的使用能力、数形结合能力、逻辑思维能力、简单实际应用能力) ;另一方面要为学生学习专业课程提供必须和够用的工具, 使他们具有学习专业知识的基础和计算能力, 以达到会算够用的目的, 从而提高学生运用数学知识解决实际问题的能力。“够用”也即要求高职学生在掌握高职数学基本知识与能力的同时, 针对本专业进行必要的扩充学习, 务必使得高职数学基础课的工具性在我们的专业学习中和未来职业生涯中发挥积极作用。而在我们未来的职业生涯或生活之中, 要跟上日新月异的科学与新技术的发展, 丰富和提升自身的专业技能, 数学基础理论知识与能力又必有其用武之地。所以高职院校数学基础课与专业课是辩证联系的, 它们互相依存, 互相促进。
二、高职院校数学基础课服务专业课初步设想
高职院校数学基础课改革中如何做到数学基础课既学到扎实的数学基础知识和能力又能发挥高职数学基础课的作用, 使之服务专业课, 笔者做以下初步设想, 浅陋之处, 请不吝斧正。
1. 高职院校数学基础课教学所面对的困境与解决方式
目前我国多数高职学生属于高校招生中的专科录取批次, 他们的初等数学基础参差不齐, 大部分学生在数学基础知识上多有缺欠, 同时, 高职院校的学生, 专业不同, 对数学知识的掌握程度以及教学内容的详略多有不同, 这需要根据学生不同的系别、不同的专业讲授不同的数学基础课知识, 因材施教、因地制宜是教育学基本的原理, 因此根据学生的不同专业, 详略得当地讲授高职数学专业基础课知识是非常必要的。如果反之, 不论专业不分深浅地讲授高职数学基础课知识, 那么学生很容易要么因为学不懂、跟不走产生“厌学”情绪, 要么就是产生学数学“无用论”的想法, 导致了高职学生对数学基础课学习的积极性不高。同时, 我们也应该注意到, 长时间没有应用的数学基础知识很容易被遗忘, 而枯燥的知识怎样才能被广泛应用到, 光靠布置作业是不够的, 更需要让学生在自己的专业学习中真正地把数学基础课的知识应用起来才能达到目的, 也只有这样才能提高学生对学习数学基础课的积极性, 提高对数学知识的应用能力。
2. 高职院校的数学基础课应与普通本科学校的数学基础课相区别
高职数学基础课教育是高职教育的一部分, 它要符合高职教育的特点, 因此其与普通本科学校的数学基础课应是有相当多的区别的。
高职教育的主要目标是培养技术应用型人才, 大部分学生毕业后是走向专业技术型岗位, 而普通本科院校重在理论知识的传授, 其不少毕业生是走向继续升学的道路, 因此高职院校的教育应更重视应用型知识能力的传授。高职教育理念是“坚持以服务为宗旨, 以就业为导向”, 它有别于其他普通本科院校, 其具有独特性。因此高职数学基础课教育也应该服务于职业教育的根本走向, 让学生花有限的时间和精力学到尽可能多的、必须的东西。着重培养学生对数学基础知识的应用能力, 尤其是在本专业上更好地发挥数学基础的工具性作用, 使高职数学基础课成为高职院校学生能力的有力支撑。
3. 高职院校的数学基础课应与专业课相得益彰、相互促进
高职院校的数学基础课应与专业课相得益彰、相互促进, 这并不是说高职院校的数学基础课只为专业课服务, 对专业课暂且无用的知识不予学习, 而是在注重数学基础课基本知识与能力的学习的同时, 在与专业课有关的知识学习中更有重点地去学习, 在专业课的学习中有给予所学的数学基础知识应用的实践, 使得所学到的数学知识与能力更好地内化为自身的知识与能力, 教授学生积极动脑思维, 动手掌握技能, 有道是:“授之以鱼, 不如授之以渔。”学会用数学基础知识解决与专业相关的问题, 着重让学生体会到高等数学所含知识点在其中的应用, 领悟数学模型的思维方法, 培养学生分析、解决问题的能力, 激发学习兴趣和积极性, 这无疑是为高职教学注入了新的活力。同时, 学到扎实的数学基础课知识, 可以为以后职业生涯或生活中可能遇到需要数学基础知识时提供必要的知识索引。高职院校的数学基础课应与专业课相得益彰、相互促进, 使得学生既能掌握自己发现问题和得出结论的方法, 又使得学生在积极的学习状态下储备必要的知识与能力。
4. 学期考试, 应结合专业分系别进行考核
学期考试, 高职数学考核坚持“必需、够用”的原则, 此原则是与专业紧密相关的。而只注重专业, 忽视数学基础课相关基本知识与技能的掌握, 又是目光短浅的, 不利于学生在今后的学习、工作和生活中跟进科技的日新月异, 更新自身的专业知识与技能。因此学期考试, 高职数学考核应兼顾两者。在考察数学基础课的基础知识与能力的同时注重对本专业应用能力的考察。具体来说也就是考试内容除了高职数学课程的基本理论、基本知识、基本技能外, 还应包括对基本知识和基本理论进行融会贯通后在本专业知识领域内的应用等问题考察, 诸如对提出问题、分析问题、论证问题、解决问题等综合应用能力和创新能力的考察。
综上所述, 数学已经成为了当今社会学习一切自然科学和社会科学知识的基础, 是掌握其他学科知识的必备工具。通过数学知识的学习, 对学生各种基础能力的培养, 尤其是逻辑思维与创造思维能力等有非常明显的效果, 同时也培养了学生分析问题、论证问题、解决问题的综合能力。高职教育的主要目标是培养技术应用型人才, 大部分学生毕业后是走向专业技术型岗位, 而普通本科院校重在理论知识的传授, 其不少毕业生走是向继续升学的道路。因此高职数学基础课教学应重视学生应用能力的培养, 尤其是应满足学生专业内“必需、够用”的要求。使得高职数学基础课服务于专业课, 让数学基础课与专业课相得益彰相互促进, 成为高职学生不可或缺的知识储备, 能力支撑。
摘要:在高职教育中学生生源参差不齐、专业各不相同, 不根据学生的自身基础以及专业需求, 趋同的高职数学基础课教育不能激起学生对高职数学基础课学习的兴趣, 又不能与本专业相联系, 滋生了高职数学基础课“无用论”, 同时教学效果相形见绌。如何促进高职数学基础课在教学中的效果, 使得高职数学基础课真正地达到教学目的使得学生打下坚实基础知识的同时, 又能够为高职学生提供有用、实用的专业工具, 能力支撑呢?笔者做以下思考。
关键词:高职院校,数学基础课,专业课,定位,设想
参考文献
[1]徐长山.科技发展简史[M].北京:中国人民解放军出版社, 2000.
[2]刘春生, 徐长发.职业教育学[M].北京:教育科学出版社, 2002.
数学专业基础课 篇5
数理基础科学专业绝对是对数学偏科的学生噩梦,这个专业在名字上就已经明确表明是要学习数学了。同学们在选择专业的时候,就要好好考虑每个专业名称是否值得自己选择,不要盲目乱选,这样就等于将自己的前途毁于一旦。而树立基础科学对于数学的要求特别高,如果数学基础不足,那么建议还是不要考虑这个专业为好!
二、金融学专业
金融学专业自从成为热门专业以来,就没有见它下来过,就是因为这个专业具有非常广阔的就业前景与就业薪资都非常的不错。不过金融学专业对于数学要求也是非常的严格,不仅有各种金融类专业知识需要学习,还需要与各种各样的数字进行打交道。而金融学最大的难关可能就是大学生们深恶痛绝的高数了,它不仅是主要课程,更是有各种与数学相关的课程需要学习,如果数学基础不足,还是慎重考虑是否报考金融学专业。
三、建筑学专业
建筑学专业也是目前市场上的热门专业,不过这个专业对于数学的要求可是非常严格的,因为建筑物上的各种参数数据都是需要拥有丰富的数学功底才能正式上任。而建筑学专业的学习过程中,数学类课程占据很大一部分。剩下的制图、绘图可能也就考验我们的逻辑与动手能力,毕竟建筑最重要的就是参数等数据,哪一方面出现错误,那么盖出来的建筑是绝对不合格的,因此,如果数学功底差,那么还是放弃这个专业为好。
本文编辑:无言
当前设计类专业基础课教学所思 篇6
【关键词】设计类专业 专业基础课程 教学 教学改革
通过笔者近10年的相关教学实践和对国内许多高等院校设计类专业基础课程的调研和分析,总结归纳了当前设计类专业在基础课程教学中存在着以下几个方面的不足:
首先,国家招生制度的弊端,造成生源质量下降。随着教育制度的不断改革,高考入学率的不断提升,许多仅学了一两年甚至几个月的艺术类考生,如愿以偿地考入了高等学府的设计类专业。这已经成了各艺术类院校乃至专业美院的普遍现象,其生源质量可想而知。
这一点我们仅从各高校艺术类专业的班级人数上就能明确地感受到。从2000年前后,为响应教育制度的改革,各高等院校相继扩招,使得在校生人数成倍增长。学生数量的增加及应试教育带来的生源质量的下降必然给我国当前的艺术教育产生一定的负面影响,同时也为各院校艺术类专业如何保证基础课教学质量,合理安排教学资源及正确引导学生、明确学习目的与学习方法提出了新的挑战。
其次,随着学科的不断细化,原有纯艺术专业基础课程的教学方式显然已经不能应对诸如建筑学、工业设计、动画设计及环艺设计等专业的需求了。这就要求不同专业基础课程的教师在“传道”过程中,因材施教、因人而异,严格遵照不同专业的人才培养目标来施教。但在实际的教学实践当中,绝大多数一线专业基础课教师,均直接或间接从“科班”的美院的纯艺术专业毕业,在施教的过程中,许多仍沿用对待纯艺术专业的方式来教授艺术设计专业的基础课程,因而,缺乏针对性。教学目的不明确,教学效果不明显。其直接结果将导致该专业基础课与专业课程学习相脱节的现象便显而易见了。
第三,因人才培养目标的不明晰且随意性较大,导致设计类专业基础课的任务不明晰。目前许多高校的设计类专业在编写人才培养方案和教学大纲时,往往通过相关专业的负责人来执行。而该负责人的专业偏向和个人喜好往往在人才培养方案中便体现无余。一个培养方案刚执行了一两年,由于负责人的更换而需要重新修订教学大纲和人才培养方案的例子屡屡出现,也就不足为奇了。
第四,艺术类考试制度过于单一,缺乏针对性。我们国家的艺术类考试数十年如一日,其考核方式过于单一。不论是纯艺术专业还是各类设计专业,其考核内容都是素描和色彩,个别的加一门速写。如此看重学生基本技能的基础课考核,入学后却不加以重视,甚至与其相悖而行。设计类专业需要学生具有较强的创造力,很难想象在知识产权明晰,且被法律所保护的当今社会,和他人雷同的设计作品进入市场,那后果将是多么的严重。因而,当代设计类专业的造型基础教学特点不是简单的照抄照搬,而是独立思考,寻求创意、形式上的不同,它可能不要求学生有多高的表现技能,因为现代科技可以辅助他们去完成。所以,当前的艺术类高考制度的改革也迫在眉睫,如何能考核出设计类专业所需的具有创新性思维的人才,这就成了一个新的课题。
针对以上我国当前普通高校设计类专业基础课教学中存在的一些问题,怎样上好专业基础课,成了我们急需探讨和解决的课题。激发学生的学习兴趣,吸引学生的注意力,点燃学生的学习热情,专业基础课的关键环节之一就是教学方法,这将直接影响到教学的实际效果,影响到设计类专业基础课程与专业课程的对接。笔者认为,应从以下几个方面进行改革:
首先,加强教学团队的建设。高校设计类专业应在现有师资的基础上,改变“单打独斗”的教学模式,集思广益,优化师资结构,以教学团队为基础,实行课程建设负责制。倡导设计类基础课在人才培养中的针对性、目的性和有效性。负责人在集体讨论的基础上具体行之有效地执行和跟踪,及时将专业基础课教学过程中存在的问题反馈给教学团队,以确保教学方法、教学内容及学时安排等方面的科学化、前沿化和专业化水平。教学团队成员在不断学习新的教学方法、科学管理理念及不断提高自身业务水平的同时,定期不定期地开展“教学法研究”例会,集中交流总结在培养方案执行中存在的不足,交流个人较为满意的经验等,从而,以改革促发展,以实践求创新,探索一条更适合当代设计类专业基础课教学的新思路。
其次,革新教学方法,培养学生主动学习的能力。有兴趣方能做好一件事,对于设计类专业基础课的学习亦是如此。那么如何培养设计类专业基础课的学习兴趣,这已成为越来越突出的问题。笔者认为,教学方法可以灵活多样,要给学生以新鲜感,这是激发学习兴趣的关键。不妨从以下两个方面入手:一方面从教师自身讲,要改变老一套的教学法式,不能沿用摆几个几何体、石膏或静物等让学生化的方式。可以将教学的场地由室内扩展到室外。另一方面,教会学生摆放静物的原理,学生可以结合自身专业的特性,摆放自己的生活用品等。这样,在表现自己较为熟悉的物品时,更能便于理解和掌握,更能激发学生主动学习的热情。
再次,加强培养力度、加大课时投入。面对如此诸多高考“速成”生,我们应改革教学模式,加大设计类专业课程的课时力度,不能用几十个课时就“搪塞”过这门课,不能只是“走过程”、“长见识”。既然学生们能够通过较短时间的训练,通过我们的考试制度满足我们的考核要求,说明学生有一定的潜力,是可以塑造和提高的,但是距离相关设计类专业所要求的基础要“厚”还有一定的距离。事物的发展规律既是如此,任何事物的发展都有一个量变到质变的过程。对于我们专业基础课来讲,没有人是天才,天生就是“厚基础”。故面对考试制度改革后的当代大学生,我们在不断创新教学方法的同时,更应该改变我们“急于求成”、“揠苗助长”的心理,应该认识到我们在教学中的薄弱环节,加大专业基础课的课时量,让学生分学期、分阶段的递进式加强设计类专业基础课的学习力度。这样在以后的专业课学习中就更易入手,便于理解和掌握,才能体现出其基础之厚。
参考文献:
[1]冯峰,卢麃麃.设计素描[M].北京:中国城市出版社,2002.
[2]田崴.思维设计——造型艺术与思维创意[M].北京:北京理工大学出版社,2005.
[3]王菊生.造型艺术原理[M].哈尔滨:黑龙江美术出版社,2011.
作者单位:西安科技大学艺术学院 陕西西安
数学专业基础课 篇7
一、统计学专业数学分析课程改革的研究
数学分析内容经典, 体系完整, 理论推理严密, 既对培养学生数学思维有着重要的作用, 也为统计学后继课程提供必要的基础知识和应用工具。在数学分析的教学过程中, 除了在教学理念中突出数学分析的思想性和增强应用能力, 在教学内容中抓住主要内容, 融入建模思想, 增设实验课程, 以及在教学方法中按学生能力, 采用分层等教学改革外, 我们结合统计学专业的特点, 从以下几个方面进行教学改革的研究。
第一, 调整课程教学的重点。统计学专业以培养理论基础扎实, 专业应用性强的学生为目标。在数学分析的教学中, 对重要知识点深入讲解, 使学生理解其思想, 并通过例题加深体会;而对过于繁杂的证明可适当降低要求, 且对一些知识点在几何、物理中的应用部分可作为学生课下自学内容。例如在讲授“实数的完备性”这一章的内容时, 授课时重点讲解定理的思想, 而对定理的证明适当降低要求, 并且证明部分在数学分析第三学期讲授。这样安排一方面是由于统计学专业的学生对数学理论证明的要求并不是很高, 另一方也可以避免学生在数学分析学习的前期因繁杂的证明而失去信心和兴趣, 而且可以在有限的课时内讲解更多的例题、以及数学分析知识点在统计学中的应用。例如在学习“定积分的性质和计算”之后, 讲解定积分在统计学中的应用, 而对于定积分在几何以及物理中的应用略讲。诸如利用定积分求平面曲线的弧长与曲率, 旋转曲面的面积等几何应用部分, 以及利用定积分求液体静压力, 引力等物理应用部分安排作为学生课下自学内容。同样, 在讲解隐函数定理、重积分等的应用时, 对其在几何、物理中的应用略讲, 而讲解其在统计中的应用。这样, 一方面可以增强统计学专业学生学习的兴趣, 感受到数学分析的基础性作用, 另一方面让学生提前感受统计学的相关专业知识和应用。
第二, 渗透数学分析知识在统计学中的应用。比如在讲授“微分中值定理”、“泰勒公式”、“极值定理”、“定积分”、“隐函数定理”、“傅里叶级数”时, 可渗透其在统计学中的应用。在介绍知识点和性质之后, 以例题的形式讲解这些知识在统计学中的应用。例如在“多元函数极值问题”的教学中, 以一元线性回归模型参数的最小二乘估计为例题, 讲解极值判别法在统计学中的应用, 并且提出有实际应用背景方面的例题, 比如销售收入和广告费用支出之间的关系。这样既使学生了解了数学建模的方法, 又使学生体会到了数学分析的奇妙, 增强了学习的兴趣。例如在讲解“导数的运算”时, 以数理统计学的最大似然估计中对似然函数求导取得最值点为例题, 渗透导数知识在统计学中的应用;在讲解“高阶导数”时, 以时间序列分析中的ARIMA模型为例题, 渗透高阶求导在时间序列分析中的应用;在讲解“一致连续性”时, 以概率统计中特征函数为例题, 证明特征函数的一致连续性。这样, 既使学生体会到数学分析对统计学专业课程的重要性, 又使学生提前了解了统计学中的部分知识点及其应用, 增强了学生学习数学分析和统计学课程的兴趣, 提高了学习的主动性。
第三, 调整课程教学内容的顺序。为加开更多的应用型统计专业课程, 在统计学专业的培养计划中, 概率论课程开设在大学一年级第二学期, 数理统计课程开设在大学二年级第一学期。这便需要对先修课程数学分析的进度安排加以调整, 以便适应后继专业课程的开设。例如学生在学习概率论中“多维随机变量及其分布”的相关知识之前, 在数学分析中已经学习了重积分的概念、性质和计算, 因而在数学分析三个学期的教学中, 应合理调整讲授内容的顺序。具体安排如下:讲解了一元函数的极限和微积分后, 介绍多元函数的极限、微分学和重积分, 之后再讲授数项级数、函数项级数和幂级数的知识;对于实数的完备性部分仅在数学分析第一学期中讲授定理的思想和应用, 而将定理的证明部分安排在第三学期讲解;对于曲线积分、曲面积分、含参量积分部分, 安排在第三学期讲授, 同时隐函数定理、傅里叶级数也安排在第三学期讲授。这样调整数学分析课程教学内容的顺序, 既可以使得概率论、数理统计等课程正常开展, 又可以兼顾数学分析知识体系本身的系统性和完整性。
第四, 在数学分析的教学中开设专题。在数学分析第三学期的教学中, 学生已经学习了概率论的相关知识, 可开设“数学分析方法在概率论中的应用”、“数学分析方法在统计学中的应用”、“概率论方法在数学分析中的应用”等专题。在专题课上, 可通过归纳总结、引入相关例题的方式, 介绍数学分析知识在概率论、数理统计、回归分析、时间序列等中的应用;同样也可介绍用概率论方法解决极限问题、无穷级数问题、积分问题、恒等式与不等式问题等。通过这些专题使学生体会到数学各学科间千丝万缕的联系, 感受到数学的奇妙, 增强了学生的学习兴趣。
二、统计学专业概率论课程改革的研究
概率论是随机数学的典型代表, 其理论性强, 内容抽象, 应用广泛。结合统计学专业特点, 从以下几个方面进行教学改革的研究。
第一, 在教学中运用案例教学法, 融入数学建模的思想。一方面精心挑选具有实际背景的例题, 使学生在学习中感受到概率论广泛的应用性, 激发学生的求知欲和学习的兴趣;另一方面, 在知识点和例题的讲解中, 尽量以具体数字代替抽象的数学符号, 避免因符号的抽象性而带来学生理解难度的增大, 降低概率论在教学过程中的抽象性。
第二, 调整课程教学的重点, 并且渗透概率论知识在统计学中的应用。我们将从以下四个方面进行教学改革。 (1) 重点讲解在统计学后继专业课程中使用较多的知识点, 并通过例题让学生深入体会这些知识点的内涵和应用。例如“贝叶斯公式”、“二项分布”、“泊松分布”、“正态分布”、“指数分布”、“随机变量函数的分布”、“相关系数”、“大数定律”和“中心极限定理”等知识点。 (2) 对于一些极限定理, 授课时重点讲解定理和性质的思想, 并通过例题使学生理解其内涵, 学会其应用的方法;而对于证明部分, 可适当降低要求, 或采取学生课下自学的方式。例如“概率的上 (下) 连续性”相关性质的证明, 常用的几个“大数定律”的证明和“中心极限定理”的证明。 (3) 由于授课对象为统计学专业的学生, 对一些概率论中的非核心内容而在后继统计学专业课程中比较重要的知识点要详细讲解。例如“伽玛分布”、“蒙特卡罗法” (由随机变量函数的性质获得产生随机数的方法) 、“分位数”等内容。 (4) 在概率论课程的教学中, 渗透概率论知识在统计学中的应用。例如讲解“中心极限定理”在大样本检验中的应用, “二项分布”在符号检验中的应用, “超几何分布”在Brown-Mood中位数检验中的应用, “Lindburg-Levy中心极限定理”在正态随机数的产生和数值计算误差分析中的应用。
第三, 在概率论课程上, 适当提前讲解部分数学分析的知识。虽然在数学分析课程的教学改革中, 对数学分析课程教学内容的顺序进行了调整, 但是为了保证概率论课程的正常进行, 仍需在概率论课上提前讲授数学分析的部分知识点。例如在讲解“概率的公理化定义”和“离散型随机变量数学期望”时, 经过教学改革调整后的数学分析课程还未讲授数项级数部分, 这便需要在概率论课程上提前讲解级数的定义和绝对收敛的相关知识。这些讲解无需深入, 只需满足概率论课程的正常开展即可。
第四, 开设处理实际生活中随机问题的专题。通过介绍一些处理概率论问题中既有趣又有用的新思想、新方法与新内容, 开阔学生的视野。例如可开设“分赌注问题”、“抽牌游戏”、“信封与信配对问题”、“人寿保险问题”、“乘客等车时间问题”、“下电梯问题”、“价格预测”等专题。
三、概率论与数学分析方法的相互应用
虽然数学分析与概率论是数学的两个不同分支, 但数学分析的发展为概率论奠定了基础, 而概率论中随机性、反因果论也推动着数学分析的发展。二者的紧密结合性不仅体现在学科发展上, 而且在教学上也有着相辅相成的意义。
(一) 在数学分析教学中融入建模思想, 引入用概率解题的方法
概率论思维与一般数学思维的结构类同, 通过建立适当的模型, 应用概率方法不仅能解决一些随机的数学问题, 而且还可以解决一些确定的数学问题。寻找并归纳总结概率方法、模型和概率论中相关定理在数学分析中的应用, 比如用概率论知识方法解决极限问题、无穷级数问题、积分问题、恒等式与不等式问题等。将一些确定性的问题转化为随机性的问题, 使得数学分析中某些比较繁杂的问题得以高效、简捷地解决, 以期激发学生的学习兴趣, 使学生从中体会到数学的奇妙所在。例如用“蒙特卡罗方法”计算定积分 (随机投点法) , 利用“随机变量分布函数”的性质简化积分的计算等。在下述数学分析求重积分的例题中, 用普通的近似方法无法求解, 而利用概率论中的“大数定律”可获得n重积分 (n很大时) 的极限值。
解:设随机变量序列独立同分布, 在 (0, 1) 上服从均匀分布, 则有
由于独立同分布, 故独立同分布。运用辛钦大数定律, 知:
(二) 在概率论教学中体会数学分析的思想内涵, 增强学生的学习兴趣
概率论是研究随机现象统计规律性的一门学科, 有广泛的应用性。但同时, 自Kolmogrov提出公理化体系之后, 概率论中用以解决实际问题主要是通过分析手段。概率论是在数学分析课程的基础上进行教学的, 学生在概率论的学习中可巩固数学分析的基础知识, 在概率论数学化论证和严密的推理中进一步体会数学分析的内涵, 理解数学分析解决问题的思维方式, 使知识整体化、系统化。例如, 在概率论中讲授“分布函数”时, 学生可巩固数学分析中“无穷积分”的知识;在讲授“泊松分布”时, 学生可体会“泰勒展开”的意义;在讲授“正态分布的数学期望与方差”时, 学生可通过积分求值的计算过程对数学分析知识有所巩固提高;在讲授“连续随机变量函数的分布”时, 学生可巩固“变上限积分”的知识;在讲授“Γ分布”时, 学生可认识到“欧拉积分”的重要性;在讲授“连续随机变量的条件分布”时, 学生可体会“积分中值定理”的应用。
在概率论教学中, 不仅要帮助学生从中体会数学分析的思想内涵, 而且通过概率论的实际解题, 帮助学生体会到了数学分析的基础性作用, 增强了学生的学习兴趣。例如在处理“配对问题”———“在一个有n个人参加的晚会上, 每个人带了一件礼物, 且假定各人带的礼物都不相同。晚会期间各人从放在一起的n件礼物中随机抽取一件, 问至少有一个人自己抽到自己礼物的概率是多少”时, 通过概率的加法公式可得到至少有一个人自己抽到自己礼物的概率为。当n≥5时, 计算较为繁杂, 这时若用e-1的泰勒展开, 便可得到此概率的近似值, 极大地简化了计算。
总之, 通过在探索中不断实践, 在实践中不断探索, 能够很好的进行统计学专业基础课程《数学分析和概率论》的教学改革。
参考文献
[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社, 2004.
[2]茆诗松, 程依明, 濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社, 2004.
[3]孙荣恒.趣味随机问题[M].北京:科学出版社, 2004.
[4]张德然.概率论思维论[M].合肥:中国科学技术大学出版社, 2004.
[5]王梓坤.概率论基础及其应用[M].北京:科学出版社, 1979:21.
[6]薛留根.概率论解题方法与技巧[M].北京:国防工业出版社, 1996:87-89.
[7]刘幸东, 谢彦君.论数学分析与概率论的相互关系[J].贵州师范学院学报, 2011, 27 (03) :16-19.
[8]黄书亭, 刘波.数学技术与概率论的发展[J].自然辩证法研究, 1995, 11 (4) :15-21.
数学专业基础课 篇8
电路分析基础是电子信息科学与技术专业的学生必学的一门专业基础课程。这门课程的掌握程度对于后续专业课学习的影响很大。在这门课程中涉及到了大量的高等数学知识, 主要包括:微分与积分的运算, 复数运算, 拉普拉斯变换以及微分方程。熟练的掌握这些高等数学知识点, 对于该课程的学习会有很大的帮助, 具体的应用情况见表1。
通常我们需要将元件的拓扑约束和VCR相结合, 从而得到关于电路的一个微分方程, 对方程进行求解, 从而得到正确的结果。
2 实例分析
⑴已知RLC串联电路中R=2Ω, L=2H, 试求当C=0.5F时响应的形式;
解:由元件约束条件KVL列下下列微分方程组:
消去UC可得
当C=0.5F时, 上式变为
可解得
所以解的形式应该是
⑵RL并联电路如图1所示, 已知iL (0-) =p, 试用拉氏变换法求u (t) , t≥0。
解:由题意, 列写s域模型方程
3 小结
本文上述两个实例我们可以看到, 不同于传统的电路分析求解方法, 在第一个例题中, 通过列写微分方程导出特征方程, 得出方程的解, 使题目迅速得到答案;第二个例题中用到了s域分析法和拉普拉斯变换, 将时域中难以求解的问题转换到了s域, 最后将s域运算的结论在通过拉氏反变换得出答案。类似通过数学方法来求解相关电路中相关量的题目还有很多, 只有真正掌握并理解了这些数学知识, 在实际问题中运用得当, 才能够真正学好《电路分析基础》这门专业基础课。
参考文献
[1]李瀚荪.电路分析基础 (第四版) [M].北京:高等教育出版社, 2006.
[2]吴赣昌.高等数学 (理工类·第四版) [M].北京:中国人民出版社, 2011.
浅谈电子专业基础课教学结构 篇9
关键词:电工学,电子专业
首先我认为营造一个“以教师为主导, 重视培养自学能力;以学生为主体, 让学生学会学习”的教学环境最为重要。在这样的教学环境中, 要学会合理采用比拟法化难为易, 提高学生学习兴趣, 帮助学生掌握知识。例如, 在分析电压与电位的区别时, 学生对参考点的概念不理解, 因而将电压、电位经常混淆。在教学中我们可以把电位比拟为高度, 把电位差 (即电压) 比拟为高度差。因为学生对高度和高度差有深刻的感性认识。通过比较, 加深学生对电位是相对值、电位差是绝对值这两个概念的理解, 使抽象的概念变得更具体、更直观。当然教法还很多, 目的就是让学生对抽象的知识形象化后产生质疑, 以学生为主体, 教会学生学习。教师为主导, 在教学中以教师为向导, 使教师由知识的传授者、灌输者转变为学生主动学习的帮助者、指导者、促进者。
其次互动式教学也是教学结构中的一个重要环节。多年来的教学实践, 我认为学习的过程不仅是一个学生的认识过程, 而且是一个师生交流与合作的过程, 互动式教学环节充分体现了现代教学理念。传统的填压式、独白式的教学模式和机械训练的方式, 难以激发学生的学习兴趣, 难以调动学习的积极性, 已经逐渐不被学生所接受, 因而也难以取得预期的教学效果。电子专业基础课, 无论是概念的理解, 还是对客观现象的判断、分析及数据的计算, 都需要一系列的逻辑思维, 需具备一定的分析和解决问题的能力, 而这些对职校生来说不仅枯燥乏味, 而且也有一定的难度, 这种需求错位, 让学生体会不到学习的乐趣, 教学效果自然是不甚理想。而运用互动式教学模式, 给师生搭建了一个共同的平台, 可以充分发挥师生双方的主观能动性, 激发学生的积极性, 使教师在“教”中探索, 学生在“学”中挖潜增智, 使学生在活跃的气氛中和轻松的情绪下答疑解惑, 使学生视野开阔、思维活跃、充满活力, 师生关系、学生关系也达到完美的和谐。所以说互动式教学在电子专业教学中是十分必要的。学习过程不是学习者被动地接受知识, 而是积极地构建知识的过程。
在教学过程中, 我们要充分发挥教师的主导作用, 引导学生学习, 实现教学互动。例如在讲到电容器串联时, 题目如下:已知电容器C1:1μF, 200V;C2:5μF, 250V串联在360V的直流电源上, 试讨论电容器能否安全工作。学生先求各电容器实际分到的电压, 然后与额定比较发现C1分到的电压大于额定电压, 而C2分到的电压小于额定电压。学生可能会得出一个结论:C1被击穿, C2能安全工作, 那此时有一部分学生怀疑总电压360V加到什么地方了?教师不急于回答, 而是组织学生讨论要求学生大胆想象, 这样即满足学生的探究欲望, 又培养学生的探究能力。教师是参与者, 应主动加入到学生的讨论、交流之中, 同时作为指导者, 又要对学生的讨论、交流不断起促进和调节作用, 使问题不断引向深入。在交流过程中让学生各抒己见, 畅所欲言。电子专业各学科是基于实验基础上的一门学科, 很多概念、定律都与实验有关, 课堂教学中若能适时地组织学生进行实验探究, 优化互动环境, 能极大调动学生的学习积极性。
最后, 我认为激发学生的学习兴趣, 培养学生的创新能力是优化教学结构中不可缺少的部分。
电子专业基础课是一门知识涉及面广、理论性强的技术基础课程, 通常学生被动地接受系统的理论知识, 故大多数认为难学、难记、难理解, 产生畏难心理, 因而影响了学习兴趣大量灌输知识, 学习积极性被束缚。几年来, 我在电子专业基础课的教学实践中不断探索创新, 深深体会到兴趣是学习的源泉, 是创新能力培养的点火石。对此, 我在电子专业基础课的教学中通常以生活实际作为切入点以提高学生的学习兴趣。例如:我第一次上电工基础课的时候, 我通常先在教室里做了两个与本课程相关的简单电路, 一个是家用白炽灯的电路连接;一个是手电筒电路。当电路接通, 灯泡发光的瞬间, 教室里的气氛顿时变得热烈。学生们显得兴致勃勃, 因为学生都没有安装过这样的电路。以往那种昏昏欲睡的情形不见了, 没有人因为电路的简单而不以为然。然后我适时地介绍了电工基础课的学习内容和在电子专业基础课中的地位。大家对电工基础这门课充满了好奇, 学习的兴趣油然而生。在这样的氛围中学生勤于思考, 善于发现问题, 敢于探讨, 不会有厌学的情绪。这样的人会拥有一种渴望认识世界的激情, 拥有探究知识、追求真理的强烈愿望, 在这种情感的催化和推动下, 人的思维活动高度兴奋, 身心的巨大潜力得以充分调动, 学习能力高度发挥。当然在实验活动中能不断地激发学生的学习兴趣。电子专业基础的理论知识很多可以和实际相联系, 成功的实验往往能使学生增强自信。比如:自感的学习就可以放在实验室进行, 在讲解自感原理后, 指导学生动手安装日光灯电路。在操作过程中, 让学生来比较整流器接入与否的实验现象, 进一步理解整流器的作用:由于自感产生瞬时高压, 使日光灯导通发光。学生在自己接线安装过程中会全神贯注, 满怀期待, 当实验成功时, 他们会满心喜悦, 勃发自信, 进而会探索新的知识。当然, 学生通过自己动手做实验, 利用已掌握的知识归纳自己的观点 (此时的观点可能是不成熟;也可能不正确) , 他们经过了动手动脑, 就把复杂难懂的概念理解了。因此, 动手操作实验是学生激发学习兴趣的有效方法。在理论教学中, 始终要理论联系实际, 用生动活泼的教学语言, 通过演示性实验与课堂教学相结合的方法, 去激发学生的学习兴趣、活跃课堂气氛。将灌输式改为启发式、理论和实际相互渗透式的学习方法。
艺术设计专业基础课教改解析 篇10
一、艺术设计专业基础课在艺术设计中的重要意义
艺术设计是一种创造性的劳动, 也是一种社会现象体现, 反映了人们的审美追求、物质追求和精神追求。艺术设计一般会以物化载体的形式, 也就是商品的形式和受众进行交流。我国高校艺术设计科主要包括素描、色彩构造、立构、图案等多门基础课程, 经过不断发展在教育领域取得了一定的成就。获得这些成就的原因除了师生共同努力之外, 更为重要的是艺术基础课程对艺术设计专业原理、规律和技巧的充分把握。艺术设计专业基础课中涉及的学说、理论和艺术实践为艺术设计发展注入了新的生命力和活力, 丰富了艺术设计的发展。另外, 艺术设计创作发展需要经历主题的确立、作品表现形式和内容的展现、作品画面情感的确定、作品审美意识的体现等阶段, 艺术设计的这些创作发展需要以艺术专业基础课为理论指导。在艺术理论指导作用下使得艺术作品设计提升了美感效果。
二、艺术设计专业基础课程改革思路探讨
(一) 艺术设计专业基础课程要注重专业核心能力的认识与培养
艺术设计专业基础课的设计目的在传统意义上看是针对设计领域的发展需要, 担负起自身传达、记录和思考的视觉转换任务。伴随时代的发展, 现阶段的艺术设计更加注重对艺术生专业能力的培养, 因此, 当前艺术设计专业基础课程的教学目标要注重专业技术能力、核心能力以及工作能力的平衡发展。其中, 核心能力是对艺术学生综合素质个性的集中化反映, 也是对学生能够适应社会的重要反映。艺术设计人才综合能力的反应和提升不仅要加强职业技能, 也需要加强艺术设计人员核心能力的培养。艺术课程教学目标的设置不仅要注重知识的再现, 更重要的是注重思维能力的培养, 提升学生的创新能力。
(二) 实现艺术设计课和基础课的协调发展
对于现阶段艺术院校基础课和艺术专业课割裂的发展状态, 需要有关人员进行及时的纠正, 加快改变这种基础课和专业课各自发展的问题, 将基础课真正发展成为艺术专业课的从基础, 改变传统基础课的教学格局, 打破原有单纯技巧和经验传授教学模式, 实现对基础课程系统的重新编排和设计, 将课程教学内容从原来的知识本位向能力本位发展。
(三) 对设计基础课门类进行整合
在有关学者和研究人员对比、归纳分析之后指出艺术设计学科的专业基础课程应该包括七个方面的内容, 主要有视觉基础课程、形式基础课程、图形基础课程、色彩基础课程、装饰基础课程、材料基础课程以及技法基础课程。可见, 艺术基础课程教学内容是广泛的, 因此基础课程的最终教学内容确定需要根据不同专业和职业层级定位进行整合。文化课“宽口径厚基础”的教学模式不一定适合艺术基础课程教学, 艺术教育要注重对学生创新能力的培养, 在学科设置上注重艺术课程不同学科课程的综合教学。比如在广告设计建设教育方面, 可以将非常重要能力中的图形设计、创意思维、导入市场和艺术创作内容进行整合, 将比较重要能力中的计算机操作技术、材料和工具使用技术、色彩设计、业务谈判、文学素养等进行整合, 从而促进艺术基础教育的专业化建设发展。《造型基础》课程是一个涉及内容较多的综合性知识体系, 艺术设计教育基础课程的设置上难以做到对《造型基础》课程的面面俱到, 为此需要根据具体专业发展需求对《造型基础》课程内容进行取舍。比如, 对于广告专业要重点放在“平面解析”教学上;对于产品专业应该注重从自然造型到独立造型的发展内容。
(四) 完善专业基础平台教学模式
艺术专业基础教学一般分为三种模式, 包括一年级统一教学、根据不同专业实施的不同教学、有侧重的统一教学。对于这三种教学模式要进行深入的研究探讨, 不断改进三种教学模式, 完善专业基础平台教学模式, 具体包括以下几点内容:第一, 实现对课程教学内容的确定。艺术专业基础课程教学内容的设定需要和专业教学内容相关, 要求在有效的教学时间内, 明确课程必修和选修的区别, 完善课程教学内容。第二, 实现对教学大纲的完善。教学大纲的完善具体要求教学目的明确、教学要求详细、教学过程规范。第三, 实现专业基础课程和艺术课程之间的衔接, 避免知识交叉教学。
(五) 加强对一年级有限课程的把握, 加强对重点课程的教学
艺术设计基础课程的课时不多, 为此要求教师充分利用有效的课程教学实践。现阶段, 大多数院校的艺术专业基础课开设了素描、色彩、速写三大基本教学模块, 并辅助开设了计算机、摄影、书法、制图等课程。各个课程之间相互关联, 要求教师在进行不同课程教学时要充分尊重学生自主学习, 重点进行图案和线描课程的教学。
总结
基础课程教学是学生从事某种专业课程之前必须进行的教育, 能够对学生的思维能力和综合能力进行训练和提升。因此, 要求艺术学生不仅要了解艺术接触课程各个课题内容, 还要了解各个课程开设之间的联系, 进而全面提升自己艺术学习综合能力。作为一名陶瓷设计方面的教师, 需要加强自身对陶瓷设计艺术的了解, 加强自身和其他艺术设计老师之间的学术交流, 并定期出版一些陶瓷设计方面的作品, 通过教学成果和教学研究引起学院对陶瓷艺术设计的关注和重视, 促进艺术设计领域, 尤其是陶瓷艺术设计领域的良好发展。
摘要:艺术设计专业基础课程建设与改革问题是当前艺术院校需要进行关注的问题, 艺术设计专业基础课程建设与改革需要着重培养学生的视觉反映力, 提升学生视觉接受信息的能力, 并要求学生能够调动想象力加强对未知领域知识的探索能力。文章在阐述艺术设计专业基础课在艺术设计中的重要意义的基础上, 具体分析如何实现艺术设计专业基础课堂教学改革。
关键词:艺术设计,基础课,教学改革,策略
参考文献
[1]杨春生.艺术设计专业基础课教改初探[J].中国轻工教育, 2005, 04:52-53.
[2]连永梅.艺术设计专业素描基础课教改探索[J].美术教育研究, 2014, 20:123-124.
专业基础课教学中培养学生的素质 篇11
[关键词]机械工程控制基础,专业课,素质教育。
[中图分类号]TH11[文献标识码]A[文章编号]1005-4634(2009)04-0065-04
素质教育自从1995年提出以来,吸引了社会各界的关注。到底何谓素质教育,也很难给出十分准确的论述。但简而言之,笔者认为素质教育一定是在针对人的最底层的素质进行的潜移默化的感染和熏陶,从而表现在对人、对事的态度、观点上表达出受人尊敬的行为的一种教育。本文从《机械工程控制基础》课程教学入手,谈谈专业课上如何进行素质教育,培养学生的素质。《机械工程控制基础》课程的素质教育体现在如下几个方面。
1介绍控制理论发展史,培养学生的民族 责任感和振兴国家科学事业的责任感
绪论往往是对一门课程的内容的总的概括,或者通过一定的方式如阐述实际工业生产中或生活中简单而又有代表性、容易理解的例子,引出课程的研究内容和将要探讨的问题。《机械工程控制基础》课程绪论最后一节讲到控制理论的形成和发展。在形成时提到瓦特所做的贡献,提醒学生知道控制理论的起源是很早的,人类很早就有了控制的思想;在介绍发展历程中按照年代顺序从1788年开始,一一列出各个年代有Watt、Maxswell、Routh、Hurwitz、Lyapunov、Bode等科学家在控制科学界所做的各种大小不一的科学贡献[1,2]。
但是令所有学生和教师都遗憾的是一直到20世纪50年代以前都找不到一位中国科学家或者科学工作者在这个大领域内有一点点科学贡献,同学们包括老师在内课堂上的所有人都感到中国的科学事业在控制领域的发展十分滞后:所有有贡献的工作都不是中国人做的,更不可能是在中国本土内进行的。此时同学们包括教师本人在内,一种民族自强感由心而升,都希望中国在如此重要的信息科学领域控制科学界能够做出一些贡献。此时也激励同学们能够学好这门课程,增强个人振兴中华民族的责任感,也会培养同学们要为科研事业振兴而奋斗的斗志。
然而,介绍到了20世纪50年代,令人们都感到欣慰的是有中国著名科学家钱学森在控制科学界做出了较大的贡献。所编著的《工程控制论》的专著,在全球学术界引起较大反响,被译为英文、德文等多国语言在全球出版发行。这为同学们树立了榜样,在此时介绍钱学森的有关经历和科研作风,提高了同学们的学习兴趣,要求学生下课借阅介绍钱学森的书籍,进一步了解这位为科学界和中华民族做出伟大贡献的科学家的工作、生活习惯并学习他思考问题的方法。
2培养学生从静态思维到动态思维的转变,感性思维到理性思维的转变的能力
大学教育的任务之一是培养学生从静态思维到动态思维的转变,从感性思维向理性思维转变。现实世界是运动变化着的,用静力学的方法观察事物具有明显的局限性。感性思维是对客观事物或现实状态感官上的认识和接受;而理性思维是对客观事物或现实存在状态内在变化机理的深层次分析,得到事物变化运动的内在原因和规律,从而在碰到同类事物时能具有较强的分析和理解能力。
《机械工程控制基础》课程在第二节会讲到控制论的重要思想“反馈”,一方面要讲清楚反馈的含义,另一方面结合生活中的各类例子来解释利用反馈思想的重要性。如讲到在复杂大系统中执行一项任务时,如果不采用反馈,就有可能不知道任务的执行情况如何,如果将执行状况进行定期或实时状态反馈,就能掌握其执行状况。如果执行不力,还可以采取切实可行的措施减小损失。或者,提到任何一家企业的销售部门都会有月度、季度、年度总结,将销售状况上交,可以调整企业生产状态。那么销售总结的上报就是一种反馈。这些例子可以让同学们较为容易的理解反馈这种思想。而在课程里面,反馈存在于闭环结构中,它是在实时地检测输出信号,并将输出信号返回到输入端与输入信号进行比较产生偏差信号作用到系统中。这个过程是实时的,偏差信号也是变化着的,即是动态的。而静态地看反馈结构仅仅是某一瞬间的检测、比较过程产生偏差,得到某一瞬间的偏差信号。闭环系统在实际工作过程中是实时动态的,这样的思维需要在本科生学习过程中建立起来。通过一些实际的例子介绍,一方面同学们意识到反馈思想应用的优点,另一方面结合结构框图就可将反馈上升到理论层面,准确把握反馈的深刻内涵,真正能够理解反馈思想。当碰到类似具有反馈思想的实际例子也能够分析它。通过布置作业要求同学们巩固这种思想的理解和讲解作业中出现的错误来纠正对反馈思想理解的偏差,使同学们真正能上升到理性思维的层面。
同样的例子还有如:第二章“系统的数学模型”是本门课程的基础内容,里面涉及给定实际的机械、电气系统,要求建立起数学模型。传递函数是其数学模型中最重要的表达形式之一。而在这一章里,要求同学们能够建立起系统的微分方程组作为系统分析的基础。微分方程描述的是在某种典型输入作用下输出变化的动态历程,它不是研究某个点、某一个状态的输出变化情况,而是研究输出整个变化过程中总的变化规律和动态特性。建立系统数学模型的过程本身就是从感性认识到理性分析的过程。当得到系统的传递函数数学模型后,发现通过两个完全没有关系的机、电系统,会得到完全一样的传递函数数学模型,不仅结构一样,而且参数也会一样。这样就要提示同学们:传递函数作为系统的一种数学模型,是现实系统如机、电系统的抽象代表。完全不同的系统,内部各变量的作用关系可能完全一样,其运动变化规律可能完全一样。这样在分析实际系统时,仅仅感性认识是远远不够的,通过建立系统的数学模型上升到理性思维的层面重新认识事物的本质特征和物理量的运动规律,将有助于对事物深入分析。
3培养学生从复杂的现象中,找到规律, 培养学生的洞察力
《机械工程控制基础》用到较多的数学知识,在课堂会花较多的精力来讲解推导过程,这些过程看起来似乎也很复杂。为了便于讲解,节省推导时间,同时找到重点和其内在规律,采用多媒体教学,相应的推导过程的讲解相对于黑板上书写来推导要大大地节约时间,重点内容侧重讲,相关的规律性的内容可以阐述得更加清晰一些。同时,多媒体也可插放实际工程例子的图片或动画,帮助与同学们之间的互动,进一步提高对相关知识的认识。
例如典型二阶系统在欠阻尼情况下,单位阶跃响应的数学表达式[2]为
(1)
这个结果的推导过程较为复杂,在前面的拉氏变换和拉氏逆变换讲完后,这里推导过程可以略讲,讲清楚每一步在做什么就可以了不需要进行仔细推导。但是这个结果很重要,因为二阶系统欠阻尼状态下单位阶跃响应是衰减振荡的,机械式地记忆它效果不是很理想。可以看看这个公式,启发学生这样来观察这个公式。这个结果分为两部分,前面是1,后面是一串较为复杂,但是是一个负指数函数和正弦函数相乘的形式。总的来讲负指数函数随着时间的增加幅值是衰减的,当时,它趋向于0。用高等数学的知识知道,当,前面的是一个无穷小量,而后面
(2)
虽然很长,但终归为一个正弦函数,其为一有界函数。用设问的方式启发学生,一个无穷小和有界函数的乘积是什么?它仍然是无穷小量,那么,后面一大串当时,趋向于0。这样总的单位阶跃响应趋向于1。即响应是收敛的。那么为什么有振荡,并且是衰减振荡呢?这个还要看响应表达式的后面这一部分
(3)
它由
(4)
和(2)式两部分组成,总体是一个正弦函数,(4)式可以看成是(2)式正弦函数的振幅,其振荡角频率为,初相为,只不过这个振幅是一个函数,且它随着时间的增加是逐渐衰减的。而(2)式决定着响应一定是振荡的,振幅衰减,加上前一部分1,响应当然是衰减振荡曲线。通过这一分析,同学们对响应的结构清楚了,响应曲线形式也清楚了,响应的表达式也更方便记忆了。
因此,公式虽然很复杂,但是通过分解和分析,可以找到规律,帮助理解知识点,培养学生分析问题的洞察力,自然公式也就记下来了,比机械性记忆要深刻得多。
4课程的学习方法有助于培养学生良好的 科学思维方法
《机械工程控制基础》课程的知识体系本身就满足科学规律。第二章为系统的数学模型,第三、四章分别从时域、频域对系统进行分析,第五章为系统的稳定性分析,第六章为系统的校正。面对一个物理系统,首先需要认识该系统,即分析系统内在各物理量的相互影响关系,忽略各个次要因素,得到数学模型;然后需要了解各个物理量的变化规律,从数学模型入手,借助相应的数学工具如拉氏变换、Nyquist图等了解系统变量的运动规律或者整个系统的稳定程度;最后如果发现已知系统不满足要求,即性能指标要求,则要对该系统进行改造,包括参数上修改或结构上修改,使得性能指标满足要求。整个知识体系本身就是一个认识系统、分析系统、改造系统的过程,这种思维的锻炼有助于培养学生科学的思维方法和形成科学思维习惯。
具体到课程各章,每章都含有较多的知识点,这些知识点之间存在很强的逻辑关系。而且不同章节的内容要拿到一起来系统考虑,对于较难的知识点需要重点强化。因此,该门课程的学习要求:系统思考、重点难点突破。
系统的稳态误差是第三章的内容,而第五章是关于系统的稳定性判别的内容。这两章的内容孤立起来看可能没有什么联系[3],但是仔细想想,稳定性是一个系统的性能要求,而稳态误差是一个系统稳定时的稳态精度的量度。那么,如果一个线性定常系统不稳定,就根本谈不上稳态误差了。所以要求一个系统的稳态误差,第一步需要采用第五章的稳定性判据知识,判定系统是否稳定,如稳定,则可以采用定义法或者输入、型次、误差系数与稳态误差的关系来快速求取稳态误差的值;如不稳定那么求取线性定常系统在给定输入下的稳态误差就没有意义了。如不是这样,不管系统的稳定性,上来就用公式来求稳态误差,就算偶然算对了,也不敢相信结果的正确性。就这一点需要从问题本身出发,结合两章的知识才能较好地解答之。
二阶系统相对于一阶系统要复杂得多。但是对于二阶系统来讲,主要涉及极点的分布、典型输入响应曲线情况、阻尼状态、典型输入响应表达式等知识点,这四者只要其中一个确定下来,其他的三个情况就对应确定下来。比如说极点的分布已知,是一对共轭负数根,那么系统一定是欠阻尼的,响应表达式确定,单位阶跃响应一定是衰减振荡的。同样阻尼比已知,其他三项均可确定下来。这样这节知识点虽然多,但是通过这样系统归纳,整个二阶系统所有知识点贯穿起来,也就掌握了。
对于有些知识点,如Nyquist稳定判据,初学者可能一时还不能很快理解它,强行记下结果是没有用的。只有放慢讲课速度,从幅角原理开始一步一步地推理得到Nyquist稳定判据的定理。还需要抓住一些图形来进一步巩固对它的理解,只有多做练习,从不同题目上、不同的角度来理解该定理,才能真正学好Nyquist稳定判据。同样对于Nyquist图,Bode图的绘制对于初学者都要采取重点强化的方法来学习。
系统思考、重点难点强化的科学学习方法是一种重要的思维方式。对同学们以后的工作、生活都有较好的指导作用。
5讲解习题课有助于培养学生踏实的学风、精益求精的态度和创新精神
《机械工程控制基础》仅讲理论不行,仅结合机械、电气例子讲解也不行,必须结合习题来巩固所学知识。有些同学从头到尾都不动笔算算、推导,最后考试成绩往往不理想。那么,讲解习题怎么能够提高学生的能力,甚至培养学生的创新精神呢?精选习题讲述是理论讲解的有力补充,尽讲解理论,同学们对知识点的理解是肤浅的,大部分同学只能停留在是那么回事的状态上。而教师主动挑选习题进行讲解,在讲解过程中注意启发学生和提示注意对应的知识点,将是对本门课程的良好复习。这么课程的复习完全可以根据知识点来逐一复习,然后纵向联系起来。知识点的系统化对学习本门课程是极其有力的。
然而习题也可分为常规题、较难题和思维锻炼题。常规题指看到题目,只要熟悉相关知识点就能做出来。较难题是指在题目的分析或者求解过程中存在较难的点需要进行适当处理,才能得出正确结果,而思维锻炼题或者称为知识创新题,不能简单地套用公式或运用相关知识点就可以得到正确答案,必须经过仔细地思考或者严密的推导,才能找到做题的切入点,这种题目不一定计算复杂,但是对思维的锻炼程度均大于前两种题型,做出来后个人的成就感均高于前两种题型。这第三种题型将有助于帮助学生思维变活,层次也高于前两者。
讲解习题是给学生一个示范,可进一步要求学生课后选择习题进行解答,这样可帮助学生理解相关概念,也是巩固学风的良好做法。在做题过程中,如果答案不对,学生会寻找出错之处,一直到把习题作对为止,培养精益求精的态度。因为一个步骤不对,将会导致结果出错。思维锻炼型题量的增加可提高学生的学习兴趣,并可激发学生进行科学研究的动力。
6实验课有助于提高学生动手能力,理论 联系实际、分析问题、解决问题能力
实验课是《机械工程控制基础》课程的重要组成部分[4,5]。实验课有两部分:一是在实验箱上搭建电路来验证环节或系统时域、频域性能;二是通过仿真实验帮助同学们学好Matlab软件,用仿真软件来对实际物理系统进行建模、仿真模块搭建、仿真结果分析。
前一实验过程培养学生的动手能力,和理论联系实际的能力,学生会根据所搭建的电路写出其数学模型,看到各个电路参数与模型的哪些关键参数联系起来,同时启发学生碰到不同性质的结构时不妨用相似性原理进行联系思考。这样通过几个电路的搭建之后,给出类似的电路结构甚至机械结构的例子,学生就可以迅速回答出其对应的大概的数学模型形式,包含有哪些环节。这样学生在面对实际系统时,所学知识能够被很快联系起来,知识活学活用,应用能力也得到提高。
后一实验过程是培养学生解决问题、分析问题的能力。学生在建模过程中,怎样把一个个硬生生的数学公式,变成在软件上可以正确表达出来。然后怎么样把数学模块连起来,把仿真结果正确得到,以及对仿真结果的分析,都是对知识理解和深化的过程。学生在实验过程中会碰到各种各样的问题,都需要靠自己通过查看帮助文件、思考来解决。问题的解决对于提高学生的学习兴趣和增强找到问题答案后的满足感有很大的帮助。
参考文献
1 杨叔子,吴波,杨克冲,等.专业课中大有人文[J].高等工程教育,2003,(5):1-6.
2 杨叔子,杨克冲.机械工程控制基础[M].上海:华中科技大学出版社,2005.
3 杨文生.《机械工程控制基础》课教材结构的探讨[J].河北理工学院学报(社会科学版),2002,(2):170-172.
4肖体兵.“机械工程控制基础”实验课的探讨[J].广东工业大学学报(社会科学版),2005,(5):92-94.
5 高峰,王峻峰,何岭松,等.JAVA技术在远程实验教学应用[J].实验技术与管理,2001,18(2):165-169.
Quality cultivation of college students during specialized course
WANG Hong-bo1,SUN Hong2,CHEN Jie2
(1.School of Mechanical and Automobile Engineering,Hefei University of Technology,Hefei,Anhui,230009,China;
2.School of Mechanical and Electrical Engineering,Anhui University of Architecture,Hefei,Anhui,230601,China)
AbstractConjugated the course,control principle of mechanical engineering,the paper discussed that the specialized teaching process could not only help students learn the knowledge,but also improve the students' qualities from six aspects.
数学专业基础课 篇12
作为一名中学教师, 笔者从事专业教学快三十年了, 深感美术教育工作之艰辛, 所以在不断探索新的教学方法, 分析中学美术基础课教学的实践, 笔者认为存在以下的难题。
首先, 在高中读美术专业课的生源不稳定, 学生素质也参差不齐, 教育管理难度比其他文理科学生大。其次, 这些学生除了要读文化课外, 还要学美术专业课, 他们学习时间紧, 引导难度也大, 为了实现教学教育的目的, 笔者在教学中进行了一些尝试。
1 要着重每一位学生, 帮助他们树立自信心, 建立平等友好的师生关系
我们美术课教师要放下“师道差严”的架子, 做和蔼可亲的人民教师, 教师的差严不应该是教师个人的主观感受, 而是学生对教师的道德肯定, 知识折服和感情依恋。我们必须把学生当成朋友, 努力走进他们的情感世界, 去感受他们的喜怒哀乐, 才能以自己的言行潜移默化地去感染学生的心灵, 培养学生健康的心理品质。要发自内心地关心学生、爱护学生, 处处为学生着想, 努力营造宽松愉快的生活和学习环境。
“亲其师”是“信其道”的前提, 教师的差严与鼓励, 可以使学生在精神上得到满足, 消除其因选择美术专业而产生“低人一等”的情绪, 能充分激发学生奋发向上的愿望, 加深学生对教师的信任, 教师要让学生相信自己是可塑之才, 给学生一种积极的心理暗示。
入学伊始, 学生在与笔者沟通时, 经常流露出消极的想法:“老师, 我们读美术专业班能行吗?您不会白费心机吧?我们将来还能做什么?”望着学生充满希望却并不自信的眼神, 笔者坚定地说:“放心吧, 你们每个人都是没有被充分发掘的宝藏。拿出自己的画笔, 自由地画吧!”就这样, 学生将信将疑地学下去了。
2 发挥教师的主导作用, 构建学生主体作用, 才用总分总三步教学法, 不断去激发学生的学习热情
在美术专业课程中, 设计基础是非常重要的一门课程。笔者在教学过程中, 逐步了解了学生的想法及要求, 并在教学实践中摸索出一套行之有效的教学方案———总分总三步教学法。
(1) 总体定位临摹示范
第一阶段, 选择一些有针对性训练目标的优秀作品, 通过在课堂上讲解、欣赏、去感染打动学生, 激发他们的临摹热情。临摹大师的作品, 可解决学生不知如何入手的难题, 同时引入高品质的艺术作品, 可以给学生定位在一个较高的起点, 让他们在自然接受的同时, 学习和借鉴大师作品的精妙之处。
这一阶段的训练目标——熟悉装饰化语言, 学习平面造型元素和装饰色彩知识, 在这一阶段要发挥教师的主导作用, 注意恰当的示范作用, 强调学生的动手实践。
遵循美术直观实践性强的学科特点, 课堂上教师恰当的面授示范尤其重要。在示范过程中, 教师一定要把握好方寸, 莫让学生将示范当成蓝本亦步亦趋, 那就违背了启发学生的初衷了。教师指出绘画表现的重点难点后, 要引导学生入门, 示范要点使学生信服, 让学生愉快地接受学习任务。
(2) 短期分步练习
把临摹过程中遇到的难题, 逐个逐步, 由易到难分布训练, 化解, 分散技能难度, 使学生有接受学习任务的信心, 从而提高学习兴趣。在完成前一阶段的分步训练后再递进加强练习难度。如此, 知识技能的练习环环紧扣, 循序渐进, 就可以扎扎实实地完成教学要求。
第二阶段训练目标——绘画基本技法练习以及平面构成基础的训练。
这个环节在实践教学中是非常重要的, 在这个阶段, 我们特别要注重学生作业的直观展贴点评。众所周知, 作业是衡量学生掌握所学知识的一把尺子, 美术专业的作业最能够直观地去体现画面中的造型、构图、结构、色彩、技法等绘画的要素, 把学生的作品张贴在教室的黑板或四壁, 在课堂上和学生互动评析作业中的优劣之处。也可以引导学生进行相互评析, 发表对自己及别人作品的独到见解, 努力挖掘学生的潜质, 保护学生的独特个性, 鼓励他们发挥想象, 大胆表现个性, 使学生能主动地、潜移默化地汲取专业知识, 培养开拓创新素养。展贴点评打破了传统的教师单个评判学生作业的局限, 使学生也投入到作业的评判之中。师 (下转第145页) (上接第112页) 生之间相互交流, 使学生更易了解自身的优势和不足之处, 助长补短, 在往后的学习中就会更加有的放矢, 从而能最大限度地、高效地达到教学目标。
(3) 汇总性地定期举办教学阶段性画展
通过绘画作品展示反馈教学成果, 让学生享受绘画的乐趣, 体会被认可的成就感, 并再次强化学习的主动意识, 随着绘画素材及经验的积累, 很多学生已经不满足于重复别人, 而是有了创新的意识, 有了自我表现的要求。这个时候, 教师应根据每位学生的自身特点, 因材施教, 帮助学生去选择适合的绘画风格, 焕发学生的创作热情。
第三阶段训练目标——开拓学生的设计思维, 运用设计视觉元素, 规划、有机地将课堂教学与设计创新紧密结合。
实践证明:总分总三步教学法能较好地完善了美术专业教学的实用性、连续性和渐进性。多年来, 我校美术专业为高等院校输送了一大批专业过硬, 基本素质全面的美术专业毕业生, 他们在省内外大专院校深造后能学以致用, 社会多方面反映良好。