微分平衡方程(精选3篇)
微分平衡方程 篇1
0 引言
现代复杂机电产品(如航空航天器、机器人、汽车等)通常是集机、电、液、控、磁等多学科领域于一体的复杂物理系统,经常表现出时间依赖(对时间导数)与空间依赖(对坐标偏导)共存的行为特征,而且可能呈现出多领域之间及时间域与空间域之间的耦合特性[1]。
物理系统行为规律的描述通常有两种主要的形式。系统在单纯时间域的物理行为往往由常微分方程(ordinary differential equation,ODE)描述,如果涉及代数约束,则形成微分代数方程(differential-algebraic equation,DAE),DAE是描述时间域物理规律的普遍形式,如机械多体、电子电路等系统规律的描述;若物理行为涉及空间场,出现对空间变量的偏导,则往往由偏微分方程(partial differential equation,PDE)描述,如位势、传热、波动等相关物理系统的规律描述[1]。
物理系统建模经历了从面向过程建模到面向对象建模、连续域与离散域分散建模到连续-离散混合建模、单一领域独立建模到多领域统一建模的发展阶段。Modelica语言是近年来欧洲仿真界为解决复杂物理系统建模与仿真问题而提出的一种多领域统一建模语言[2,3],然而,目前Modelica语言只能对时间域的物理系统进行统一建模,还不能对空间域的物理系统进行描述,更无法对其进行仿真优化,这大大限制了Modelica语言的应用范围。为此,国外已有学者着手扩展Modelica语言以支持PDE问题的建模与仿真[4]。周凡利等[1]提出了解决该问题的思路,但没有具体实现。李志华等[5,6]也开展了这方面的研究工作,初步实现了Modelica语言对PDE问题的描述、建模以及仿真求解。然而现有的这些方法都是采用简单的有限差分法或线上法来求解具有规则区域(如矩形)的PDE问题,对于不规则区域的复杂PDE问题则无法求解。
本文在李志华等原有工作[5,6]的基础上,从多领域统一建模与仿真的角度,针对一般性的PDE问题(包括不规则求解区域、复杂边界条件、线性或非线性PDE系统),提出一种PDE与DAE的一致求解方法,为Modelica直接求解复杂工程系统中多领域耦合、时间域与空间域耦合的复杂问题奠定基础。
1 PDE的已有解法
PDE的解法主要分为解析法和数值法。到目前为止,只有有限形式的PDE能够得到解析解,在工程实际中一般采用数值求解。PDE的数值求解技术比较成熟,可用的方法包括有限差分法、有限元法、有限体积法以及线上法等[7]。但有限差分法和线上法只适用于规则的求解区域,而有限元法和有限体积法是基于网格的计算方法,在某些工程问题(如动态裂纹扩展、高速撞击、冲击破坏、流固耦合等)中存在网格的束缚,使得计算遇到很大的困难,因此出现了无网格方法[8]。
无网格方法只需要节点的信息,不需要节点与节点之间相互联系的信息,这样很容易在复杂计算区域内布置节点。无网格方法的构建主要包括近似函数的构建方法和微分方程的离散方法两个部分,根据近似函数构建方法和微分方程离散方法的不同,可以构建出许多不同的无网格方法[8]。目前比较常用的近似函数的构建方法有:核函数近似方法、再生核近似方法、移动最小二乘近似方法、单位分解近似方法、径向基函数近似方法、点插值近似方法等。微分方程的离散方法包括加权残量法、配点法、Galerkin法以及局部Petrov-Galerkin法。
Khattak等[9]运用无网格配点法成功求解了一类非线性PDE;Yao等[10]应用全局和局部径向基函数来求解三维抛物线型PDE,并比较了这两种无网格方法的性能;Kamruzzaman等[11]利用多项式点插值和配点法来构造无网格方法,较好地求解了椭圆形、抛物线型和双曲线型PDE;吴宗敏[12]介绍了散乱数据拟合研究中的径向基函数方法,及其在散乱线性泛函信息插值、无网格PDE数值解中的应用;吴孝钿[13]应用Sobolev splines径向基函数和紧支柱正定径向基函数,得到求解PDE边值问题的无网格算法,并针对散乱数据的特点,给出了计算整体稠密度h的算法及如何通过加密节点使h值缩小的一个可行方法。然而上述无网格方法都是直接对时间变量和空间变量进行离散,只适合求解单纯的PDE问题,不适合求解复杂的PDE与DAE耦合问题。
本文借鉴传统的求解PDE的无网格方法,选用径向基函数和配点法来构建径向基函数配点无网格法,并对其进行改进,即只对空间变量离散而保持时间变量连续,直接将PDE在空间上(即配点处)离散成一系列的DAE,然后利用成熟的DAE求解器进行统一求解。
2 径向基函数配点无网格法
对于d维实空间中定义在域Ω上的PDE问题:
式中,L、B为微分算子;u(X,t)为未知量场函数;f(X,t)、g(X,t)为已知函数。
我们所构建的径向基函数配点无网格法的基本思想是:首先采用径向基函数构造近似函数,将未知量场函数的时-空变量分开,然后运用配点法对空间变量进行离散,而保持时间变量连续,这样就将PDE问题在空间上离散成一系列只含时间变量的DAE问题,具体过程如下。
首先在PDE的不规则求解区域Ω内和边界Ω上选定N=Nu+Nb个离散的节点(即配点),然后应用径向基函数构造u(X,t)的近似函数,并将其构成时间与空间分离的形式:
其中,N为节点总数;Nu为域内节点数;Nb为边界节点数;αi(t)为待定系数;Xi为实空间上的配点;φi(‖X-Xi‖)为径向基函数,φi(‖X-Xi‖)=φ(ri(X));ri(X)为Euclidian范数,ri(X)=‖X-Xi‖。
为确保解的唯一性,(ri(X))必须无条件正定,这种径向基函数包括Gaussian函数e-cr2、逆MQ函数(r2+c2)β(β<0)和紧支正定径向基函数等。本文采用Gaussian函数。
将式(2)代入式(1)中,并使这N个点满足式(1)的微分方程和边界条件,得到
当微分算子L、B为空间变量的偏导时,由于空间变量已与时间变量分离,且径向基函数φi(‖X-Xi‖)对空间变量可求导,在每一节点处,空间坐标已知,因此Lφ(ri(Xk))或Bφ(ri(Xk))就是一个已知值,这样,式(3)中就只剩下时间的导数,即每个节点处对应一个只与时间有关的DAE,这样就将PDE转化为一系列的DAE(具体过程可参见实例部分)。
进一步,PDE问题(式(1))可变为求解一个N×N的线性方程组问题,用矩阵表示为
其中,S为N×N的矩阵,S=(Ski)N×N;a为待求的系数向量,a=(α1(t),α2(t),…,αN(t));b=(b1,b2,…,bN);且
由式(4)求出未知系数αi(t)(i=1,2,…,N)后,通过式(2)就可以获得域内和边界上任意一点的场函数值u(X,t)。
3 实例及求解过程
通过编程,利用径向基函数配点无网格法对PDE进行空间离散,自动将PDE问题转化成DAE问题。本文采用MATLAB编程,首先将带时间域的PDE问题进行时间与空间分离(若不带时间域则不用分离),然后通过径向基函数配点无网格法对空间变量进行离散,得到一系列离散点处的DAE,并把这些DAE数据用mat格式保存起来,接着将该mat格式文件导入到基于Modelica语言的多领域统一建模与仿真平台MWorks中[14],并利用其成熟的DAE/ODE求解器进行PDE与DAE的一致求解。整个流程如图1所示。
以下面一个不规则区域的二维热传导问题为例来说明本文所提方法的有效性:
式中,T为某个时间值。
其求解区域由如下边界组成:
对该不规则求解区域用配点法进行不规则离散,得其节点分布如图2所示,其中域内节点数Nu=61,边界上节点数Nb=42。然后对这些节点从左到右、从下到上进行编号。
对该二维热传导PDE问题,运用上述PDE与DAE的一致求解方法和过程进行一致求解,令
对于求解域内的Nu个离散节点(xi,yi)(i=1,2,…,Nu),满足域内的偏微分方程,即
对于求解域边界上的Nb个离散节点(xi,yi)(i=1,2,…,Nb),满足边界条件方程,即
对于域内及边界上的所有离散节点(xi,yi(i=1,2,…,N),N=Nu+Nb,满足初始条件方程,即
本文采用Gaussian径向基函数,在各离散节点处均可计算出它们的值。这样,式(5)~式(7)中就只剩下时间的变量,即利用径向基函数配点无网格法已将PDE在离散节点处转化为一系列的DAE,然后就可以在MWorks环境中利用其自带的DAE求解器进行求解,从而方便地得出场函数在各个离散节点处随时间变化的函数值。图3表示的是场函数在编号为15节点处的仿真结果;图4所示为本文的数值解与其精确解u(x,y,t)=e-2tsin(x+y)之间的比较,此处t=0.5s。
由图4可以看出,本文的数值解uP与精确解uQ非常吻合,达到了较高的求解精度。进一步,定义本文的数值解与精确解之间的误差为,通过计算得到er=7.1×10-5。
4 求解精度影响因素分析
为了更好地应用径向基函数配点无网格法来求解PDE问题,本文研究了不同离散节点数、平均节点间距和径向基函数参数c的取值对求解精度的影响,如表1所示。
由表1可以看出,一般情况下,当参数不变时,离散节点数越大、平均节点间距越小,则求解精度越高。例如,在c=1不变的情况下,当节点数为14、平均节点间距为0.47时,误差为2.2475×10-4;而当节点数为30、平均节点间距为0.28时,误差则为1.7142×10-5。同时还可以看出,随着参数c的不断增大,求解精度并不是呈递增或递减状态,而是有起伏变化,只有当c取适当的值时,误差er才较小。由此可见,恰当确定径向基函数参数c的取值很关键,然而目前还没有规律可循,只能通过多次反复运算来确定一个合适的值。
5 结论
多领域统一建模要求用偏微分方程和微分代数方程来统一描述和统一求解,本文针对一般性的偏微分方程问题,提出了偏微分方程与微分代数方程的一致求解方法,给出了该方法的实现过程,分析了离散节点数和径向基函数参数对求解精度的影响,得到如下结论:
(1)与传统的无网格方法相比,本文采用只对空间变量离散而保持时间变量连续的策略,能方便地将偏微分方程在离散节点处转化为一系列微分代数方程,从而在不改变Modelica语法的前提下,较好地实现偏微分方程与微分代数方程的一致求解,大大简化了复杂的偏微分方程与微分代数方程耦合问题的求解难度。
(2)实例结果表明,本文所提出的方法能较好地解决具有不规则求解区域的偏微分方程问题,且求解精度高,这有利于Modelica直接求解复杂工程系统中多领域耦合、时间域与空间域耦合的复杂问题。
摘要:Modelica语言是一种复杂物理系统多领域统一建模语言,但目前该语言只能解决由微分代数方程(DAE)描述的问题,而不能解决由偏微分方程(PDE)表达的问题。为此,提出一种偏微分方程与微分代数方程的一致求解方法,利用所构建的径向基函数配点无网格法直接将偏微分方程在空间上离散成一系列的微分代数方程,然后采用成熟的微分代数方程求解器进行求解。实例结果表明,该方法在不改变Modelica语法的前提下,能较好地实现偏微分方程与微分代数方程的一致求解,且求解精度高、边界条件处理简单,有利于Modelica直接求解复杂工程系统中多领域耦合、时间域与空间域耦合的复杂问题。
关键词:多领域统一建模,Modelica,偏微分方程(PDE),微分代数方程(DAE)
微分平衡方程 篇2
微分方程是高等数学的重要内容之一,是一门与实际联系较密切的一个内容。
在自然科学和技术科学领域中,例如化学,生物学,自动控制,电子技术等等,都提出了大量的微分方程问题。
在实际教学过程中应注重实际应用例子或应用背景,使学生对所学微分方程内容有具体地,形象地认识,从而激发他们强大的学习兴趣。
1 应用问题举例
1.1 生态系统中的弱肉强食问题
在这里考虑两个种群的系统,一种以另一种为食,比如鲨鱼(捕食者)与食用鱼(被捕食者),这种系统称为“被食者—捕食者”系统。
Volterra提出:记食用鱼数量为,鲨鱼数量为,因为大海的资源很丰富,可以认为如果,则将以自然生长率增长,即。
但是鲨鱼以食用鱼为食,致使食用鱼的增长率降低,设降低程度与鲨鱼数量成正比,于是相对增长率为。
常数,反映了鲨鱼掠取食用鱼的能力。
如果没有食用鱼,鲨鱼无法生存,设鲨鱼的自然死亡率为,则。
食用鱼为鲨鱼提供了食物,致使鲨鱼死亡率降低,即食用鱼为鲨鱼提供了增长的条件。
设增长率与食用鱼的数量成正比,于是鲨鱼的相对增长率为。
常数>0,反映了食用鱼对鲨鱼的供养能力。
所以最终建立的模型为:
这就是一个非线性的微分方程。
1.2 雪球融化问题
有一个雪球,假设它是一个半径为r的球体,融化时体积V的变化率与雪球的表面积成正比,比例常数为>0,则可建立如下模型:
1.3 冷却(加热)问题
牛顿冷却定律具体表述是,物体的温度随时间的变化率跟环境的的温差成正比。
记T 为物体的温度,为周围环境的温度,则物体温度随时
2 结语
文中通过举生态系统中弱肉强食问题,雪球融化及物理学中冷却定律问题为例给出了微分方程在实际中的应用。
在讲解高等数学微分方程这一章内容时经常举些应用例子,能引起学生对微分方程的学习兴趣,能使学生易于理解和掌握其基本概念及理论,达到事半功倍之效。
参考文献
[1] 王嘉谋,石林.高等数学[M].北京:高等教育出版社,.
[2] 王高雄,周之铭,朱思铭,等.常微分方程[M].2版.北京:科学出版社,.
[3] 齐欢.数学建模方法[M].武汉:华中理工大学出版社,.
微分方程在数学建模中的应用【2】
【摘 要】微分方程是现代数学的一个重要分支,是研究函数变化规律的有力工具,它在科技、教育、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。
在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题。
本文主要从交通红绿灯模型和市场价格模型来论述微分方程在数学建模中的应用。
【关键词】微分方程;数学建模;交通红绿灯模型;市场价格调整模型
数学建模是数学方法解决各种实际问题的桥梁,随着计算机技术的快速发展,数学的应用日益广泛,数学建模的作用越来越重要,而且已经应用到各个领域。
用微分方程解决实际问题的关键是建立实际问题的数学模型——微分方程。
这首先要根据实际问题所提供的条件,选择确定模型的变量,再根据有关学科,如物理、化学、生物、经济等学科理论,找到这些变量遵循的规律,用微分方程的形式将其表示出来。
一、交通红绿灯模型
在十字路口的交通管理中,亮红灯之前,要亮一段时间的黄灯,这是为了让那些正行驶在十字路口的人注意,告诉他们红灯即将亮起,假如你能够停住,应当马上刹车,以免冲红灯违反交通规则。
这里我们不妨想一下:黄灯应当亮多久才比较合适?
停车线的确定,要确定停车线位置应当考虑到两点:一是驾驶员看到黄灯并决定停车需要一段反应时间 ,在这段时间里,驾驶员尚未刹车。
二是驾驶员刹车后,车还需要继续行驶一段距离,我们把这段距离称为刹车距离。
驾驶员的反应时间(实际为平均反应时间) 较易得到,可以根据经验或者统计数据求出,交通部门对驾驶员也有一个统一的要求(在考驾照时都必须经过测试)。
例如,不失一般性,我们可以假设它为1秒,(反应时间的长短并不影响到计算方法)。
停车时,驾驶员踩动刹车踏板产生一种摩擦力,该摩擦力使汽车减速并最终停下。
设汽车质量为m,刹车摩擦系数为f,x(t)为刹车后在t时刻内行驶的距离,更久刹车规律,可假设刹车制动力为fmg(g为重力加速度)。
由牛顿第二定律,刹车过程中车辆应满足下列运动方程:
md2xdt2=-fmg
x(0)=0, dxdtt=0=v0
(1)
在方程(1)两边同除以 并积分一次,并注意到当t=0时dxdt=V0,得到
dxdt=-fgt+v0
(2)
刹车时间t2可这样求得,当t=t2时,dxdt=0,故
t2=v0fg
将(2)再积分一次,得
x(t)=-12fgt2+v0t
将t2=v0fg代入,即可求得停车距离为
x(t2)=1v202fg
据此可知,停车线到路口的距离应为:
L=v0t1+12v20fg
等式右边的第一项为反应时间里驶过的路程,第二项为刹车距离。
黄灯时间的计算,现在我们可以来确定黄灯究竟应当亮多久了。
在黄灯转为红灯的这段时间里,应当能保证已经过线的车辆顺利地通过街口,记街道的宽度为D(D很容易测得),平均车身长度为 ,这些车辆应通过的路程最长可达到L+D+l,因而,为保证过线的车辆全部顺利通过,黄灯持续时间至少应当为:
T=L+D+lv0
二、市场价格调整模型
对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等这样的价格称为(静态)均衡价格。
也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程。
如果设某商品在时刻t的售价为P,社会对该商品的需求量和供给量分别是P的函数D(P),S(P),则在时刻t的价格p(t)对于时间t的变化率可认为与该商品在同时刻的超额需求量D(P)-S(P)成正比,即有微分方程
dPdt=k[D(P)-S(P)] (k>0)
(3)
在D(P)和S(P)确定情况下,可解出价格与t的函数关系,这就是商品的价格调整模型。
某种商品的价格变化主要服从市场供求关系。
血液流速的微分方程模型 篇3
关键词: 微分方程 模型 血液流速
1.问题分析及基本假设
根据生理学可知,人体不同部位的血管粗细是不一样的,所以不同部位的血液流速也是不相等的。并且同一段血管内,管壁处的血液流速与血管管轴处的流速是不相同的。图1是血管和及流动血液的纵剖面,当血液从管壁移向管轴时,流动速度逐渐增加。那么,人体内血液的流动速度与血管粗细之间具体关系可以怎么表示呢?为了便于研究,需要做如下假设:
(1)设血液在血管中的流动是稳定流动的(即流动速度与时间无关,只与位置有关);
(2)设血管的半径R,长度为L(R比L小得多);
(3)血液流动的速度为V;
(4)血液的黏滞度为常数η;
(5)单位长度的血管,左端血压力为P,右端血压力为P(P>P)。
2.模型建立
由于各层流体运动速度不同,之间产生摩擦力,则上层液体促使下层液体运动,同时下层液体延缓上层液体的运动。可以设想血液中平放着一块面积为A的平板,根据黏滞流体动力学知识,作用于面积A上的力F等于ηA。
利用微元法,现对血液中的部分血液(看成空心圆柱体状,长度为一个单位)的流动速度进行讨论,此空心圆柱的内半径为r,圆柱的厚度为dr,设它的轴与血管的轴相重合(如图2)。圆柱的内表面面积为2πr,上面受到的力为F=η·2πr。
该力方向与血液运动方向相同,圆柱的外表面上受到相反的力的作用,
F=η·2πr-d(η·2πr)
因而两力之和(摩擦力)为:
F+F=-d(η·2πr)=-2πη(+r)dr
因为血液是稳定流动的,所以摩擦力的大小应该和促使空心圆柱沿着轴流动的力相等。这个促使空心圆柱沿着轴流动的力决定于压力降,就等于:
F′=(P-P)2πrdr
由此有:
-2πη(+r)dr=(P-P)2πrdr
整理得:
+·=-(1)
由此得到微分方程模型。
3.模型求解
令=u,则=,方程(1)可化为
+u=-(2)
利用一阶线性微分方程的通解公式,可得方程(2)的通解为u=-r,即:
=-r(3)
方程(3)为可分离变量的微分方程,通过分离变量、两边积分可得方程(1)的通解为:
V=Clnr-r+C
因为r→0时,lnr→∞,但运动速度是一个有限数,所以C=0;当r=R时,运动速度V=0,所以C=R。综上所得,血液的流动速度与血管半径之间的关系为:
V=(R-r)
4.模型总结
根据模型的求解结果可知,血液流速与其黏滞系数成反比,与血管两端压力降成正比,血管的半径越大则流速越大。血管内血液流速的分布符合医学生理学知识。
参考文献:
[1]周义仓,勒祯,秦军林.常微分方程及其应用[M].北京:科技出版社,2003.
[2]姜启源,谢金星,叶俊.数学建模[M].高等教育出版社,2005.