定积分的概念教案

2024-09-27

定积分的概念教案(精选8篇)

定积分的概念教案 篇1

四川工商学院

授 课 计 划(教 案)

课程名称:高等数学

章节名称:第六章 第一节 定积分的概念 使用教材:赵树媛主编,《微积分》(第四版),北京:中国人民大学出版社,2016.8 教学目的:掌握定积分的概念,培养学生建立数学模型、从具体到一般的抽象思维方式;从已知到未知的研究问题的方法,提高学生的应用能力和创新思维。

教学重点:定积分的概念

教学难点:定积分概念建立、分割的思想方法及应用

教学方法:教学采用启发式、数形结合,用多媒体辅助教学。适用层次:应用型本科。教学时间:45分钟。

教学内容与教学设计

引言

介绍牛顿和莱布尼兹两位数学家和物理学家以及在微积分方面的研究成果,重点展示在积分方面的成果。(简单提及积分产生背景)

(PPT展示肖像,简历和成就。2分钟)

一、引例

已经会用公式求长方形、梯形、三角形面积。但对一些不规则平面图形的面积计算,需要寻求其他方法计算。

(PPT展示封闭的图形及分块,特别强调曲边梯形。2分钟)

(一)求曲边梯形的面积(板书)

由xa,xb,y0与yfx0围成平面图形,求面积A=?(如图)(PPT展示)

1.分析问题

(1)用小曲边梯形的面积相加就是A;(PPT展示)

(2)用小矩形代替小曲边梯形有误差,但有计算表达式(PPT放大图形)

(3)分的越细,其和精度越高(PPT)(4)最好是都很细,或最大的都很小(PPT)

(PPT展示,4分钟)

2.分割

(1)在a,b内任意插入n1个分点:

ax0x1x2xi1xixnb

这样,把a,b分成了n个小区间x0,x1,,xi1,xi,,xn1,xn,并记小区间的长度为xixixi1,i1,2,n(PPT演示,重点说明其目的是准备用小矩形代替小曲边梯形,以便提高精度。2分钟)

(2)过每一个分点作平行于y轴的直线,这样一来,大的曲边梯形被分成n个小曲边梯形Ai(小范围)。

3.近似代替

f(在第i 个小曲边梯形上任取i[xi-1,xi],作以 [ x i, x

为底, i)为高的小矩形, 1i]并用此小矩形面积近似代替相应小曲边梯形面积 

A i , 得

Aif(i)xixixixi1,i1,2,....,n

(PPT演示,重点说明乘积的量表示什么。2分钟)

(1)求和

把n个小曲边梯形相加,就得到大曲边梯形面积的近似值

AAifixi(板书)

i1i1nn(PPT演示,重点说明,两个量的区别,让学生记住后一个表达式,这是将来应用的核心部

分。3分钟)

(2)取极限

当分点的个数无限增加,且小区间长度的最大值,即趋近于零时,上述和式极限就是梯形面积的精确值。

nn

AlimAi=limfixi即 max{xi},(板书)001ini1i1

(PPT演示,重点说明三个符号构成一个新的记号,重点。3分钟)

(二)变速直线运动的路程(板书)

求物体在这段时间内所经过的路程s。

n设某物体作直线运动,已知速度vv(t)是时间间隔T1,T2上t的连续函数,且 v(t)0,S=limviti(板书)

0i1(PPT展示上述结论,与

(一)对比,只是将符号变更,另一方面乘积的量发生了变化。

3分钟)

二、定积分的定义

定义:设函数fx在a,b上有定义,任意取分点

ax0x1x2xi1xixnb

把a,b分成n个小区间,xi-1,xi称为子区间,其长度记为xixixi1,i1,2,n。在每个子区间xi-1,xi上,任取一点ixi-1,xi,得函数值fnf()x。i,作乘积

ii

f(i)xi。把所有的乘积加起来,得和式 i1当n无限增大,且子区间长度的最大长度趋近于零时,如果上述和式的极限存在,则称fx在子区间a,b上可积,并将此极限值称为函数fx在a,b上的定积分。记作:

fxdx

ab即

fx

(板书)fxdxlima0iii1bn

(PPT展示定义,重点说明:记号和等号,左边是新的符号,右边是其表达式,即如果可以建立右边表达式,就立即将其用左边符号表示,换言之,看见左边符号,立即联想到右边的表达式。4分钟)

(板书)fxdx,变速直线运动的路程可以表示为:S=vtdt(板书)曲边梯形的面积可以表示为:AabT2T1定理

1设fx在a,b上连续,则fx在a,b上可积。

定理2 设fx在a,b上有界,且只有有限个间断点,则fx在a,b上可积。

(PPT展示定理。解释:只要满足条件,lim0fx 就可以与定积分符号划等号。

iii1n2分钟)

三、例题

利用定义计算定积分

10x2dx

(PPT展示全部计算过程及答案,说明几何意义。特别强调,以后用牛-莱公式计算,即简单又快捷,但要用到不定积分的知识,提醒学生复习已学过的相关知识。下次课介绍牛-莱公式。2分钟)

四、总结(板书)

(PPT展示定义-符号、定理,提示复习不定积分,核心表达式板书。1分钟)

五、作业(板书)

板书设计框架

第五章 第一节 定积分的概念

一、引例

(一)求曲边梯形的面积

(二)变速直线运动的路程

二、定积分定义

fx fxdxlima0iii1bn

三、例题

10x2dx=

四、总结

五、习题与提示

定积分的概念教案 篇2

微积分的出现, 与其说是整个数学史, 不如说是整个人类历史上的一件大事, 它从生产技术和理论科学的需要中产生, 同时又回过头来深刻地影响着生产和自然科学的发展。《定积分的概念》是本章第一节内容, 题目本身就是强调概念, 是学生学习定积分的基础。也为定积分的应用作好铺垫。

根据《大纲》的要求和本节课的地位, 我认为本节课的重点是:“理解并掌握微积分思想方法, 理解曲边梯形的面积及变速运动路程的求法思路即“分割、近似代替、求和、取极限”, 同时曲边梯形面积的求法思路步骤及“理解微积分思想方法”也是本节课的难点所在。

说它为重点是根据《大纲》的要求、它所处的历史地位和它应用的广泛性所决定的;说它是难点主要是因为这种思想方法不同于前面学习过的函数与方程思想、数形结合思想等基本的思想方法, 在学生的头脑中并没有与之相联系的认知结构, 只有将头脑中原有的认知结构加以改组和顺应;同时, 从历史上看, 人类从对微积分的认识到掌握微积分理论, 经过了千年历史, 所以在短短几节课内达到深刻理解这种思想方法, 的确是不容易的, 所以, 它将成为本节的难点所在。

二、教学目标的确定

根据《大纲》的要求和本节所处的地位, 我认为通过本节课的学习, 应使学生达到:

1、进一步理解微积分思想, 会用“分割、近似代替、求和、取极限”的方法、步骤分析问题, 从而培养学生的逻辑思维能力。

2、理解用极限的思想方法思考与处理问题, 从而培养学生的创新意识。

3、引导学生学会联想、归纳、总结等思想方法。

4、在学习过程中, 渗透对学生主动探索学习精神的培养。

三、教学方法和教学手段的使用

根据本节课内容的特殊性和学生的实际水平, 我采用的是“问题教学法”, 其主导思想是以启发式教学思想为主导, 由教师提出一系列精心设计的问题, 在教师的启发指导下, 让学生自己去分析、探索, 在探索过程中研究和领悟得出的结论, 从而使学生即获得知识又发展智能的目的。

教学手段:多媒体计算机

通过计算机模拟演示, 使学生获得感性知识的同时, 为掌握理性知识创造条件, 这样做, 可以使学生饶有兴趣地学习, 注意力也容易集中, 符合教学论中的直观性原则和可接受性原则。

四、关于学法的指导

德国教育家斯多惠说:“一个坏教师奉送真理, 一个好教师教人发现真理”, 我深深体会到, 必须在给学生传授知识的同时教给他们好的学习方法, 就是说让他们“会学习”。

通过本节课的教学使学生“学会设疑、学会发现、学会尝试、学会联想、学会总结”。学习有得必有疑, 只有产生疑问, 学习才有动力, 本节课共提出三个问题、一个思想方法、一个联想猜测;通过对它们的解决和处理, 从中培养了学生发现问题、提出问题、分析和解决问题的能力。

提出问题后, 鼓励学生通过分析、探索, 尝试解决问题的方法, 通过自己亲自尝试, 学生的思维能力得到了培养, 本节主要表现在“概念让学生自己去总结、规律让学生自己去探索、题目让学生自己去解决”。当然在教学过程中学生还潜移默化地学到了“发现法”、“模仿法”、“归纳法”等学习方法。

五、教学程序的设计

本节课在程序上分为“问题提出—历史介绍—方法讲解—联想猜测—研究发现—例题分析—归纳总结—作业布置”等八个阶段。

1、问题提出

用多媒体放出曲边梯形, 问:该曲边梯形的面积那么如何计算呢?心理学表明:思维从疑问开始, 问题的提出使学生的思维得以启动, 同时这个曲边梯形并不像正方形、长方形、圆、扇形等有现成的公式可以利用, 它没有现成的公式可用, 问题本身具有新鲜感和诱惑力, 极大地引起了学生的兴趣。

2、历史介绍

介绍300年前, 牛顿、卡瓦列利、瓦里士等著名学者对这个问题的研究成果。使学生了解一下数学史, 了解一下大科学家对这个问题本身的看法, 由于学生的大科学家的崇拜, 更加调动了学生的学习兴趣;同时, 通过对科学家不畏艰难勇于探索事迹的介绍, 也是对学生不怕困难刻苦学习精神的教育。

3、方法讲解

由于微积分的发展完善经过了近千年历史, 所以微积分思想方法不适合让学生在课上自己探索、发现、归纳、总结, 即自学式;所以由教师利用多媒体计算机形象地模拟、演示、描述, 使学生从感性上理解, 再逐步升到理性上的认识, 这符合人们认识事物的一般规律, 即先由感性认识再逐步上升到理性认识;同时计算机的直观形象的演示, 也符合教学论中的直观性原则;极限理论与计算机的结合运用, 使学生清楚地了解什么是曲边梯形, 并直观地看到曲边梯形的面积由“分割、近似代替、求和、取极限”的过程。

4、联想猜测

用多媒体播放:变速运动一汽车在公路上做变速运动。问题:当汽车在T1~~T2时间内运动的路程。让学生联想能不能将物理问题转化为数学问题, 并用求曲边梯形的方法“分割、近似代替、求和、取极限”的微积分思想方法;来求解。

5、研究发现

因此通过对这个问题的学习研究之后, 引导学生发现求曲边梯形面积及求变速运动的路程方法都是“分割、近似代替、求和、取极限”, 通过两个实例让学生自己总结出定积分的概念。这符合人们思维认识发展的一般规律, 也符合数学发展的一般规律, 同时也再次激发学生进一步学习的浓厚兴趣, 学生也从中学到了联想、猜测的归纳、总结的思想方法。

6、例题分析

例题的设置, 主要是为了强化本节课的重点, 通过石油增长案例让学生自己亲自尝试、体验, 才能深刻理解“分割、近似代替、求和、取极限”的微积分思想方法;再通过一些纯数学理论题的联系, 让学生加深理解。对学生来讲, 这样才能打好基础。

7、归纳总结

完成了本节课的教学内容后, 在教师的引导下, 师生共同归纳总结, 目的是让学生在头脑中更深刻更清晰地留下思维的痕迹, 在此基础上, 归纳出“分割、近似代替、求和、取极限”的微积分思想方法, 同时师生共同总结, 更深刻地理解定积分的概念, 容易调动学生的学习积极性和主动参与意识。

8、作业布置

通过本节课的教学内容, 布置相应的任务, 通过任务反馈本节课知识掌握的效果, 以便下节课查陋补缺。

总之, 对课堂的设计, 我始终在努力贯彻以教师为主导, 以学生为主体, 以问题为基础, 以能力、方法为主线, 有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发, 充分利用各种教学手段来激发学生的学习兴趣, 体现了对学生创新意识的培养

摘要:本教学设计是在新的教育理念的指导下, 以学生为主导, 通过学生实验、探究、讨论, 教师启发、引导, 共同研究解决诸如求曲边梯形面积等用通过局部取近似、求和取极限的方法 , 把总量归结为求一种特定和式极限的这样的问题, 从而得出定积分的概念, 然后回归到生活中解决实际问题。

定积分的概念 篇3

类型1 求曲边梯形的面积及汽车行驶路程

例1 如图1所示,由直线[x=0,x=2,y=0]与曲线[f(x)=-x2+x+2]所围成的曲边梯形的面积.

[图1]

分析 要求这个曲边梯形的面积,可以按分割、近似代替、求和、取极限四个步骤进行.

解 将区间[0,2]等分成[n]个小区间,则第[i]个小区间为[[2(i-1)n,2in]][(i=1,2,…n)],第[i]个小区间的面积为[△Si=f(2in)⋅2n=[-(2in)2+2in+2]⋅2n]

所以[Sn=i=1n ][△Si=i=1n [-(2in)2+2in+2]⋅2n]

[=-8n3⋅(12+22+…+n2)+4n2⋅(1+2+3+…+n)+4]

=[-8n3⋅n(n+1)(2n+1)6+4n2⋅n(n+1)2+4]

=[-43(1+1n)(2+1n)+2(1+1n)+4.]

[S=limn→∞Sn=limn→∞[-43(1+1n)(2+1n)+2(1+1n)+4]]

[=103.]

所以所求的曲边梯形的面积为[103].

点拨 求曲边梯形的面积体现下面规律方法:

①思想——以直代曲;

②步骤——分割→近似代替→求和→取极限;

③关键——近似代替,可以是每个小区间的左端点的函数值,也可以是右端点的函数值,还可以是小区间的任意一点的函数值;

④结果——分割越细,面积越精确.

例2 已知汽车做变速直线运动,在时刻[t]的速度为[v(t)=t2+2t](单位:km/h),求它在[1≤t≤2]这段时间行驶的路程是多少?

解析 将时间区间[1,2]等分成[n]个小区间,则第[i]个小区间为[1+[i-1n,1+in]],在第[i]个时间段的路程近似为[△Si=v(1+in)][△t=[(1+in)2]+2(1+[in])][1n][(i=1,2,…,n)].

所以[Sn]=[i=1n ][△Si=i=1n ]([3+i2n2+4in])[1n]

=3+[1n3⋅n(n+1)(2n+1)6]+[4n2n(n+1)2]

=3+[16(1+1n)(2+1n)+2(1+1n)].

[S=limn→∞Sn=limn→∞[3+16(1+1n)(2+1n)+2(1+1n)]]

[=163].

所以这段时间汽车行驶的路程为[163]km.

点拨 求汽车行驶的路程转化为求时间—速度坐标系中的曲边梯形的面积,思想方法和解题方法与例1都是相同的,只是背景不同.

类型2 定积分的几何意义及应用

当函数[f(x)]在[[a,b]]上恒为正时,定积分[abf(x) dx]的几何意义是由直线[x=a,x=b(a≠b),][y=0]和曲线[y=f(x)]所围成的曲边梯形的面积(图2中阴影部分).

[图2]

一般情况下,定积分[abf(x) dx]的几何意义是介于[x]轴,曲线[f(x)]以及直线[x=a,x=b]之间的曲边梯形面积的代数和(图3中阴影部分),其中在[x]轴上的面积等于该区间上的积分值,在[x]轴下方的面积等于该区间上积分值的相反数.

[图3]

例3 用定积分的意义求下列各式的值:

(1)[-13(2x+1) dx]; (2)[-12121-x2 dx.]

分析 根据定积分的几何意义作出由直线、曲线所围成的图形,利用几何知识求面积,从而得出定积分的值.

解 (1)由直线[x=-1,x=3,y=0]以及[y=2x+1],所围成的图形,如图4所示.

[图4]

[-13(2x+1)dx]表示由直线[x=-1,x=3,y=0]以及[y=2x+1]所围成的图形在[x]轴上方的面积减去在[x]轴下方的面积.

所以[-13(2x+1) dx]=[12]×(3+[12])×(2×3+1)-[12]×(-[12]+1)×1=12.5.

(2)由[y=1-x2]可知,[x2+y2=1(y≥0)],图象如图5所示. 由定积分的几何意义知[-12121-x2 dx]等于圆心角为[π3]的弓形[CED]的面积与矩形[ABCD]的面积之和.

[图5]

[S弓形=12×π3×12-12×1×1×sinπ3=π6-34,]

[S矩形=|AB|⋅|BC|=1×32]=[32,]

所以[-12121-x2dx]=[π6+34.]

点拨 利用几何意义求定积分,关键是确定被积函数的图象以及积分区间,正确利用相关的几何知识求面积,不规则的图形常用分割法求面积,注意分割点的确定.

例4 已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为[v甲]和[v乙],如图6所示,那么对于图中给定的[t0]和[t1]时刻,下列判断中一定正确的是( )

[图6]

A. [t1]时刻,甲车在乙车前面

B. [t1]时刻后,甲车在乙车后面

C. [t0]时刻,两车的位置相同

D. [t0]时刻后,乙车在甲车前面

解析 判断甲、乙两车谁在前,谁在后的问题,实质上是判断在[t0],[t1]时刻,甲乙两车行驶路程的大小问题.根据定积分的几何意义知,车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数[v(t)]的图象与[t]轴以及时间段围成区域的面积,从图象知:在[t0]时刻,[v甲]的图象与[t]轴和[t=0,t=][t0]围成区域的面积大于[v乙]的图象与[t]轴和[t=0,t=][t0]围成区域的面积,因此,在[t0]时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以C、D错误;同时,在[t1]时刻,[v甲]的图象与[t]轴和[t=0],[t=t1]围成区域的面积仍然大于[v乙]的图象与[t]轴和[t=0],[t=t1]围成区域的面积,所以可以断定,在[t1]时刻,甲车还是在乙车的前面,故选A.

类型3 定积分的性质及应用

例5 已知[f(x)=9-x2,x∈[-3,0)3-x, x∈[0,2)2-12x,x∈[2,4]],

求[f(x)]在区间[-3,4]上的定积分.

[图7]

分析 解答本题可先根据定积分的几何意义求出相应函数的定积分,再根据定积分的性质进行加减运算.

解 如图7所示,由定积分的几何意义得:

[-309-x2dx=14π×32=9π4];

[02(3-x)dx=12×(1+3)×2=4];

[24(2-12x)dx=12×1×2=1].

[∴-34f(x)dx=-309-x2dx+02 (3-x)dx+]

[24 (2-12x)dx]

[=9π4+4+1=5+9π4].

点拨 求定积分时,应注意利用定积分的性质及几何意义,利用定积分的性质还可以简化运算. 定积分的性质还可推广为:

①[ab[f1(x)±f2(x)±…±fn(x)]dx]

[=ab[f1(x)dx±ab f2(x)dx±…±ab fn(x)dx].

②[abf(x)dx=ac1 f(x)dx±c1c2 f(x)dx+]

[…+cnb f(x)dx(n∈N+)].

例6 已知[f(x)=sin5x+1,]根据函数的性质,积分的性质和积分的几何意义计算:[-π2π2f(x)dx]= .

解析 [-π2π2f(x)dx]=[-π2π2(sin5x+1)dx]

[=-π2π2sin5xdx+-π2π2dx=0+π=π],

故答案填π.

点拨 此题运用了积分的性质以及奇、偶函数在区间[[-a,a]]上的定积分的性质:

若奇函数[y=f(x)]在[[-a,a]]上连续不断,则[-aaf(x)dx=0].

如:[-11x3dx=0].

若偶函数[y=g(x)]在[[-a,a]]上连续不断,则[-aag(x)dx=20ag(x)dx].

定积分的概念教案 篇4

第五章 定积分

第五章

定积分

教学目的:

1、理解定积分的概念。

2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。

3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。

4、了解广义积分的概念并会计算广义积分。

教学重点:

1、定积分的性质及定积分中值定理

2、定积分的换元积分法与分部积分法。

3、牛顿—莱布尼茨公式。

教学难点:

1、定积分的概念

2、积分中值定理

3、定积分的换元积分法分部积分法。

4、变上限函数的导数。§5 1 定积分概念与性质

一、定积分问题举例

1 曲边梯形的面积

曲边梯形 设函数yf(x)在区间[a b]上非负、连续 由直线xa、xb、y0及曲线yf(x)所围成的图形称为曲边梯形 其中曲线弧称为曲边

求曲边梯形的面积的近似值

将曲边梯形分割成一些小的曲边梯形 每个小曲边梯形都用一个等宽的小矩形代替 每个小曲边梯形的面积都近似地等于小矩形的面积 则所有小矩形面积的和就是曲边梯形面积的近似值 具体方法是 在区间[a b]中任意插入若干个分点

ax0 x1 x2    xn1 xn b

把[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ]

它们的长度依次为x1 x1x0  x2 x2x1      xn  xn xn1 

经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n个窄曲边梯形 在每个小区间 [xi1 xi ]上任取一点i  以[xi1 xi ]为底、f(i)为高的窄矩形近似替代第i个窄曲边梯形(i1 2     n) 把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值 即

Af(1)x1 f(2)x2   f(n)xnf(i)xi

i1n

求曲边梯形的面积的精确值

显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积A的近似值就越接近曲边梯天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

形面积A的精确值 因此 要求曲边梯形面积A的精确值 只需无限地增加分点 使每个小曲边梯形的宽度趋于零 记

max{x1 x2   xn } 于是 上述增加分点 使每个小曲边梯形的宽度趋于零 相当于令0 所以曲边梯形的面积为

Alimf(i)xi

0i1n

2 变速直线运动的路程

设物体作直线运动 已知速度vv(t)是时间间隔[T 1 T 2]上t的连续函数 且v(t)0 计算在这段时间内物体所经过的路程S 

求近似路程

我们把时间间隔[T 1 T 2]分成n 个小的时间间隔ti  在每个小的时间间隔ti内 物体运动看成是均速的 其速度近似为物体在时间间隔ti内某点i的速度v(i) 物体在时间间隔ti内 运动的距离近似为Si v(i)ti  把物体在每一小的时间间隔ti内 运动的距离加起来作为物体在时间间隔[T 1  T 2]内所经过的路程S 的近似值 具体做法是

在时间间隔[T 1  T 2]内任意插入若干个分点

T 1t 0 t 1 t 2   t n1 t nT 2

把[T 1  T 2]分成n个小段

[t 0 t 1] [t 1 t 2]    [t n1 t n] 

各小段时间的长依次为

t 1t 1t 0 t 2t 2t 1   t n t n t n1

相应地 在各段时间内物体经过的路程依次为

S 1 S 2    S n

在时间间隔[t i1 t i]上任取一个时刻 i(t i1 i t i) 以 i时刻的速度v( i)来代替[t i1 t i]上各个时刻的速度 得到部分路程S i的近似值 即

S i v( i)t i

(i1 2     n)

于是这n段部分路程的近似值之和就是所求变速直线运动路程S 的近似值 即

Sv(i)ti

i1n

求精确值

记  max{t 1 t 2   t n} 当0时 取上述和式的极限 即得变速直线运动的路程

Slimv(i)ti

0i1n

设函数yf(x)在区间[a b]上非负、连续 求直线xa、xb、y0 及曲线yf(x)所围成的曲边梯形的面积

(1)用分点ax0x1x2   xn1xn b把区间[a b]分成n个小区间

[x0 x1] [x1 x2] [x2 x3]     [xn1 xn ] 记xixixi1(i1 2     n)

(2)任取i[xi1 xi] 以[xi1 xi]为底的小曲边梯形的面积可近似为

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f(i)xi(i1 2     n) 所求曲边梯形面积A的近似值为

Af()x iii1nn

(3)记max{x1 x2   xn } 所以曲边梯形面积的精确值为

Alim0f()x iii1

设物体作直线运动 已知速度vv(t)是时间间隔[T 1 T 2]上t的连续函数

且v(t)0 计算在这段时间内物体所经过的路程S 

(1)用分点T1t0t1t2  t n1tnT2把时间间隔[T 1  T 2]分成n个小时间 段 [t0 t1] [t1 t2]    [tn1 tn]  记ti titi1(i1 2     n)

(2)任取i[ti1 ti] 在时间段[ti1 ti]内物体所经过的路程可近似为v(i)ti

(i1 2     n) 所求路程S 的近似值为

Sv()tii1nni

(3)记max{t1 t2   tn} 所求路程的精确值为

Slim0v()t iii

1二、定积分定义

抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括 就抽象出下述定积分的定义

定义

设函数f(x)在[a b]上有界 在[a b]中任意插入若干个分点

a x0 x1 x2    xn1 xnb

把区间[a b]分成n个小区间

[x0 x1] [x1 x2]    [xn1 xn] 

各小段区间的长依次为

x1x1x0 x2x2x1   xn xn xn1

在每个小区间[xi1 xi]上任取一个点 i(xi1  i  xi) 作函数值f( i)与小区间长度xi的乘积

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f( i)xi(i1 2   n) 并作出和

Sf(i)xi

i1n记  max{x1 x2   xn} 如果不论对[a b]怎样分法 也不论在小区间[xi1 xi]上点 i 怎样取法 只要当0时 和S 总趋于确定的极限I 这时我们称这个极限I为函数f(x)在区间[a b]上的定积分 记作af(x)dx

limf(i)xi af(x)dx0i1bnb其中f(x)叫做被积函数 f(x)dx叫做被积表达式 x叫做积分变量 a 叫做积分下限 b 叫做积分上限 [a b]叫做积分区间

定义

设函数f(x)在[a b]上有界 用分点ax0x1x2   xn1xnb把[a b]分成n个小区间 [x0 x1] [x1 x2]    [xn1 xn]  记xixixi1(i1 2   n)

任 i[xi1 xi](i1 2   n) 作和

Sf()xii1ni

记max{x1 x2   xn} 如果当0时 上述和式的极限存在 且极限值与区间[a b]的分法和 i的取法无关 则称这个极限为函数f(x)在区间[a b]上的定积分 记作即

根据定积分的定义 曲边梯形的面积为Aaf(x)dx

变速直线运动的路程为ST2v(t)dt

1baf(x)dx

baf(x)dxlimf(i)xi

0i1nbT

说明

(1)定积分的值只与被积函数及积分区间有关 而与积分变量的记法无关 即

af(x)dxaf(t)dtaf(u)du

(2)和f(i)xi通常称为f(x)的积分和

i1nbbb

(3)如果函数f(x)在[a b]上的定积分存在 我们就说f(x)在区间[a b]上可积

函数f(x)在[a b]上满足什么条件时 f(x)在[a b]上可积呢?

定理

1设f(x)在区间[a b]上连续 则f(x)在[a b]上可积

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

定理2 设f(x)在区间[a b]上有界 且只有有限个间断点 则f(x)在[a b]上可积

定积分的几何意义

在区间[a b]上 当f(x)0时 积分af(x)dx在几何上表示由曲线yf(x)、两条直线xa、xb 与x轴所围成的曲边梯形的面积 当f(x)0时 由曲线y f(x)、两条直线xa、xb 与x轴所围成的曲边梯形位于x轴的下方 定义分在几何上表示上述曲边梯形面积的负值

babf(x)dxlimf(i)xilim[f(i)]xia[f(x)]dx

0i10i1nnb

当f(x)既取得正值又取得负值时 函数f(x)的图形某些部分在x轴的上方 而其它部分在x轴的下方 如果我们对面积赋以正负号 在x轴上方的图形面积赋以正号 在x轴下方的图形面积赋以负号 则在一般情形下 定积分af(x)dx的几何意义为 它是介于x轴、函数f(x)的图形及两条直线xa、xb之间的各部分面积的代数和

b用定积分的定义计算定积分

例1.利用定义计算定积分0x2dx

把区间[0 1]分成n等份分点为和小区间长度为

xii(i1 2   n1) xi1(i1 2   n)

nn

取ii(i1 2   n)作积分和 n

1f(i)xii1i1nni2xi(i)21

ni1nnn1i2131n(n1)(2n1)1(11)(21)

3ni1n66nn

因为1 当0时 n 所以n

n12xdxlim00i11(11)(21)1f(i)xinlim6nn

3利定积分的几何意义求积分:

例2用定积分的几何意义求0(1x)dx 解: 函数y1x在区间[0 1]上的定积分是以y1x为曲边以区间[0 1]为底的曲边梯形的面积 因为以y1x为曲边以区间[0 1]为底的曲边梯形是一直角三角形 其底边长及高均为1 所以 1天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

0(1x)dx211211

1三、定积分的性质

两点规定

(1)当ab时

(2)当ab时 af(x)dx0

af(x)dxbf(x)dx

bbbab

性质

1函数的和(差)的定积分等于它们的定积分的和(差)即

a[f(x)g(x)]dxaf(x)dxag(x)dx

bb 证明:a[f(x)g(x)]dxlim[f(i)g(i)]xi

0i1nnn

limf(i)xilimg(i)xi

0i1b0i1

af(x)dxag(x)dx

性质2 被积函数的常数因子可以提到积分号外面 即

bakf(x)dxkaf(x)dxbnnbbb

这是因为akf(x)dxlimkf(i)xiklimf(i)xikaf(x)dx

0i10i1性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即

af(x)dxaf(x)dxcbcbf(x)dx

这个性质表明定积分对于积分区间具有可加性

值得注意的是不论a b c的相对位置如何总有等式

af(x)dxaf(x)dxcf(x)dx af(x)dxaf(x)dxbf(x)dx

天津工业大学理学院基础数学系高等数学、经济数学教研室 cbcbcb成立 例如 当a

高等数学教案

第五章 定积分

于是有

af(x)dxaf(x)dxbf(x)dxaf(x)dxca1dxadxba

af(x)dx0(ab)

af(x)dxag(x)dx(ab)

ag(x)dxaf(x)dxa[g(x)f(x)]dx0

af(x)dxag(x)dx

bbbbbbbbbbbbbcccbf(x)dx

性质

4如果在区间[a b]上f(x)1 则

性质

5如果在区间[ab]上 f(x)0 则

推论

1如果在区间[ab]上 f(x) g(x)则

这是因为g(x)f(x)0 从而

所以

推论2 |af(x)dx|a|f(x)|dx(ab)

这是因为|f(x)|  f(x) |f(x)|所以

a|f(x)|dxaf(x)dxa|f(x)|dx

即 |af(x)dx|a|f(x)|dx|

性质6 设M 及m 分别是函数f(x)在区间[ab]上的最大值及最小值 则

m(ba)af(x)dxM(ba)(ab)

证明

因为 m f(x) M  所以

从而

m(ba)af(x)dxM(ba)

性质7(定积分中值定理)

如果函数f(x)在闭区间[ab]上连续 则在积分区间[ab]上至少存在一个点 使下式成立 bbbbbbb

amdxaf(x)dxaMdxbbb天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxf()(ba) b这个公式叫做积分中值公式

证明

由性质6

m(ba)af(x)dxM(ba) 各项除以ba

b

m1af(x)dxM

bab再由连续函数的介值定理 在[ab]上至少存在一点  使

b

f()1af(x)dx

ba于是两端乘以ba得中值公式

af(x)dxf()(ba) b

积分中值公式的几何解释

应注意 不论ab 积分中值公式都成立

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 2 微积分基本公式

一、变速直线运动中位置函数与速度函数之间的联系

设物体从某定点开始作直线运动 在t时刻所经过的路程为S(t) 速度为vv(t)S(t)(v(t)0) 则在时间间隔[T1 T2]内物体所经过的路程S可表示为

S(T2)S(T1)及T2v(t)dt

1T即 T2v(t)dtS(T2)S(T1)

1T

上式表明 速度函数v(t)在区间[T1 T2]上的定积分等于v(t)的原函数S(t)在区间[T1 T2]上的增量

这个特殊问题中得出的关系是否具有普遍意义呢?

二、积分上限函数及其导数

设函数f(x)在区间[a b]上连续 并且设x为[a b]上的一点我们把函数f(x)在部分区间[a x]上的定积分

af(x)dx

xx称为积分上限的函数 它是区间[a b]上的函数 记为 (x)af(x)dx 或(x)af(t)dt

定理1 如果函数f(x)在区间[a b]上连续 则函数

(x)af(x)dx

在[a b]上具有导数 并且它的导数为

x

(x)daf(t)dtf(x)(ax

dxxx

简要证明

若x(a b) 取x使xx(a b)

(xx)(x)a

af(t)dtxxxxxxf(t)dtaf(t)dt

xf(t)dtaf(t)dt x天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

xxxf(t)dtf()x

应用积分中值定理 有f()x

其中在x 与xx之间 x0时 x  于是

(x)limlimf()limf()f(x)

x0xx0x

若xa  取x>0 则同理可证(x) f(a) 若xb  取x<0 则同理可证(x) f(b)

定理

2如果函数f(x)在区间[a b]上连续 则函数

(x)af(x)dx

就是f(x)在[a b]上的一个原函数

定理的重要意义 一方面肯定了连续函数的原函数是存在的 另一方面初步地揭示了积分学中的定积分与原函数之间的联系

三、牛顿莱布尼茨公式

定理

3如果函数F(x)是连续函数f(x)在区间[a b]上的一个原函数 则

xaf(x)dxF(b)F(a)

xb此公式称为牛顿莱布尼茨公式 也称为微积分基本公式

这是因为F(x)和(x)af(t)dt都是f(x)的原函数 所以存在常数C 使

F(x)(x)C(C为某一常数)

由F(a)(a)C及(a)0 得CF(a) F(x)(x)F(a) 由F(b)(b)F(a) 得(b)F(b)F(a) 即

af(x)dxF(b)F(a)

xb

证明 已知函数F(x)是连续函数f(x)的一个原函数 又根据定理2 积分上限函数

(x)af(t)dt

也是f(x)的一个原函数 于是有一常数C 使

F(x)(x)C(axb)

当xa时 有F(a)(a)C 而(a)0 所以CF(a) 当xb 时 F(b)(b)F(a)

所以(b)F(b)F(a) 即

af(x)dxF(b)F(a) b 为了方便起见 可把F(b)F(a)记成[F(x)]ba 于是天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

aF(b)F(a)

af(x)dx[F(x)]bb

进一步揭示了定积分与被积函数的原函数或不定积分之间的联系

例1.计算0x2dx

解 由于1x3是x2的一个原函数 所以 11213131xdx[1x3]1010 03333

3例2 计算1dx2

1x

解 由于arctan x是12的一个原函数 所以

1x

13 ( )7

dx[arctanx]3arctan3arctan(1)134121x2

1例3.计算21dx

x

解 12ln 1ln 2ln 22xdx[ln|x|]11

例4.计算正弦曲线ysin x在[0 ]上与x轴所围成的平面图形的面积

解 这图形是曲边梯形的一个特例 它的面积

A0sinxdx[cosx]0(1)(1)2

例5.汽车以每小时36km速度行驶 到某处需要减速停车设汽车以等加速度a5m/s2刹车 问从开始刹车到停车 汽车走了多少距离?

从开始刹车到停车所需的时间

当t0时 汽车速度

v036km/h361000m/s10m/s

3600刹车后t时刻汽车的速度为

v(t)v0at 105t 

当汽车停止时 速度v(t)0 从

v(t)105t 0 得 t2(s)

于是从开始刹车到停车汽车所走过的距离为

210(m)

s0v(t)dt0(105t)dt[10t51t2]0222天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

即在刹车后 汽车需走过10m才能停住

例6.设f(x)在[0, )内连续且f(x)>0 证明函数F(x)在(0 )内为单调增加函数

xx 证明 d0 tf(t)dtxf(x) d0f(t)dtf(x) 故

dxdx0tf(t)dt

x0f(t)dtxF(x)xf(x)0f(t)dtf(x)0tf(t)dt(0f(t)dt)xx2xxf(x)0(xt)f(t)dt(0f(t)dt)x2x

按假设 当0tx时f(t)>0(xt)f(t) 0  所以

0f(t)dt0 x0(xt)f(t)dt0

cosxetdtx212从而F (x)>0(x>0) 这就证明了F(x)在(0 )内为单调增加函数

例7.求limx0

解 这是一个零比零型未定式 由罗必达法则

limx0cosxetdtx2x212limx01cosxt2edtx2cosxlimsinxe1

x02x2e2提示 设(x)1etdt 则(cosx)1cosxt2edt

dcosxet2dtd(cosx)d(u)dueu2(sinx)sinxecos2x

dx1dxdudx

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 3 定积分的换元法和分部积分法

一、换元积分法

定理

假设函数f(x)在区间[a b]上连续 函数x(t)满足条件

(1)()a  ()b

(2)(t)在[ ](或[ ])上具有连续导数 且其值域不越出[a b] 则有

af(x)dxf[(t)](t)dt

这个公式叫做定积分的换元公式

证明

由假设知 f(x)在区间[a b]上是连续 因而是可积的 f [(t)](t)在区间[ ](或[ ])上也是连续的 因而是可积的

假设F(x)是f(x)的一个原函数 则

baf(x)dxF(b)F(a)

另一方面 因为{F[(t)]}F [(t)](t) f [(t)](t) 所以F[(t)]是f [(t)](t)的一个原函数 从而

bf[(t)](t)dtF[()]F[()]F(b)F(a)

因此 af(x)dxf[(t)](t)dt

例1 计算0a2x2dx(a>0)

解 ab0aa2x2dx 令xasint 02acostacostdt 

2a2222(a0costdt1cos2t)dt

20天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

221a2

a[t1sin2t]0224提示 a2x2a2a2sin2tacost dxa cos t  当x0时t0 当xa时t 例2 计算02cos5xsinxdx

解 令tcos x 则

20cosxsinxdx02cos5xdcosx

011 1t5dt0t5dt[1t6]01

令cosxt提示 当x0时t1 当x时t0

2或

20cosxsinxdx02cos5xdcosx 521cos61cos601

[1cos6x]066266

例3 计算0sin3xsin5xdx

解 0sin3xsin5xdx0sin2x|cosx|dx

3 2sin2xcosxdxsin2xcosxdx

023

32sin20xdsinx32sin2xdsinx

55222 [sinx]0[sin2x]2(2)4

555525提示 sinxsinxsinx(1sin35323x)sin2x|cosx|

在[0, ]上|cos x|cos x 在[, ]上|cos x|cos x

4例4 计算x2dx

02x

1解 04x2dx 令2x1t21232x1t32 1tdt11(t23)dt

t2312711122

[t33t]1[(9)(3)]232333天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

2t提示 x1 dxtdt 当x0时t1 当x4时t3

2例5 证明 若f(x)在[a a]上连续且为偶函数 则

af(x)dx20aaaf(x)dx

0a

证明 因为af(x)dxaf(x)dx0f(x)dx 而

所以

af(x)dx a0令xt af(t)dt0f(t)dt0f(x)dx

a0aaaf(x)dx0aaf(x)dx0f(x)dx

aa

0[f(x)f(x)]dxa2f(x)dx20f(x)dx

讨论

若f(x)在[a a]上连续且为奇函数 问af(x)dx?

提示

若f(x)为奇函数 则f(x)f(x)0 从而

aaf(x)dx0[f(x)f(x)]dx0

aa

例6 若f(x)在[0 1]上连续 证明

(1)02f(sinx)dx02f(cosx)dx(2)0xf(sinx)dx 20f(sinx)dx

证明(1)令xt 则 02f(sinx)dx20f[sin(t)]dt

2

2f[sin(t)]dt2f(cosx)dx

002(2)令xt 则

00xf(sinx)dx(t)f[sin(t)]dt

t)]dt0(t)f(sint)dt

0(t)f[sin(0f(sint)dt0tf(sint)dt

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

0f(sinx)dx0xf(sinx)dx

所以

0xf(sinx)dx20 f(sinx)dx

x24xe x0

例7 设函数f(x)1 计算1f(x2)dx 1x01cosx

解 设x2t 则

14f(x2)dx1f(t)dt1201dt2tet2dt

01cost220

[tant]1[1et]0tan11e41

22222提示 设x2t 则dxdt 当x1时t1 当x4时t2

二、分部积分法

设函数u(x)、v(x)在区间[a b]上具有连续导数u(x)、v(x) 由

(uv)uv u v得u vu vuv  式两端在区间[a b]上积分得

baauvdx 或audv[uv]aavdu auvdx[uv]bbbbb这就是定积分的分部积分公式

分部积分过程

baavdu[uv]aauvdx    

auvdxaudv[uv]bbbbb 例1 计算 解 12arcsinxdx 0

12arcsinxdx0112[xarcsinx]012xdarcsinx0

102xdx

261x21 021221d(1x2)

1x212231

[1x]012122 例2 计算0exdx

解 令xt 则

10e1xdx20ettdt

天津工业大学理学院基础数学系高等数学、经济数学教研室 1高等数学教案

第五章 定积分

20tdet

2[tet] 0 20etdt

2e2[et] 0 2

例3 设In02sinnxdx 证明

(1)当n为正偶数时 Inn1n331

nn242

2(2)当n为大于1的正奇数时 Inn1n342

nn2

53证明 In2sinnxdx0111102sinn1xdcosx

n1 2x] 0

[cosxsin02cosxdsinn1x



(n1)02cos2xsinn2xdx(n1)02(sinn2xsinnx)dx

(n1)02sinn2xdx(n1)02sinnxdx

(n1)I n 2(n1)I n 

由此得

Inn1In2

n

I2m2m12m32m531I0

2m2m22m442

I2m12m2m22m442I1

2m12m12m353而I002dx I102sinxdx1

2因此

I2m2m12m32m531

2m2m22m4422

I2m12m2m22m4422m12m12m353 例3 设In02sinnxdx(n为正整数) 证明

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

I2m2m12m32m531 2m2m22m442 I2m12m2m22m442 2m12m12m353 证明 In02sinnxdx02sinn1xdcosx

[cosxsinn1 2x] 0(n1)02cos2xsinn2xdx

(n1)02(sinn2xsinnx)dx

(n1)02sinn2xdx(n1)02sinnxdx

(n1)I n 2(n1)I n 

由此得 Inn1In2 n

I2m2m12m32m531I0 2m2m22m442

I2m12m2m22m442I1 2m12m12m353特别地 I02dx02 I102sinxdx1 因此

I2m2m12m32m531 2m2m22m4422

I2m12m2m22m442 2m12m12m3

53天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

§5 4 反常积分

一、无穷限的反常积分

定义1 设函数f(x)在区间[a )上连续 取b>a  如果极限

blimaf(x)dx

b存在 则称此极限为函数f(x)在无穷区间[a )上的反常积分 记作af(x)dx 即

a这时也称反常积分af(x)dx收敛f(x)dxlimaf(x)dx

bb

如果上述极限不存在 函数f(x)在无穷区间[a )上的反常积分af(x)dx就没有意义 此时称反常积分af(x)dx发散

类似地 设函数f(x)在区间( b ]上连续 如果极限

alimaf(x)dx(a

bb存在 则称此极限为函数f(x)在无穷区间( b ]上的反常积分 记作f(x)dx 即

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

f(x)dxalimf(x)dx

a这时也称反常积分f(x)dx收敛如果上述极限不存在 则称反常积分f(x)dx发散

设函数f(x)在区间( )上连续 如果反常积分 bbbbf(x)dx和0f(x)dx

都收敛 则称上述两个反常积分的和为函数f(x)在无穷区间( )上的反常积分 记作

0f(x)dx 即

f(x)dxf(x)dx00a0f(x)dx

b

limaf(x)dxlim0f(x)dx

b这时也称反常积分f(x)dx收敛

如果上式右端有一个反常积分发散 则称反常积分f(x)dx发散

定义1

连续函数f(x)在区间[a )上的反常积分定义为

af(x)dxlimaf(x)dx

bb

在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散

类似地 连续函数f(x)在区间( b]上和在区间( )上的反常积分定义为

f(x)dxlimaf(x)dx

abbf(x)dxlimaf(x)dxlim0f(x)dx

ab0b

反常积分的计算 如果F(x)是f(x)的原函数 则

af(x)dxlimaf(x)dxlim[F(x)]ba

bbb

limF(b)F(a)limF(x)F(a)

bx可采用如下简记形式

类似地 af(x)dx[F(x)]alimF(x)F(a)

xF(b)limF(x)

f(x)dx[F(x)]bxb天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

limF(x)limF(x)

f(x)dx[F(x)]xx 例1 计算反常积分12dx

1x

解 

11x2dx[arctanx]

limarctanxlimarctanx

xx

 ( ) 例2 计算反常积分0teptdt(p是常数 且p>0)

解 0teptdt[teptdt]0[1tdept]0

p

[1tept1eptdt]0pp

[1tept12ept]0pp

lim[1tept12ept]1212

tpppp提示 limteptlimtptlim1pt0

ttetpe 例3 讨论反常积分a 解 当p1时

当p<1时

当p>1时 1dx(a>0)的敛散性

xpa1dx1dx[lnx] 

aaxxpa1dx[1x1p] 

a1pxpa1dx[1x1p] a1p

a1pp1xp1p 因此 当p>1时 此反常积分收敛 其值为a 当p1时 此反常积分发散

p

1二、无界函数的反常积分

定义

2设函数f(x)在区间(a b]上连续 而在点a的右邻域内无界 取>0 如果极限

talimf(x)dx tbb存在 则称此极限为函数f(x)在(a b]上的反常积分 仍然记作af(x)dx 即

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxtlimatbbf(x)dx

这时也称反常积分af(x)dx收敛

如果上述极限不存在 就称反常积分af(x)dx发散

类似地 设函数f(x)在区间[a b)上连续 而在点b 的左邻域内无界 取>0 如果极限

tbbblimf(x)dx abt存在 则称此极限为函数f(x)在[a b)上的反常积分 仍然记作af(x)dx 即

f(x)dx

af(x)dxlimatbbt这时也称反常积分af(x)dx收敛 如果上述极限不存在 就称反常积分af(x)dx发散

设函数f(x)在区间[a b]上除点c(a

都收敛 则定义

cbaf(x)dxaf(x)dxcf(x)dx

否则 就称反常积分af(x)dx发散

瑕点 如果函数f(x)在点a的任一邻域内都无界 那么点a称为函数f(x)的瑕点 也称为无界

定义2

设函数f(x)在区间(a b]上连续 点a为f(x)的瑕点 函数f(x)在(a b]上的反常积分定义为 bbcbaf(x)dxtlimatbbf(x)dx

在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散

类似地函数f(x)在[a b)(b为瑕点)上的反常积分定义为

f(x)dx

af(x)dxlimatbbt

函数f(x)在[a c)(c b](c为瑕点)上的反常积分定义为

af(x)dxtlimcabtf(x)dxlimf(x)dx

ttcb反常积分的计算

如果F(x)为f(x)的原函数 则有

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

af(x)dxtlimatbbf(x)dxlim[F(x)]bt

ta

F(b)limF(t)F(b)limF(x) taxa可采用如下简记形式

aF(b)limF(x)

af(x)dx[F(x)]bxab类似地 有

alimF(x)F(a)

af(x)dx[F(x)]bxbb当a为瑕点时af(x)dx[F(x)]bF(x)

aF(b)limxab当b为瑕点时af(x)dx[F(x)]bF(x)F(a)

alimxbb当c(acb)为瑕点时

F(x)F(a)][F(b)limF(x)]

af(x)dxaf(x)dxcf(x)dx[xlimcxcbcb 例4 计算反常积分 解 因为limxaa01dx

2ax21 所以点a为被积函数的瑕点

a2x 0a1alimarcsinx0 dx[arcsinx] 0a2xaaa2x2

1例5 讨论反常积分112dx的收敛性

x

解 函数12在区间[1 1]上除x0外连续 且lim12

x0xx0 0 由于112dx[1]lim(1)1

1xxx0x01即反常积分112dx发散 所以反常积分112dx发散

xx

例6 讨论反常积分a

解 当q1时

当q1时 bbbdx的敛散性

(xa)qdxbdx[ln(xa)] b

aa(xa)qaxadx[1(xa)1q] b

aa(xa)q1q天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

当q1时 dx[1(xa)1q] b1(ba)1q

aa(x1qa)q1qb 因此 当q<1时 此反常积分收敛 其值为1(ba)1q 当q1时 此反常积分发散

1q

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

天津工业大学理学院基础数学系高等数学、经济数学教研室 高等数学教案

第五章 定积分

定积分的几何意义是什么? 篇5

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

定积分就是求函数f(X)在区间[a,b]中的图像包围的`面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

定积分的概念教案 篇6

2018考研高数定积分复习的三大要点

2018考研初试时间临近,积分是考研数学中非常重要的考点也是容易丢分的部分。本文就和考生来说说最后这段时间要怎么复习定积分。

我们可以看到:在学习定积分之前,我们首先学习了不定积分。很多同学把不定积分与定积分搞混淆。其实不定积分是导数的逆运算,本质还是导数的延伸。而真正的积分部分是定积分。在此,向考生提出如下学习建议,供考生参考。

1.复习知识体系

在讲定积分的时候,我又回归到原来的讲法:从知识体系讲起。因为定积分这章非常重要,考试考查的内容多而广。这章包括:定积分的定义,性质;微积分基本定理;反常积分;定积分的应用。这四个部分各有侧重点。其中定积分的定义是重点;要理解微积分基本定理;要掌握定积分在几何和物理上面的应用。至于反常积分大家了解就行了。

2.深刻回顾知识点

在掌握了知识体系之后,自然就需要明确具体的重点知识点了。首先是定积分的定义及性质。大家需要深刻理解定积分的定义。我觉得同学们不仅要会用自己的话来表述定义,而且要一步一步的写出精髓。比如说从定义中体现的思想:微元法。同学们要理解分割,近似,求和,取极限这四个步骤。同时要知道其几何意义及定义中需要注意的方面。对定积分定义的考察在每年考研中是必考内容。所以希望引起大家的足够重视。至于性质,大家关键也在于理解。特别是区间可加性;比较定理;积分中值定理。对这三个性质大家一定要知道是怎么来的。考研中有关积分的证明题多多少少会用到这三个性质。所以大家只有理解了才懂得在什么时候用。然后是微积分基本定理。这个知识点非常重要。因为它定义了一种新的函数:积分上限函数。而且在一定的条件下,它的导数就是f(x)。所以我们扩展了函数类型。那么导数应用中的切线与法

为学生引路,为学员服务

线;单调性;极值;凹凸性等应用就可以与积分上限函数联系了。同时提出了牛顿-莱布尼茨公式,使得我们可以用不定积分来计算定积分。希望同学们要掌握牛顿-莱布尼茨公式的证明过程。补充说一点:求定积分常用的方法是基本积分公式;换元积分法(凑微分法和换元积分法);分部积分法。其中换元积分法和分部积分法是重点。大家要理解换元积分法的思想。即我们通过复合函数求导公式推出了凑微分法;通过三角代换,根式代换等提出了换元积分法。而我们通过相乘函数的导数公式推出了分部积分法。所以大家只有知道这些方法是怎么来的才能更好的使用这些方法。接着大家要注意变限积分求导了,最好请大家自己证明下。第三个要说的是反常积分。对这一部分,同学们了解基本定义,会用定积分判断是否收敛就够了。最后,是定积分的应用。其实就是微元法在几何以及物理上面的应用。同样的,同学们要知道数学一,数学二,数学三的区别。在几何上,数学三只用掌握用定积分求面积和简单几何体的体积。而数学一和数学二还要求掌握用定积分求曲线弧长,旋转曲面面积。在物理应用方面,数学一和数学二主要掌握用定积分求变力沿直线做功,抽水做功,液太静压力和质心问题。但核心是,同学们一定要掌握微元法的思想。

3.大量做题

在大家理解了重点知识以及明确了考试重点后就需要做题巩固了。关键是做真题,反复做真题,反复练习。

超越函数定积分的积分方法 篇7

特别D是矩形区域[α, b, c, d], 则有

利用引理可以得到的主要结果是:

超越函数定积分的积分方法一:把超越函数定积分I看作是某个参变量y的函数, 记为I (y) , 利用微分运算可通过积分号的引理1, 先微分, 再积分, 最后确定I。

超越函数定积分的积分方法二:把超越函数定积分转化为二元函数的二重积分, 利用二重积分顺序可交换的引理2, 恰当选择积分顺序, 从而得到超越函数定积分的计算。

于是有I (y) =ln (1+y) +c, 令y=α, 于是有

I (α) =ln (1+α) +c=0, c=-ln (1+α) , 从而得到

利用超越函数定积分的积分方法二:

摘要:本文利用二元函数的微分学和积分学的理论和方法, 研究超越函数定积分的两种积分方法。

关键词:初等函数,超越函数,定积分,二重积分

参考文献

[1]复旦大学数学系主编.数学分析.上海:科技出版社.1964年

[2]徐利治, 王兴华编.数学分析的方法及例题选讲 (修订版) .北京:高等教育出版社.1984年

例析定积分的简单应用 篇8

定积分的几何意义:在区间[a,b]上的曲线[y=f(x)]连续且恒有[f(x)≥0],那么定积分[abf(x)dx]表示由直线[x=a,x=b,x]轴和曲线[y=f(x)]所围成的曲边梯形的面积.

1. 不分割图形面积的求解

例1 求由曲线[y=x],直线[y=x-2]及[y]轴所围成的图形的面积.

分析 结合图形,从图中可以看出所求图形面积可以转化为两个曲边梯形面积的差,进而可以用定积分求面积[S].

解 如图,阴影部分面积即为所求,求得曲线[y=x]与直线[y=x-2]的交点为[A(4,2)],

∴[S阴=04(x-x+2)dx=(23x32-12x2+2x)40][=163].

2. 分割图形面积的求解

例2 计算由直线[y=4],曲线[y=4x]及直线[y=x]所围成的封闭图形的面积.

分析 结合图形,从图中可以看出所求图形面积可以转化为两个曲边梯形的面积的和,进而可以用定积分知识求面积[S].

解 由[y=4y=4x]得[A(1,4)]; 由[y=4xy=x]得[B(2,2)]; 由[y=4y=x]得[C(4,4)].

从而所求的图形面积为

[S=12(4-4x)dx+24(4-x)dx]

[=(4x-4lnx)21+(4x-x22)42=6-4ln2].

点拨 求曲线围成的平面图形的面积的解题步骤:(1)画出图形,并将图形分割为若干个曲边梯形(如例题2);(2)确定图形范围,通过解方程组求出交点的坐标,定出积分的上、下限;(3)确定被积函数,要特别注意被积函数的上、下位置;(4)写出平面图形的定积分表达式;(5)运用微积分基本公式计算定积分,求出平面图形的面积.

二、定积分在物理中的应用

1. 变速直线运动的路程

做变速直线运动的物体所经过的路程[s],等于其速度函数[v=v(t)(v(t)]≥0)在时间区间[[a,b]]上的定积分,即[s=abv(t)dt].

例3 一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度[v(t)=5-t+551+t](单位:m/s)紧急刹车至停止,求(1)火车从开始紧急刹车到完全停止所经过的时间;(2)紧急刹车后,火车运行的路程.

分析 火车停止即速度为零,火车运行的路程即为速度函数在这一时间段上的定积分.

解 (1)火车停止时,[v(t)=0],

所以[5-t+551+t=0],解得[t=10].

即火车从开始紧急刹车到完全停止所经过的时间为10秒.

(2)紧急刹车后,火车运行的路程

[s=010v(t)dt=010(5-t+551+t)dt]

[=5t-12t2+55ln(1+t)100=55ln11m]

答: 紧急刹车后,火车运行的路程为[55ln11]米.

点拨 路程是位移的绝对值,从时刻[t=a]到[t=b]所经过的路程:

(1)若[v(t)≥0,s=abv(t)dt;]

(2)若[v(t)≤0,s=-abv(t)dt;]

(3)若在区间[a,c]上[v(t)≥0,]在区间[c,b]上[v(t)<0],则[s=acv(t)dt-cbv(t)dt.]

2. 变力做功

一物体在变力[F(x)](单位:N)的作用下做直线运动,如果物体沿着与[F]相同的方向从[x=a]移动到[x=b][(a

例4 一物体按规律[x=bt3]做直线运动,式中[x]为时间[t]内通过的距离,媒质的阻力与速度的平方成正比(比例系数为正实数[k]),试求物体由[x=0]运动到[x=a]时,阻力做的功.

分析 本题的关键是找到阻力的函数解析式,所以首先要找到物体的运动速度. 结合导数的物理意义,物体的运动速度等于物体的路程关于时间的函数的导数,再代入题意即得到阻力做的功.

解 由题意知:物体的位移函数为[v(t)=bt3],

∴速度函数为[v(t)=x(t)=3bt2].

媒质阻力[f阻=k⋅v2(t)=9kb2t4],又[t=(xb)13],

[∴f阻=9kb2t4=9kb2(xb)43=9kb23x43].

∴阻力做的功是

[W阻=0af阻dx=0a9kb23x43dx]

[=9kb23(37x73)a0=277kb23a23].

点拨 求变力做功的方法(1)求变力做功,要根据物理学的实际意义,求出变力[F]的表达式,这是求功的关键. (2)由功的物理意义知,物体在变力[F(x)]的作用下,沿力[F]的方向做直线运动,使物体从[x=a]到[x=b][(a

1. 由曲线[y=x2+1],[x+y=3]及[x]轴、[y]轴所围成的区域的面积为 .

2. 函数[f(x)=x+1 (-1≤x<0),cosx (0≤x≤π2),]的图象与[x]轴所围成的封闭图形的面积为( )

A. [32] B. 1 C.2 D. [12]

3. 已知自由落体运动的速率[v=gt],则落体运动从[t=0]到[t=t0]所走的路程为( )

A.[gt203] B.[gt20] C.[gt202] D.[gt206]

4. 如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功( )

A.0.18J B.0.26J

C.0.12J D.0.28J

1. [103] 2. A 3. C 4. A

上一篇:挂职锻炼检查下一篇:校园夏季运动会广播稿