六年级数学下数学广角教案教学设计

2024-11-06

六年级数学下数学广角教案教学设计(共11篇)

六年级数学下数学广角教案教学设计 篇1

六年级数学下数学广角教案教学设计

1、教学内容

教科书第70、71页。

2、教学理念

爱因斯坦说过“兴趣是最好的老师”,喜欢和好奇心比什么都重要,它是能力发展的动力。以魔术的方法让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了课标实验要求。

3、教学目标

(1).经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”

解决简单的实际问题。

(2).通过操作实践发展学生的类推能力,形成比较抽象的数学思维。

(3).通过“抽屉原理”的灵活应用感受数学的魅力。

4.教学重难点

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

5.教学准备

每组都有相应数量的铅笔、盒子、书、扑克牌(一副)。

一、游戏激趣引入

师:同学们喜欢做游戏吗?学习新课之前我们先来做个游戏。

这是一副扑克牌,抽掉了大王、小王,还剩多少张?

知道扑克牌有几种花色吗?(让学生明确有4种)哪四种?

那我们就用剩下的扑克牌来做游戏。谁愿意来帮这个忙?

请你们5位任意抽取一张牌,不要让老师看到。自己看好牌记在心里,记住了吗?把牌收好了,师:同学们,下面就是见证奇迹的时刻。

师:在你这五张牌里,至少有两张是同一花色的。

师:把牌拿出来验证一下,同一花色的站到一起。

我猜对了吗?

师:要不要再来一次。把牌交给学生

教师:如果让这5位同学反复抽牌,不管怎样,总是至少有2张牌是同一花色的,你们相信吗?,你们想知道吗?今天我们来学习《数学广角》。展示课件

二.动手操作,获取新知

(一)初步感知

1、教师引导:你们想不想自己通过动手实践来发现它?

每个小组拿出4枝铅笔,把它们放进3个笔筒中,怎么放?有几种方法?你有什么发现吗?

(提出要求:在动手操作之前分好工,有操作的,有负责记录的)

2、全班交流:

哪个小组愿意到前边给大家展示一下?

质疑:(4,0,0)这样放行不行?如果学生用图表示,问还有没有更简单的表示方法?

观察这四种方法,你有什么发现?

(明确:无论怎么放,总有一个笔筒至少有2枝铅笔)

问:总有是什么意思?至少有两支呢?

师:你们的发现和她一样吗?再找学生说。

全班明确:把4枝铅笔放进3个笔筒中,不管怎么放,总有一个笔筒中至少有2枝铅笔,3、这是列举出所有方法之后得出的结论。我们把这种方法称为“枚举法”(板书)这是数学中常见的一种方法。

4、还有其他方法吗?

(平均分)

5、说说你的想法?

为什么要平均分?

只有平均分才能使每个笔筒里的笔最少。

演示平均分的过程

7、师:既然是平均分,能用算式表示吗?生说,师板书。质疑:这两个1表示的一样吗?

8、师:如果把5枝铅笔放入4个笔筒里,会出现什么情况?

学生汇报交流

(也存在着总有一个笔筒里至少有2枝铅笔的情况)

师;你们是怎样得出这个结论的?

6枝铅笔放进5个笔筒呢

师:把7枝铅笔放进6个笔筒呢?

把8枝铅笔放进7个笔筒呢?

把9枝铅笔放进8个笔筒呢?

把100枝铅笔放进99个笔筒呢?

把1000枝铅笔放进999个笔筒呢?……

观察这些算式,你有什么发现?

(铅笔的枝数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2枝铅笔。)

师:还有想说的吗?加深记忆。

7、师:如果铅笔的数量不是比笔筒的数量多1呢?

把5枝铅笔放进3个笔筒,学生可以动手操作,也可以动脑想

汇报交流。学生可能有两种意见:总有一个盒子里至少有2枝;总有一个盒子里至少有3枝。让学生分别说想法。

只有把剩余的2枝分别放进不同的笔筒里,才能保证至少有几枝。

师:7枝铅笔放进4个笔筒呢?

9枝铅笔放进5个笔筒呢?

8、师:观察这些算式,你发现了什么?(明确:这些算式中,都是铅笔的数量比笔筒的数量多,商都是1,并且都有余数,说明不论余几,总有一个笔筒中至少有商+1枝铅笔)

(二)激趣教学例2

1、出示课件例题2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉中至少有()本书,为什么?

师;我们又该如何思考?教师点名说理。能用算式表示出你的思考方法吗?根据学生的回答情况,板书:5÷2=2。······1

师:5是什么?2是什么?这个2又是什么?1呢?那么至少有多少本书放进同一个抽屉里?

师:如果一共有7本会怎样呢?9本呢?(根据学生回答,板书相应的除法算式。)把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书(留给学生思考的空间,师巡视了解各种情况)

2、学生汇报。(交流、说理活动)老师板书。

3、师:观察板书你能发现什么?在小组里进行研究、讨论。交流、说理活动:

4、解决问题。

8只鸽子飞进3个鸽舍,至少有3只鸽子飞进同一个鸽舍。为什么?

师:你能证明这个结论吗?(根据学生回答,板书相应的除法算式。)

5、总结规律:师:观察板书,你有什么发现吗?

学情预设①:“商+余数”和“商+1”两种情况:师:验证一下,看看到底是商+1还是+余数?

学情预设②意见统一为“商+1”:师:为什么不管余几都是商+1呢?)

总结:物体的数量大于抽屉的数量,总有一个抽屉里至少放进商+1个物体。

(如果有学生提出没有余数的情况,可以让学生举例子验证,说明这个结论的前提是“有余数”)

6、介绍数学知识:

今天我们发现的规律就是有名的“抽屉原理”。最先发现这些规律的人是德国数学家“狄里克雷”,人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,或者“抽屉原理”。之所以把这个规律称之为“原理”,是因为在我们的生活中存在着许多能用这个原理解决的问题,研究出这个规律是非常有价值的。老师上课时提出的生日问题,现在你能解释吗?

师:只要做个有心人,我们也能在平凡的事情中取得不平凡的成绩。

师:学到这里,你发现了什么有趣的现象呢?你们能自己出题验证你发现的规律吗?

三、拓展练习(课件展示)。

1、把9支笔放进2个笔筒里,不管怎么放总有一个笔盒里至少有多少支铅笔? 2、8只鸽子飞回3个鸽笼舍,不管怎么飞,总有一个鸽笼舍至少飞进多少只鸽子?

六年级数学下数学广角教案教学设计 篇2

“面对实际问题时,能主动尝试着从数学的角度运用所学知识寻找解决问题的策略”是新课程标准的要求,利用多媒体资料创设情境,结合现实生活实际情况,引领学生从中发现问题、解决问题,运用所学的知识和方法寻找到解决问题的策略,从而形成寻找解决最优方案的意识。

2、学情分析

本班学生对数学学习有很浓厚的兴趣,学习积极性很高,但部分学生数学基础不是很好,学生的思维差异很大,所以在讲课过程中,选用了学生熟知的日常生活中的素材,沏茶问题,通过合理安排操作节省时间,让学生体会在解决问题中优化思想的应用,给学生足够的时间进行探索、交流、发现规律,应用规律解决实际问题。

3、教学目标

知识目标:

3.1、

通过烙饼问题、沏茶问题、卸货问题等日常生活中的一些简单事例,使学生初步体会对策论方法在解决实际问题中的应用。

3.2、尝试用数学的方法来解决实际生活中的简单问题。

能力目标:

在问题探究、动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力,发展学生的思维,初步培养学生的应用意识和解决实际问题的能力。

情感、态度和价值观:

3.2.1、使学生逐渐养成合理安排时间的良好习惯,使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

3.2.2、通过交流活动,使学生体会交流协作这一学习方法的价值。

4、教学重点

认识到解决问题有不同的策略,能找到解决问题的最优方案。

5、教学难点

让学生理解优化的思想,能用数学方法解决生活中的实际问题。

6、教学策略

6.1、谈话引入,激起学生的学习兴趣。

6.2、出示多媒体课件,创设情境,引领学生从中发现问题,解决问题,

6.3、让学生利用教具在问题探究、动手模拟、协作交流等学习活动中,提高学生探究能力和解决问题的能力。

7、学习情境设计

7.1、

结合学生的生活环境,展示情境图,让学生从中提出问题,再围绕“寻找解决最优方案”的主题,通过小组协作、讨论交流,让学生尝试从优化的角度在解决问题的多种方案中寻找最优方案。

7.2、

让学生利用教具在问题探究、动手模拟,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用,同时通过自我评价,纠正自己原来的错误,展现自我。

8、教学准备

多媒体课件沏茶的六张图片一个大圆、10个小圆一面涂颜色表格

9、教学目标

9.1、通过操作学具模拟烙饼过程,沏茶问题的交流,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

9.2、在问题探究、动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生观察能力与独立思考能力,发展学生的思维。

9.3、通过交流活动,使学生体会交流争辩这一学习方法的价值。

1 0、教学反思

《数学广角》一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,以“烙饼”问题和“合理安排时间”为主题,以数学思想方法的学习为主线,展开教学。数学课堂不仅是传授知识,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有把课堂的主体还给学生,才能给学生一个创新的课堂,一个发展的课堂。

摘要:《数学广角》是义务教育课程标准实验教科书人教版数学四年级第七册的教学内容,主要是通过烙饼问题、沏茶问题、卸货问题等日常生活中的一些简单事例,让学生合理安排时间,尝试从优化的角度在解决问题的多种方案中寻找最优方案,,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用,感受到数学在日常生活中的运用。

六年级下册教案第五单元数学广角 篇3

数学广角-鸽巢问题

单元分析:

本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与存在性有关的问题,在这类问题中,只需要确定某个物体的存在就可以了,并不需要指出是哪个物体。这类问题依据的理论,我们称之为“抽屉原理”。

教学要求:

1、引导学生通过观察、猜测、实验、推理等活动,经历探究“抽屉原理”的过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、3、提高学生解决简单的实际问题的能力。

通过“抽屉原理”的灵活应用,感受数学的魅力。

教学重点:

了解“抽屉原理”。

教学难点:

会用“抽屉原理”解决简单的实际问题。

课时安排:

鸽巢问题„„„„„„„„3课时

鸽巢问题

第一课时

教学内容:抽屉原理例1 教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。教学重点:认识“抽屉原理”。学情分析:

教学方法: 教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

二、自主学习,初步感知

1、出示例1:4枝铅笔,3个文具盒。(1)观察猜测

猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?(2)自主探究

A、提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。B、小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。C、交流讨论,汇报。可能如下: 第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。(3)比较优化。

请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象? 师:为什么不采用枚举法来验证呢?

数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

2、引导发现

只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。

三、巩固练习

1、填空。

(1)4个苹果放进3个盘子里,不管怎么放,总有一个盘子里至少放()个苹果。

(2)东城三小棋艺组有学生14人,在这个组中至少中至少有()位同学是同一个月生日。

2、实际应用。

(1)7只鸽子飞回5个鸽舍里,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(2)10个包子放在7个盘子里,不管怎么放,总有一个盘子里至少放2个包子。为什么?

四、课堂总结

学生谈谈学习本课有什么新的收获。

五、布置作业: P71第1题

板书设计:

教学反思:

第二课时

教学内容:抽屉原理例2 教学目标:

1、进一步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。教学重点:进一步认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。学情分析:

教学方法: 教学过程:

一、复习

如果有5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

二、讲授新课

出示例2:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书? 8本书会怎样呢?10本呢?

1、学生尝试自已探究。

2、交流探究的结果,可能如下: 1)枚举法。

共有6种情况。在任何一种结果中,总有一个抽屉至少放进3本书 2)假设法。

把7本书“平均分成3份”,7÷3=2„1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。由此可见,把7本书放进3个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

同样,8÷3=2„2把8本书放进放进3个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

10÷3=3„1把10本书放进放进3个抽屉中,有一个抽屉里至少放进4本书。

3、观察发现

学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、巩固练习1、8只鸽子飞回3个鸽舍里,至少有3只鸽子要飞进同一个鸽舍里。为什么?

2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

四、课堂小结 这节课你收获了什么?

五、布置作业 P71第2题

板书设计:

教学反思:

第三课时

教学内容:鸽巢问题的具体应用例3 教学目标:

1、进一步掌握抽屉原理,掌握抽屉原理的反向求法。

2、通过各种活动培养学生自己动手动脑去思考的习惯。

3、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。教学重难点

1.使学生理解抽取问题中的一些基本原理。2.找到抽屉原理问题中被分的物品。学情分析:

教学方法:

教学过程:

一、复习

把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?

二、创设情境、引入新课:

师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?

学生思考、发言。

师:学习了这节课我们就能解决类似的问题了。

三、活动探究、深入了解:

(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?

1、学生提出猜想。

2、用预先准备的学具,小组合作交流。

3、得出结论:把颜色看作抽屉。

有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。

(二)研究规律

1、师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?

2、分小组讨论后汇报。

3、再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。

4、小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。

四、巩固练习

1、向东小学六年级共有370名学生,其中六(2)班有49名学生。(1)小明说:六年级里一定有两人的生日是同一天。他说的对吗?(2)小丽说,六(2)班中至少有5人是同一个月出生的,她说的对吗?为什么?

2、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到两个颜色相同的球?

3、给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?

五、课堂小结:

你从这节课学到了哪些知识?

六、布置作业:

P71第3、4题

板书设计:

六年级数学《数学广角》教学反思 篇4

抽屉原理是人教版六年级下册数学广角中的内容,由于初次接触新教材,对这部分内容不太理解.在教学设计中我亦有着一些困惑与问题:

1、如何定位教学目标,抽屉原理原属奥数内容,使学生初步感受一些基本的数学思想方法是“数学广角”的主要教学目标之一,但在具体的课堂中如何适度把握教学要求。我虽然在课前已经钻研了教参,也已经上完了课,但这个还是我值得探究的一个问题。

2、如何设计教学活动使学生在观察、操作中建立起解决“抽屉原理”问题的一般解决问题的方法的同时发展学生的`思维也是值得思考的一个问题。

于是我通过翻阅奥赛书籍和在网上查询,终于弄清了原委。上课有了把握和信心。

一、生活情境导入激发学习兴趣

新课标指出,数学来源于生活,服务于生活。引入新课时我设计了与生活有关的小问题,给学生造成悬念,激发他们积极思维,很快进入学习情境。

二、从简单问题着手发现一般规律

在解决复杂问题时,为寻找规律可从简单情况入手分析,直到找到规律,再加以运用。本节课就是从较小的数据变化中探索规律、发现规律的。

三、加强说理帮助学生弄清所以然

本节课从始至终我都要学生说理,叙述自己的思维过程。重在让学生真正理解什么叫“最不利”的情况。我觉得让学生弄清原因,比直接知道结果更重要。

六年级数学下数学广角教案教学设计 篇5

教学目标:

1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

3、进一步体会到数学与日常生活密切相关。

4、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

5、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:分配问题。抽取问题。

教学难点:正确说明分配的结果。理解抽取问题的基本原理。教学时间;6课时

第1课时

教学内容:分配

知识与技能:使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

过程与方法:能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

情感态度与价值观:进一步体会到数学与日常生活密切相关。教学重点:分配问题。

教学难点:正确说明分配的结果。教学过程:

一、学例1

1、活动。

把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况? 学生思考各种放法。

与同学交流思维的过程和结果。汇报交流情况。学生口答说明,教师利用实物木棒:

第一种放法: 第二种放法: 第三种放法: 第四种放法:

2、问题。

不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么? 经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。

3、做一做

7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

尝试分析有几种情况。说一说你有什么体会。

学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。

二、学例2

1、本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?

摆一摆,有几种放法。

不难得出,总有一个抽屉至少放进3本。

2、说你的思维过程。

果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

3一共有7本书会怎样呢?9本呢? 学生独立思考,寻找结果。

与同学交流思维过程和结果。汇报结果,全班交流。

4、能用算式表示以上过程吗?你有什么发现? 5÷2=2……1(至少放3本)7÷2=3……1(至少放4本)9÷2=4……1(至少放5本)

说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

5、做一做

8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。

三、巩固练习

完成课文练习十二第2、4题。

四、布置作业

完成《家庭作业》第20练习。

第2课时

教学内容:抽取游戏 教学目标:

知识与技能:使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

情感态度与价值观:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:抽取问题。

教学难点:理解抽取问题的基本原理。教学过程:

一、教学例3 盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

1、猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2、实验活动。

一次摸出2个球,有几种情况? 结果:有可能摸出2个同色的球。一次摸3个球,有几种情况? 结果:一定能摸出2个同色的球。

3、发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做

1、第1题。

独立思考,判断正误。同学交流,说明理由。

2、第2题。

说一说至少取几个,你怎么知道呢?

如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习

完成课文练习十二第1、3题。

四、布置作业

完成《家庭作业》第21练习。课后反思:

六年级数学下数学广角教案教学设计 篇6

【教学内容】:

人教课标版教材六年级下册第六单元总复习P91的内容和相关习题 【教学目标】:

1.通过引导学生观察、探究、记录、归纳,得到解决“几个点能连成多少条线段”这类问题的方法。

2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题,进一步积累解决问题的策略。

3.培养学生[此文转于斐斐课件园FFKJ.Net]归纳推理,探索规律的能力。4.让学生在体验中感受数学知识的奇妙,感受数学思维的乐趣,在探究中获得成功的愉悦感,激发孩子们进一步学习与探究的欲望。

【教学重、难点】

引导学生发现规律,找到解决问题的方法。【教学准备】: 多媒体课件

教学过程(本文来自优秀教育资源网斐.斐.课.件.园):

一、创设情境,生成问题 1.谈话设疑

师:同学们,在上课前,咱们先来做个游戏,挑战一下自己,敢不敢„„请听清楚要求:卡片上有8个点,每两个点连成一条线段,一共可以连成多少条线段呢?请同学们动笔连一连,再数一数,时间2分钟,看谁最先得出答案!2.学生动手操作 3.汇报交流

师:同学们,有结果了吗?(学生汇报结果)怎么会有这么多不同的答案呢?可正确的答案只有1个!到底谁的答案才是正确的呢?看来这个问题可能有点难度!(板书:难)没关系!我们暂且把它放在一边,待会儿再去评判,下面我们先开始今天的学习与研究,看看大家能不能从中得到什么启示。

二、探索交流,解决问题

(一)从简到繁,感知算理

师:(课件)请同学们拿出卡片2,你们看到了什么?(生)两个点连成一条线段容易吗?(板书:易)我们就从简单的问题入手开始研究,两个点可以连成几条线段?(生).而且只能连成1条线段(课件),请同学们动手将这条线段连出来!(学生操作)

师:在两个点的基础上增加1个点(课件),这时候一共可以连成几条线段?(学生猜想:动笔,得出答案。)

师:只增加了一个点,为什么却增加了2条线段呢?(引导学生明确:增加的一个点可以和原有的两个点分别连成一条线段,所以在原有基础上增加了两条线段。这样,就在学生的脑海中建立了一个“1+2”的连线网络影像)

师:(课件)在3个点的基础上又增加1个点,你猜可能会增加几条线段?(生回答)师:怎么会是3条呢?刚才两个点时,增加一个点.只增加了2条线段啊!学生释疑,动笔验证.师:(课件)请同学们想一想:5个点一共可以连成多少线段呢?引导学生进行数学思考。

师:谁把你的想法和大家交流一下 生:6+4=10(条)学生说明理由,集体验证。(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示。)

(二)分步指导,逐步列出求总线段数的算式

师:5个点时连成线段的总数,这位同学是用计算的方法得出的,现在请同学们仔细观察表格中的几组数据:

六年级数学下数学广角教案教学设计 篇7

数学广角——重叠问题

教学目标:

1.知识目标

引导学生借助“韦恩图”,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。2.能力目标

让学生感知“韦恩图”的形成过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。3.情感目标

培养学生初步养成善于观察、善于思考的学习习惯,并体会数学的简洁美。

教学重难点:

引导学生经历“韦恩图”的形成过程,理解并借助“韦恩图” 集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。

教学过程: 教学流程:

一、设问质疑,引发冲突

1.森林运动会要开始了,我们来看看小动物们组队参加篮球赛和足球赛的情况。2.出示表格(表格中是参加篮球赛和足球赛的动物头像)

师问:一共有多少只小动物参加运动会?能否进行调整,让表格更清楚一些?

二、小组合作,整理表格

好课件吧

http:// 1.学生活动

活动要求:①要能看清一共有几种小动物。②注意分工。③要对本组结果说明理由。2.汇报交流

教师巡视后有目的地安排了汇报顺序。

学生评价:这种方案比较整齐,但是不能很清楚地看出有几种小动物。把重复的放在中间,说明重复的是两种比赛都参加了。

教师引导学生看图回答问题:参加篮球赛的是几种动物?并用红色笔画一个圈。参加足球赛的是几种动物?并用蓝色笔画一个圈。教师引导学生思考:画成这样好看吗?怎么办?

运用课件演示成下图:

好课件吧

http://

追问:哪个圈子是参加什么比赛的呢?引导学生在图中写上“篮球赛”和“足球赛”。问:看着这幅图你有什么想法。

师指出:这个图是一个名叫韦恩的数学家创造的。你们刚才也像数学家一样,把这个图创造出来了,真了不起!下面,我们用这个图来解决这几个问题。3.看图说明图意。

4.根据图中条件进行计算。

5.比较“韦恩”图与表格之间异同点。

三、读图训练、课堂练习

1.现在就去大自然看看,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?【练习二十四,第1题】

只会飞的有哪些?【②④⑦⑧⑩】 只会游泳的有哪些?【①⑤⑥⑨】

③天鹅放哪儿?【放中间】为什么放中间?【它既会飞又会游泳】同意吗? 如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】

所以不能放在圈里,只能把它放在哪里?【圈外】 同学们真了不起,没有被这样的问题迷惑住!

2.看图,文具店昨天进了5种货,今天进了5种货,两天一共进了多少种货?【练习二十四,第2题】

四、实践运用,发展新知(知识的应用,现场报名。)调查本小组同学喜欢唱歌或跳舞的学生情况。

师:利用我们今天学的韦恩图在小组中调查并表示出来(想想,怎么问能最快掌握信息)。

好课件吧

http://(小组长开始组织本组同学“报名”。)教师总结:同学们已经懂得了用我们今天所学的知识来解决实际问题了。

五年级数学广角教案 篇8

单元计划

教材分析:

第八单元的《数学广角》主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单视实际问题。

解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔)和植树的棵数之间的关系就不同。例1是探讨关于一条路线的植树问题并且两端都要栽树的情况,让学生先通过划线段图来发现栽树的棵数和间隔数之间的关系,再用发现的规律解决实际问题。例2讨论的是两端都不栽树的情形。教学中通过生活中的事例,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用,同时培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,初步培养学生抽取数学模型的能力。教学目标

1、知识与技能方面:通过探索,发现两端都栽和两端不栽的植树问题的规律,并运用这一规律解决实际生活中的问题。

2、过程与方法方面:通过尝试探索、实验、直观演示、观察、分析、讨论等方法经历和体验“复杂问题简单化”的解题策略。

3、情感态度价值观方面:感受数学在日常生活中的广泛应用,尝试

用数学的方法来解决实际生活中的简单问题,培养应用意识和解决实际问题的能力,渗透爱国主义教育。教学重、难点:

发现植树的棵数和间隔数的关系,并运用发现的规律解决实际问题。

第七单元:数学广角《植树问题》

第 一 课 时

【教学目标】:

1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

2.通过小组合作、交流,使学生能理解并掌握“植树问题”的基本方法、并能解决一些实际生活中存在的与植树有关的问题。

3、让学生自己编一道题,真正从根本上掌握解决植树问题的方法。

4、培养学生认真审题的良好习惯。【教学重、难点】

1、掌握“两端都要种的植树问题”的解题方法。

2、引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。教学过程:

一、导入新课

同学们,春天是植树的季节,因为植树可以净化空气,绿化我们的家园,国家把每年的3月12日定为植树节,你可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,那么你们想了解植树中的学问吗?那么我们今天就来共同研究你们想要解决的问题。

(一)、同桌相互观察你们自己的一双手,看看发现了什么? 让同学们,观察后,自己发言,全班交流。

师:看着老师的手,你从中得到了什么数字?(5,5个手指)

师:老师从中也得到了一个数字—4,你们知道它指的是什么吗?(缝隙、空格等)

师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。我们手上每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指的时候有几个间隔呢?3个手指,2个手指呢? 师:你们发现手指数与间隔数的关系了吗?谁能说一说? 2.引入

师:连手上都有这么多数学奥秘,看来数学真是无处不在!现在我们开始上课了吗?

二、创设情境,学习新课、出示例

1、同学们在全长100米的小路一边植树,每隔5米栽和一棵(两端都栽)。一共需要多少棵树苗?1、2、3、4、让学生读题,理解题意。

交流从题目中获取的信息和所要解决的问题。学生动手试一试。

小组看图讨论,各自交流做题方法。

生1、100÷5=20,所以要准备20棵树苗。

2、我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。

5、6、师让学生猜测,谁的思路对。集体反馈,发现规律。

经过集体交流,同学们发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。

7、教师讲解,帮助学生理解规律。

因为植树总是比间隔数多1,这样我们就可以先求出树与树之间共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。

8、研究如何列式。

100÷5=20(段)20﹢1=21(棵)

老师请同学们说出为什么这样列式,并让他们阐明思考过程。

三、敢于尝试,大显身手

1、在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?(1)、让学生自己读题,思考。(2)、小组讨论交流。(3)、集体反馈。指名板书:18÷3=6(段)

6+1=7(盆)

请学生分别说出每步的意思。

2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?(1)、读题、理解题意。(2)、分析已知条件和问题。(3)、尝试分析、独立列式。(4)、交流反馈。36-1=35(段)35×6=210(米)

(5)、让学生观察此题与例1的不同(6)、小组讨论,得出结论。例1是已知全长和株距,求株数。间隔+1=株数

此题是已知株数和株距,求全长。株数-1=间隔 间隔×株距=全长。

四、相信自己,你是最棒的!(做一做)

1、有一根绳子,每隔2米挂一个灯笼,起点和终点都挂,共挂了14个灯笼。这根绳子长多少米?

2、学校领操台到教学楼前共12米,每隔2米插一面彩旗。一共需要多少面彩旗?

五、学做小老师

同学们,学了这节课,相信同学们都明白了如何解决植树问题,那么,请同学们自己做一次小老师,自己编写一道植树问题,在小组内交流,比一比,看谁编的最好。

(学生动手,小组交流)

六、课堂小结,课外延伸

通过这节课的学习你有什么收获?

(这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。)

植树问题

(二)第 二 课 时

教学目标

[知识与技能]

1、探究两端都不种的植树问题。

2、培养学生动手操作,分析解决问题的能力。

3、培养学生运用数学知识解决实际问题的能力。

[过程与方法]通过猜测操作,验证,交流的方式探究两端都不种的植树问题。[情感态度与价值观]通过实践活动,培养学生应用所学知识解决实际问题的能力。

教学重点 理解植树问题中线段两端都不种的特征,并能应用规律解决问题。

教学难点 基本规律的提炼和方法的应用。

教学方法 观察法,尝试法,自学引导法 学法指导 自主探索、合作讨论练习法 教学过程

一、开门见山,直点主题

今天我们继续研究植树问题(师板书)

二、合作探究,发现规律

出示例2:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

1、学生读题,理解题意

“两馆间的小路”指的是哪一段?

“小路两旁”指的是要栽几边?

2、学生互相合作,用小棒摆一摆

师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

要求完成:

你一共摆了几根小棒

每一边的小棒根数和间隔数之间有什么关系?

3、全班交流

4、教师小结

这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

三、运用规律,解决问题。

1、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安装一座,一共要安装多少座路灯?

2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

学生独立完成后全班交流

想一想:平均分成5段只需锯几次?

师问:为什么要减1?这相当于植树问题中的哪种情况?

四、课堂小结

同学们,今天这节课,你们表现得太出色了。谁能来夸夸自己或小伙伴,哪些地方做得好?

五、作业设计:

1、在两栋教学楼中间有一条50米的小路,在小路的两旁每隔5米放一盆兰花(两头都不放),一共要放多少盆花?

2、在一条全长3千米的公路两端装路灯(两端不要安装),每隔20米装一座。一共要安装多少座路灯?

板书

植树问题

全长÷间隔=间隔数

两端都不种的植树问题,即:植树棵数=间隔个数—1。

第三课时 围棋中的数学问题

课题:围棋中的数学问题 教学目标:

1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力; 3.让学生感受数学在日常生活中的广泛应用。教学重点:从封闭曲线(方阵)中探讨植树问题。教学难点:用数学的方法解决实际生活中的简单问题。

情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。教学过程:

一、情境导入

二、猜谜:十九乘十九,黑白两对手,有眼看不见,无眼难活久。(打一棋类名称)

[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

二、探索新知

1.教学每边摆放3粒棋子的方法。

(1)出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。(4)汇报交流(着重请学生说出方法。)可能会出现以下方法:

3×2+2=8 2×4=8 3×3-1=8 3×4-4=8 直接点数。教师表扬学生的创新摆法,并奖励“智慧星”。(教师随学生回答,出示摆放方法。)2.教学每边摆放4粒棋子的方法。(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?(2)动手操作:请学生分小组按要求摆放棋子,写出算式。(3)游戏:让一学生当“小老师”,其余学生当“围棋子”,请小老师邀请“围棋子”按上题要求站在老师设计的大棋盘上。

[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。](4)汇报交流(着重请学生说出方法)教师随学生回答,用课件出示摆放方法。(5)你们最喜欢哪种方法?为什么? 3.教学每边摆放5粒棋子的方法。(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。(3)汇报交流。(教师随学生回答,出示摆放方法。)(4)你们最喜欢哪种方法?和同桌说一说。

[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身“经历”的过程中实现知识能力乃至生命的同步发展。]

三、总结规律

(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)每边放的个数 最外层总数 3 4 5 6 „

你发现了什么规律:_____________________________________

(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

(2)总结规律:教师随着学生的回答板书: 间隔数×边数=最外层的总数

(3)学生根据规律,独立完成例3。

三、运用规律

1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子? 如果最外层每边能放200个,最外层一共可以摆放多少个棋子? 如果最外层每边能放300个,最外层一共可以摆放多少个棋子? 拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)2.做第121页第三题。

[设计意图:充分相信学生,放手让学生分析问题、解决问题,以学生为主归纳问题;教师在关键之处疏通点拨,引导学生加深理解,做到以学生为主体。] 3.请你参加:

12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?(在教室内围一围。)4.请你思考:(课件出示同学开联欢会时的欢乐情景。)

“六一”儿童节即将来临,四<1>班同学准备开联欢会。大家围坐在一起,如果每边做14人,(如下图),这个班一共有多少个同学?每边都有8张课桌,一共要多少张课桌?

5.请你设计:(课件出示美丽的校园情景。)

学校为了庆祝“六一”儿童节,改变校园环境,想全校范围内征集校园花坛设计方案。有以下三种,请每组同学选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?再动手画一画,展示在黑板上,看哪一组做得又好又快!

六年级数学下数学广角教案教学设计 篇9

1、了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系,

2、能根据不同情况选择正确方法解决问题。

3、通过摆一摆、画一画、比一比等方法体会在一条直线上植树三种基本情况的联系。

4、在解决实际问题中感受数学的价值。

教学重点:能阐述不同情况下点数与间隔数的关系,

教学难点:能根据不同情况选择正确方法解决问题。

教学准备:图片、小棒、习题

教学过程:

一、初步感知点与间隔数

同学们已经四年级了,在学校里上操,上体育课都少不了要排队,老师要请三位同学到前面按照老师的要求排队。(请三位同学到前面来)

师:面向老师排成一路纵队。相邻两位同学之间间隔1米。

师:排得不错。这路纵队长几米?你是怎么知道的? (生回答)

师讲解:这个同学到最后一个同学的距离叫做队伍的全长(总长);相邻两个同学之间的距离叫做间隔(板书:间隔、强调间的读音是四声);现在3名同学站队有几个间隔;(2个)这三名同学也可以当成三个点(板书:点)。

老师把这几个同学排队的情况抽象成平面图(师板书平面图),你能看懂吗?这几个点表示什么?点与点之间的是间隔。

师:间隔可以是人与人之间的距离,也可以是人与物,物与物之间的距离……

师:请同学们再数一数在平面图上有几个点?几个间隔呢?想象一下,四个同学排成一队会有几个点,几个间隔?试着像老师这样用线段图来表示。(生试画、展示)

师:如果是5名同学、6名同学以至于更多的同学站队会有几个点,几个间隔?请同学们用桌上的小棒来演示验证一下,摆的越多越好。(老师叫停)

师:数一数,5个同学是几个点,几个间隔?6个呢……

师:在刚才同学的站队及你的整个摆小棒的过程中你有什么发现?(排队人数比间隔多1,间隔比人数少1)

师:请同学们把学具整理一下。

师:在我们教室里也有这样点与间隔的现象存在,请同学们用你智慧的眼睛找一找。

生1:四个桌子间有4个点,3个间隔。

生2:三个窗户间有3个点,2个间隔。

生3:棚上有两盏灯,所以就有2个点,1个间隔。

师:大家都抬头来仔细观察、并且认真数一下,两盏灯之间到底有几个点,几个间隔?(2个点、1个间隔)

师:你认为什么是间隔?(灯与灯之间的距离就是间隔)

师:间隔就是距离,它可以是人与人之间的距离,也可以是人与物,物与物之间的距离……灯与灯之间有距离吗?(有)这就是间隔。灯与墙之间有距离吗?(有)那也是间隔。现在请同学们再数一数现在你看到的是几个点,几个间隔?(2个点、3个间隔)

二、引题。

在现实生活中,我们常常会遇到像同学们站队这样与点和间隔有关的问题,数学家把这类问题统称为植树问题,这节课我们就一起研究和解决一些简单的植树问题。(板书:植树问题)

三、植树问题与同学站队建立联系,找出两端都植树棵数与间隔数的关系

(1)例1 :同学们在全长100米的小路一边植树,每隔20米栽一棵(两端要栽)。一共需要栽多少棵树苗?

师:请同学们默读两遍,通过阅读你获得了哪些数学信息?(生说信息)

师:这里说的种树和刚才的排队活动有什么联系?(同学按自己的理解讲解)

教师讲解:这条小路的长100米相当于排队的队伍的总长;每两棵树之间的距离20米相当于相邻两名同学之间的距离;种树的棵数相当于排队的人数。想一想,在这一题中,什么相当于点?什么相当于间隔?

师:请同学们用你桌上的小棒摆一摆,看100米的小路上到底可以栽多少棵树苗?然后将你摆的抽象成平面图在练习本上画出来。(生试摆、试画)(找一生上黑板画线段图,生说是如何想的,可能出现的答案:我是这样表示的。先画一条长的线段表示这条小路,再画出第一个间隔,标出这个间隔的长是20米。)

师:我们可以直接算出什么?列式 100÷20=5

师: 这个5表示什么呢?(有5个间隔,这条小路可以分成20米长的5段)所以5的单位是什么?(个) 完成这道题了吗?(没有)为什么?请同学们在练习本上写出算式。

师:谁来说一说这一题的解题过程。

师:通过摆一摆和画线段图,你发现棵数与间隔数之间的规律吗?(生答:棵数总比间隔数多1)能用一个公式的形式表示它们的关系吗?(板书:棵数=间隔数+1)

师:什么情况下棵数比间隔数多1呢?(师在黑板上画一个两端都不植树的平面图)引导学生得出在两端都植树的情况下。(板书:两端都植树)

过渡小结:刚才,同学们把植树和排队活动联系起来,发现了当两端植树时 棵数=间隔数+1。是不是说只有植树才是植树问题呢?(不是的)对,在我们熟悉的生活中也有植树问题,回忆一下生活中哪些现象属于植树问题。(生说现象)

四、如果两端都不植树(一端植树、一端不植树)棵数与间隔数之间有什么关系

师:动物园里也存在植树问题,请看:

例2:大象馆与猩猩馆相距60米。绿化队要在两馆间的小路一侧植树,间隔的距离是12米。请问准备多少棵树苗合适?

四人小组讨论一下准备多少棵树苗合适,汇报。(60÷12+1=6)

有不同看法吗?

师:公园里的实际情况是这样的,师贴图(先贴大象馆和猩猩馆,再从大象馆开始每隔12米贴一棵树)

师:是不是有上当的感觉?有什么办法让大家不再上这样的当呢?怎样把题目改严谨呢?讨论改题。

生重新做题。讨论一下此时棵数与间隔有什么关系。(板书:棵数=间隔数-1)什么情况下?(两端都不植树)

师:植树问题除了以上两种类型外,还有另外一种,就像这样。看老师把它们抽象出来,(老师板书画线段图),同桌讨论一下,在这种情况下,棵数与间隔数有什么关系?

汇报。(在一端植树,一端不植树的情况下,棵数=间隔数。)

五、解决实际问题

你能运用刚才的发现解决一些实际问题吗?试一试吧。

1、口答

(1)如果一排树两头都种,有5个间隔,能种( )棵树。

(2)从头至尾栽了10棵树,那么间隔数是( )。

2、在一条30米的小路一侧摆花盆(两端都不摆),间隔长度是3米,需要多少盆花?

3、彩旗队插旗,每隔6米插一面,共插36面,从第一面到最后一面的距离有多远?

六、小结:

二年级数学广角的教案 篇10

教材第97~98页

教材分析:

数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人们的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。传统教材中没有单独编排这部分内容,有关这方面的知识是新编实验教材新增设的内容之一,重在向学生渗透这些数学思想方法,并初步培养学生有顺序的、全面的思考问题的意识。21世纪教育网版权所有

学情分析:

无论是排列组合还是简单的推理,学生都是初步接触它,可能有点吃力。但在日常生活中,有很多需要用排列组合和推理来解决的问题,因此注意安排有趣的活动,让学生通过这些活动进行学习,学生就容易理解和掌握。

教学目标:

1.了解简单的排列组合的知识,能找出最简单的排列数和组合数。

2.培养学生初步的观察能力、分析能力和有序的全面思考问题的能力。

教学重点:

经历简单事物排列与组合规律的全过程。

教学难点:

有序排列和组合的思想和方法。

教学准备:

课件、数字卡片

教学过程:

一、情境导入

师:同学们去过公园吗?公园好玩吗?老师今天要带你们去一个比公园更好玩的地方,它就是数学广角,为了把数学广角的每个地方都游玩一遍,我还特意请来了我们的好朋友,瞧!它来了。(课件:小朋友,你们好!我是蓝猫,你们愿意和我一起游玩吗)

二、探究新知

1.教学例1。

蓝猫提示数学广角的大门是由1和2这两个数字摆的两位数,这道门的密码可能是哪些数?

生:12、21。

师:这两个数有什么不同?

生:这两个数字交换了位置。

师:密码到底是哪个两位数呢?我们一起来看一看。(课件演示:密码跳动,跳到12时门不开)

师:12不行,那肯定是多少呢?

生:21。

师:为什么一定是21?

生:因为1和2能组成两个两位数不是12,就一定是21。

师:密码到底是哪个两位数呢?

课件演示:密码跳动,跳到21时门慢慢打开,出现第二道密码门揭示:这道门是由1、2、3三个数字中的两个组成,密码可能会是哪些数呢?请同学们两人一组,分工合作,一人拿出数字卡片摆,另一人就在纸上把摆的数记录下来,看看这道门的密码可能是哪些数,比比哪个组写得最全。21教育网

(1)学生两人一组,合作操作,边摆边记。

(2)学生汇报。

生:12、31、32、23、13。

师:有没有不同意见的?

生:还漏掉了一个21。

师:观察得真仔细!要想使排列的数不重复不遗漏,你有什么好办法?

生1:把1放在十位上,组成12、13,把2放在十位上组成21、23,把3放在十位上组成31、32。

生2:把1放在个位上,组成21、31,把2放在个位上,组成12、32,把3放在个位上,组成13、23。

师:同学们真棒,摆出了这么多的两位数,根据刚才摆的过程,你能总结一下排列组合的方法吗?

学生互相讨论、交流,总结方法。

归纳总结

排列的方法是,先把第一个数放在十位上,把其他两个数放在个位上组成两个两位数;再把第二个数放在十位上,其他两个数放在个位上再组成两个两位数;最后把第三个数放在十位上,与其他两个数组成两个两位数,这样排列组合,就会不重复又不遗漏地把六个两位数列举出来。

2.教学例2。

师:同学们,蓝猫带领我们到数学广角玩了一遍。可它自己却有一个问题没解决,你能帮它一下吗?

课件出示例2。

有3个数5、7、9,任意选取其中2个求和,得数有几种可能?

要求学生两人一组,动手操作摆数字卡片,边摆边记,摆出两张卡片求出和是多少,然后把结果在小组内讨论交流。

师:同学们用摆数字卡片的方法,求出了得数有三种可能,分别是12、14、16。考虑一下,还有其他的方法吗?

学生在小组内讨论交流,教师巡回指导。

实物投影展示学生想到的方法。

方法一:填表法

加数557799加数795957和121412161416方法二:连线相加

师:同学们想到的这两种方法都很好,你们是怎么想到的?

生:利用例1的方法先找到两个数,然后再相加。

师:噢,原来是这样。请同学们观察一下,两个数相加得到的和中有没有重复的?

生:有。

师:请同学们观察一下,为什么会这样?

生:因为两个数相加时,有的是两个数交换了位置,和没变。

师:两个数交换位置,和没变,这说明了什么呀?

生:两个数的和与顺序没有关系。

师:同学们观察得不错。因为两个数交换了位置,虽然有六种情况,可得数却只有三个。

师生共同讨论交流,为蓝猫解决了问题,任意选取其中两个求和,得数只有三种可能:12、14、16。

归纳总结

如果从三个数中任意选取其中2个求和,两个数的和与顺序没有关系,得数只有三种可能。

1.教材第97页做一做。

让学生独立完成,然后指名学生回答,出现问题,师生共同纠正。

2.教材第98页做一做。

第1题,由3名学生根据情境图做表演,其他同学看,同桌两人互相交流,得出正确答案。

第2题,由学生先独立完成,然后指名学生利用实物投影展示付钱方式,出现问题,师生共同订正。

三、课堂小结

今天这节课你有哪些收获?能跟同学们交流一下吗?

板书设计:

搭配(一)

例1:先固定十位:12、13、21、23、31、32

先固定个位:21、31、12、32、13、23

例2:方法一,填表

方法二,连线相加

六年级数学下数学广角教案教学设计 篇11

人教课标版教材五年级上册第七单元(p111—119)

教学目标

一、基础性目标:

1.通过生活中的事例,使学生初步体会数字编码思想在解决实际问题中的应用。

2.让学生通过观察、比较、猜测来探索数字编码的简单方法,学会用数进行编码,初步培养抽象、概括能力。

二、发展性目标:.

1、让学生进一步体会数在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养应用意识和实践能力。

2、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。

教学重点:

1、了解邮政编码的结构,初步体会数字编码的方法。

2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。

3、掌握利用符号和数字组合编码的方法。

教学难点:

1、了解邮政编码的结构,初步体会数字编码的方法。

2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。

3、掌握利用符号和数字组合编码的方法。

教材分析:

1、“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生[此文转于斐斐课件园 FFKJ.Net]的抽象、概括能力。

2、在日常生活中,数有着非常广泛的应用。让学生明确,数不仅可以用来表示数量和顺序,还可以用来编码,并通过实践活动进行简单的数字编码,培养学生[此文转于斐斐课件园 FFKJ.Net]的数学思维能力。

3、数字编码和我们的生活紧密相关,让学生通过生活中的具体事例,比如邮政编码、身份证号码、电话号码等,体会到运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。

4、通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。让学生体会到数学应用的广泛性,从而提高他们学习数学的兴趣和积极性。

教学建议:

1、恰当把握目标。

数字编码是一种抽象的数学思想方法,在这里学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,不要求学生掌握编码中每个数字的信息和含义。

2、注意数学与生活的联系,适度关注学生的生活经验。

教学中,教师要尽量从学生身边的具体事例来引入教学。同时,启发学生了解生活中的数学,比如通过调查了解邮政编码和身份证号码的含义,了解生活中的一些数字编码的意义等。

3、让学生动手实践,提供自主探索的空间。

学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生[此文转于斐斐课件园 FFKJ.Net]的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。

上一篇:关于农村改造工程的调查报告下一篇:银行互联网管理办法