初中几何证明

2024-12-27

初中几何证明(共11篇)

初中几何证明 篇1

(1)如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:

证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则⊿AEC∽⊿ADB,AE/AD=AC/AB;

又∠EAD=∠CAB,则⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)

连接DG,EG.点G为BC的中点,则DG=BC/2;(直角三角形斜边的中线等于斜边的一半)同理可证:EG=BC/2.故DG=EG.又F为DE的中点,则FG⊥DE.(等腰三角形底边的中线也是底边的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,对角线AC与腰BC相等,M是底边AB的中点,L是边DA延长线上一点连接LM并延长交对角线BD于N点

延长LM至E,使LM=ME。

∵AM=MB,LM=ME,∴ALBE是平行四边形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。

延长CN交AB于F,令LC与AB的交点为G。

∵AB是梯形ABCD的底边,∴BF∥CD,∴CN/FN=DN/BN。

由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。

由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。

由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,结合证得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。

∵AC=BC,∴∠CAG=∠CBF,结合证得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。

(3)如图,三角形ABC中,D,E分别在边AB,AC上且BD=CE,F,G分别为BE,CD的中点,直线FG交

AB于P,交AC于Q.求证:AP=AQ

取BC中点为H

连接HF,HG并分别延长交AB于M点,交AC于N点

由于H,F均为中点

易得:

HM‖AC,HN‖AB

HF=CE/2,HG=BD/

2得到:

∠BMH=∠A

∠CNH=∠A

又:BD=CE

于是得:

HF=HG

在△HFG中即得:

∠HFG=∠HGF

即:∠PFM=∠QGN

于是在△PFM中得:

∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN

在△QNG中得:

∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN

即证得:

∠APQ=∠AQP

在△APQ中易得到: AP=AQ

(4)ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,△CDA的内心O,O,O,O.求证:OOOO为矩形. 123

41234

已知锐角三角形ABC的外接圆O,过B,C作圆的切线交于E,连结AE,M为BC的中点。求证角BAM=角EAC。

设点O为△ABC外接圆圆心,连接OP;

则O、E、M三点共线,都在线段BC的垂直平分线上。

设AM和圆O相交于点Q,连接OQ、OB。

由切割线定理,得:MB² = Q·MA ;

由射影定理,可得:MB² = ME·MO ;

∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;

又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。

设OM和圆O相交于点D,连接AD。

∵弧BD = 弧CD,∴∠BAD = ∠CAD。

∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。

设AD、BE、CF是△ABC的高线,则△DEF称为△ABC的垂足三角形,证明这些高线平分垂足三角形的内角或外角 设交点为O,OE⊥EC,OD⊥DC,则CDOE四点共圆,由圆周角定理,∠ODE=∠OCE。

CF⊥FC,AD⊥DC,则ACDF四点共圆,由圆周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。

其他同理。

平行四边形内有一点P,满足角PAB=角PCB,求证:角PBA=角PDA

过P作PH//DA,使PH=AD,连结AH、BH

∴四边形AHPD是平行四边形

∴∠PHA=∠PDA,HP//=AD

∵四边形ABCD是平行四边形

∴AD//=BC

∴HP//=BC

∴四边形PHBC是平行四边形

∴∠PHB=∠PCB

又∠PAB=∠PCB

∴∠PAB=∠PHB

∴A、H、B、P四点共圆

∴∠PHA=∠PBA

∴∠PBA=∠PDA

补充:

补充:

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

已知点o为三角型ABC在平面内的一点,且向量OA2+BC2=OB2+CA2=OC2+AB2,,则O为三角型ABC的()

只说左边2式子 其他一样

OA2+BC2=OB2+CA2 移项后平方差公式可得

(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化简

得 BA(OA+OB)=BA(CA-BC)

移项并合并得BA(OA+OB+BC-CA)=0

即 BA*2OC=0 所以BA和OC垂直

同理AC垂直BO BC垂直AO哈哈啊是垂心

设H是△ABC的垂心,求证:AH2+BC2=HB2+AC2=HC2+AB2.

作△ABC的外接圆及直径AP.连接BP.高AD的延长线交外接圆于G,连接CG. 易证∠HCB=∠BCG,从而△HCD≌△GCD.

故CH=GC.

又显然有∠BAP=∠DAC,从而GC=BP.

从而又有CH2+AB2=BP2+AB2=AP2=4R2.

同理可证AH2+BC2=BH2+AC2=4R2.

初中几何证明 篇2

一、几何推理与图形证明教学的现有问题

一些初中数学教师目前依旧使用较为传统的讲课模式,即将课本上的重点知识和例题进行详尽地讲解,在这样的教学模式下,学生处于一味地接受状态,在课堂上要对庞大的信息量和知识接受让他们应接不暇,大部分学生做不到真正地理解和消化,更不用说培养起有效的几何推理思维和图形证明能力.这样的教学收效甚微,几何证明与普通的数学证明有着一定的区别,它需要学生不仅仅掌握数学证明的技巧和方法,更要有一定的空间想象能力和几何思维能力.

二、定理和重要概念的引入及教学

定理是几何推理的根本,许多几何推理与图形证明所需的知识都是由定理推广而来,因此教师在几何教学的过程中,首先要注重的就是定理和一些重要概念的引入及教学.在引入方面,由于定理具有高度的概括性,学生死记硬背效果不佳,因此教师要注意引入定理和重要概念的时机和方法.许多几何推理题往往就是对定理的反复运用,只要学生能够熟练地运用定理在做题的过程中就能够游刃有余,例如下题.

例1已知在三角形ABC中,D为BC边上的中点,在AD上任取一点E,连接BE,延长BE交AC与F,BE=AC,求证AF=EF.

证明:如图1,连接EC,取EC的中点G,AE的中点H,分别连接DG,HG.

则:GH=DG.

所以:∠1=∠2,

而∠1=∠4,∠2=∠3=∠5.

所以;∠4=∠5,所以:AF=EF.

乍一看这道题的题目比较复杂,实际上就是对于等腰三角形等边对等角这一基本定理的应用,学生对定理掌握的程度较深时,面对“三角形”、“中点”等条件很容易就会进行联想并作出辅助线DG和HG,通过等腰三角形和平行线段的性质进行角与角之间的转换,最后通过“等角对等边”的性质完成证明.这道题就是典型的对定理掌握程度的考察,对于这种题型要注意对定理的灵活应用.

三、学会“读题”,明确题中条件要素

在进行几何推理和图形证明的过程中,教师需要结合大量的例题进行讲解,这是十分必要的,在讲解之前,教师应当注重培养学生的“读题”能力,阅读题设看起来似乎是一件非常简单的事,其实解题和证明所需的大部分要素都包含在简短的题设之中,在读题的过程中对题设进行拆解,提取出其中重要的要素和隐含条件,才能为之后的证明或解题铺好路.尤其是当学生面对较为复杂的题设,要学会从中抽丝剥茧,理清头绪,一步一步地整理题设中所提及的条件,结合图形将它们以合理的逻辑排列出来,与最终需要解答或证明的问题进行条件匹配.这种读题能力就需要教师在课堂上讲解例题时引导学生慢慢去学习和掌握,这样才能在做题的过程中不会被复杂的题设蒙蔽了双眼,做到心中有数[2].

四、培养学生几何推理思维

1. 三种思维的应用

几何推理和图形证明同样属于数学证明的一种题型,对于这样的题型而言,最重要的就是培养学生的逻辑推理思维,在推理的过程中,通常有以下三种思维方式.第一、正向思维,也就是学生在推理和证明的过程中最常用的一种思维方式,从题设和条件出发,一步步地推出结果.这种方式比较常见,因此学生学习和应用起来也比较轻松.第二、逆向思维,顾名思义就是反向地去推理,也就是从结果入手进行推理,最典型的一种逆向思维证明法就是反证法.逆向的思维方式对于学生而言并不是十分常用,但它往往是解决难题的好帮手,难题的题设往往十分复杂繁多,在许多条件的铺陈下,题设拆解分析能力较弱的学生难免会一时之间找不到头绪,不知从何下手,而逆向思维法能够帮助学生迅速找到题目的切入点与突破口,很快进入到推理之中.第三种就是正向思维与逆向思维的结合,这种方法通常应用于难题的推理证明之中,将两种思维方式的特点相结合,同时也将题目中的条件和结果有机结合,帮助学生迅速找到推理的有效路线.在课堂教学之中,教师应当注重这三种思维的教学,尤其是学生不太常用的逆向思维和正逆结合思维,帮助学生开拓几何推理的思维,在解题的过程中可以做到多种思路的选择[3].

2.“动手”做题,辅助线的应用

在学习几何推理和图形证明的过程中,最常用也是最必不可少的一个方法就是做辅助线.当学生遇到单纯靠拆解题设和思维分析无法解决的时候,应当有动手画图做辅助线的意识,这种意识和能力需要教师在课堂教学之中进行重点培养.然而做辅助线有时候并不是万能的,一条错误的辅助线甚至会将学生的推理思路带入误区,导致推理混乱,因此,教师在教学过程中务必将辅助线的教学作为一个重点.

例2已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.

求证:△ABC≌△A'B'C'.

证明:分别过B,B'点作BE∥AC,B'E'∥A'C'.交AD,A'D'的延长线于E,E'点.

则:△ADC≌△EDB,△A'D'C'≌△E'D'B'.

所以:AC=EB,A'C'=E'B';AD=DE,A'D'=D'E'.

所以:BE=B'E',AE=A'E'

所以:△ABE≌△A'B'E'

所以:∠E=∠E'∠BAD=∠B'A'D'

所以:∠BAC=∠B'A'C'

所以:△ABC≌△A'B'C'

这一题需要证明三角形ABC和三角形A'B'C'全等,现有的条件是其中的两条边相等,还差一个条件,边BC和边B'C'相等或现有两边的夹角相等,经分析,有边AD和边A'D',我们很容易发现实现角的相等更为容易,AD将我们需证的夹角一分为二,因此需分别证明分角与分角相等,等角很容易让人联想起平行线,这就是辅助线的灵感来源,显然,有了辅助线的帮助就多了一个等角的条件,可以进行角之间的转换.这一题就是典型的辅助线的巧妙应用.

总之,几何推理和图形证明是初中数学的教学中至关重要的一个环节,教师在教学过程中应当打好基础,在定理的教学方面下功夫,努力培养学生的“读题”能力和几何思维方式,提高几何图形课堂教学的效率.

参考文献

[1]葛莹.初中数学几何推理与图形证明对策[J].学周刊,2015(14):222.

[2]焦龙.初中数学几何概念和定理教学探析[J].学周刊,2015(20):163.

初中数学几何证明题教学探讨 篇3

关键词:初中数学;几何证明题;提高质效

提及初中数学几何证明题,不少学生就头皮发麻,找不到思路,面对各种各样的图形和线条就犯晕,几乎束手无策,更不用说作出精确的辅助线了;有的学生则是风风火火地写了满满一张纸,仔细一看,逻辑混乱,不知所云;还有的学生步骤简单,跳跃幅度大,因果关系没有整理清晰,关键步骤没有写清楚便匆匆得到要证明的结论,多多少少有些滥竽充数的嫌疑,自然也就拿不到证明题的完整分数了。 对于数学教师来讲,初中几何证明题也是教学上的一大难点,似乎在教学中花了不少的力气,但还是有不少的学生对几何证明题的掌握程度无法令人满意,达不到新一轮课程改革的基本要求。 如何針对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法。

一、尊重教材

苏教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查。 与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战。 要抓好这部分证明题的教学,我认为首先就是要尊重教材。

教材是一切教学工作的根源。 教材中有很多经典的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透,学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题。 现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习。 这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作。

二、做好细节的规范书写

初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价。 教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火。 其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心。

有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求。 比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义。

如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范。 其次,学高为师,身正为范,这也是对教师教学工作的一个基本要求。 如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求。

三、抓好强化训练

初中几何证明题的教学,离不开强化训练。 这种强化训练既要训练学生的逻辑思维,还要训练学生的答题规范性。 比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答。

要能准确作出辅助线,并熟练地运用各种定理来证明几何题,就需要平时进行一定量的强化训练。 这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜。 比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线,我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了。

通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率。

总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示。 同时也要端正教学心态,在板书和示范上尽量做细做实,切忌一笔带过,草草了事。最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效。

初中几何证明很简单 篇4

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推

荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明角的和差倍分

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

八、证明两角的不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

九、证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

十、证明四点共圆

1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

例谈初中几何证明题教学 篇5

论文摘要:新课标下,打破传统教法,探析几何证明题教学的突破口,是每一个师生共同关心的话题。本文从九年级人教版一道期考题的学生答卷出发引起了笔者的思考,归纳总结出数学课堂教学的四个步骤,并由此引申出校本科研的命题。

关键词:数学教学;几何证明;学生

众所周知,几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路,追根究底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方法,具有重要意义,而且切实可行。

通过平时的学习、探索和积累,笔者发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。

新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。

初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。

考题:如图,在Rt●ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。

⑴求证:ED是⊙O的切线。

⑵E为BC的中点,如果⊙O的半径为1.5, ED=2,求AB的长。

这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第问“求AB的.长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方法不够灵活,措施不到位造成的直接后果。

怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下4个步骤,进行指导,收到良好的效果。

1.读

读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。

2.记

记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②……和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线?

3.选

“选”就是选定解题思路,确定解题方法,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方法,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可

以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明●EOC≌●EOD从而也就确定了解题方法。

4.返

就是选定了解题思路、确定了解题方法,并写出解答的过程中,特别是遇到解答的过程受阻时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。

可以看出,“读、记、选、返”四个步骤通俗易懂、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到平时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良好习惯,就能很好纠正学生不良的解题思维习惯和学习习惯!

初中数学,广西崇左市从秋季学期启用人教版新课改教材至今,恰好经历了两个周期。五年来,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。

评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方法总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。

而教师本身是否也反省过自己,一节课下来我们到底教给了学生什么?方法、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。

课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方法,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!

当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。

开展校本教育科研活动,有利于学校引导教师理性反思教学,唤醒教师的自觉能动性和创造性,促使教师不断追求教育实践的合理性,让教师学会“教”,学生学会“学”。

初中几何证明 篇6

几何证明对初中生来说普遍认为难学,同时任课教师也认为几何证明比较难教。倘若任课教师在教学的过程中稍有不注意,就会导致学生两极分化,小部分学生学得很好;大部分学生学得很糟糕,以致于丧失学习几何的兴趣和信心。本人在七年级的几何教学中发现,学生刚学习几何,头脑中形的概念特别差,适应不了初中几何题目对抽象思维能力的要求。以下是我从学生在课堂、作业以及测试中表现出来的问题进行了分析归纳,发现学生学习几何存在以下几个问题:

1、不会读图、画图。不会由有关图形联想到相关的数量关系,挖掘隐含条件,比如对等角相等。不会画出几何图形帮助理解题意。

2、几何语言表述不清楚。几何讲究思维严密性,而学生在练习、作业时,几何语言表述比较随意,甚至颠三倒四。

3、几何逻辑推理能力差。学生对数学定义、定理、公理、判定、性质、法则等理解肤浅,全凭感性认识,思维不严谨,推理不严密,不知道由已知条件推导出什么结论,或者,每一个结论的依据是什么。

4、书写几何证明过程不清晰。面对几何证明题无从下手,不知道先写哪一步后写哪一步,哪些步骤该写,哪些步骤可以省略,最终导致关键步骤缺失。

针对学生学习几何的以上困难,我认为,教师在几何入门教学时应转变教学思路,把严密的逻辑推理和合情推理有机的结合起来,通过猜想、观察、归纳等合情推理,让学生树立对几何学习的自信心理。要加强学生画几何图形的能力,结合图形理解运用。要根据已知条件以及与其有关的定理作辅助线或者进行逆向思维,从结论出发,结合已知条件缺什么补什么。教师是学生学习过程中的引导者,至此在教学过程中我主要围绕以下几个方面去开展教学:

1、注重培养读图、画图能力

首先要求学生掌握基本图形的画法,如作一条线段等于已知线段、作一个角等于已知角、作角的平分线、作线段的垂直平分线。其次,要求学生根据文字描述画出几何图形。观察图形时,指导学生对图形进行拆分,把一个复杂的图形分成几个简单的图形来处理,从而提高识图能力。充分利用教材编排特点:量一量、摆一摆、画一画、折一折、填一填培养学生的动手动脑能力。

2、加强几何语言表达训练及定义、定理的理解

结合图形让学生掌握直线、射线、线段、角的多种表示方法,认真理解数学定义、定理、公理、判定、性质,用简单的符号表达出因果关系。几何推理证明要应用定义、定理,所以对定义、定理的理解至关重要,其次就是应用定义、定理。

3、重视几何学习的逻辑推理过程及书写

初二几何证明的简易方法 篇7

一、认真分析“求证”, 寻找最佳思路

“求证”显示了几何的结论, 要想证明这个结论成立, 必须找到最佳思路, 有路才能往前走, 才能走到终点。几何的思路是把结论逆推理, 即:要证明结论成立, 只须先证明另一个问题成立, 而另一个问题的证明是我们容易找到的, 只要通过已知条件就可完成证明, 这样顺藤摸瓜, 就可以找到证明结论的基本思路, 而后通过已知条件就可以写出证明。

例1:已知△ABC中、E是AC的中点、∠1=∠2, AD:AB=1:2

求证:△ACB~△AED

分析:△ACB与△AED已具有∠1=∠2, 故只须另一对应角相等或夹∠1、∠2的两边对应成比例都可完成证明, 由已知条件可知后者更能证明本题, 即采用:SAS方法证明, 显然, AE:AC=AD:AB=1:2成立。

有些几何题需要绕一个弯才能完成, 我们更需要跟踪结论, 只要找到思路才能攻破“证明”。又例2:

求证:∠BAD=∠CAE

分析:由于BAD与∠CAE分别在两个三角形中, 我们可以证明其全等或相似。由已知条件知道, 证明相似最有利, 然而只能证明△ABC~△ADE, 其实, 这已经足够证明结论成立:

因为△ABC~△ADE, 所以∠BAC=∠DAE, 而∠BAD=∠BAC-∠DAC=∠DAE-∠DAC=∠CAE。

二、让证明方法“浮出水面”

一道几何题的证明, 方法几乎都是唯一的, 若找不到方法, 那这道题就证不出来了。对于初二年级的学生, 我们在教学中更要训练他们的逻辑推理能力, 让他们学会自己找思路, 选方法, 也要使他们学会把证明方法“浮出水面”来。有了方法, 还愁证明吗?例3:

已知:如图, 在△ABC中, ∠BAC=90°, AD⊥BC于D、ED⊥DF、DE与DF分别相交AB、AC于E、F

求证:△EBD~△FAD

分析:证明三角形相似有AA、SAS、SSS等判定方法, 本题已知条件没有比例, 故排除SAS、SSS选择AA方法, 由于∠DAF=90°-∠BAD=∠B、∠BDE=90°-∠ADE=∠ADF, 两个“A”都很容易找到。

几何证明方法必须围绕已知条件寻找, 从求证部分突破。如果离开已知条件盲目找方法, 那等于竹篮打水一场空, 或者你的证明方法是错误的 (假证明) 。故几何的教学, 必须大力开拓基本思路, 找出方法, 再难的问题也能解决。

三、证明过程书写要简洁, 先后要合理

几何的证明必须把结论所需要的理由一一显示出来, 对于初二的几何, 这些条件的产生, 有两种情形。其一, 从已知条件直接搬下来;其二, 由已知条件转化而产生, 在这一过程中, 包含着“因为……所以……”的因果关系。有时, 需要几个条件才能产生一个结论, 有时一个条件就可以产生几个结论。我在指导学生做几何题时, 要求他们对结论的证明需要哪些条件, 对照已知, 把直接条件与间接条件找到。在书写过程中, 先把间接条件转化出来, 再把直接条件与转化出来的间接条件写在一起, 然后用大括号在后面括起来, 表示证明结论的理由已充分, 最后写出结论并注明判定的理由 (方法) , 一道几何题证明的书写过程就完成了。

如例1的证明:

∵E是AC中点∴AE:AC=1:2

而AD:AB=1:2

∴AE:AC=AD:AB

∵∠1=∠2

∴△ACB~△AED (SAS)

初中几何证明 篇8

【关键词】初中数学 几何推理 图形证明 方法

【中图分类号】G633.63 【文献标识码】A 【文章编号】2095-3089(2016)34-0233-01

一、初中数学几何推理与图形证明教学中的缺陷

现阶段,我国的初中数学教学过程中,几何推理与图形证明是难点和重点内容之一。学生在对这部分知识进行学习的过程中,需要具备较强的抽象性思维和空间想象力。然而,现阶段我国部分初中数学教师在教学过程中,仍然沿用传统的教学模式,即在详细讲解课程重点理论知识的基础上,通过大量的习题,引导学生内化知识内容。这种教学模式在应用过程中,教师是课堂主体,学生作为客体,只能够对理论知识进行死记硬背,然而较强的理论性和逻辑性知识,不仅导致学生在记忆过程中难度较大,同时学习兴趣大大下降,在长时间的知识学习过程中,很容易产生对各种理论的混淆,学生的几何推理思维和图形证明能力无法得到有效培养。由此可见,传统以教师为主的教学模式不利于提升初中数学教学质量,新时期,教师必须从以下两方面入手,切实提升学生的解题能力,才能够为培养学生的數学素养奠定良好的基础。

二、抓住题干要素正确解题

初中数学几何推理与图形证明教学中,教师应将各种类型的例题引入课堂,帮助学生对知识点进行消化和理解才能够提升教学效率和质量。在例题的讲解中,首要任务就是培养学生正确的“读题”能力。事实上,题干看起来短小,但是其中包含了大量的关键要素,是解题和证明的关键,在读题中,教师应引导学生拆解题干,将其中的重要要素提取出来,并挖掘隐含的条件,从而为构建清晰的解题思路奠定良好的基础。如果题设相对复杂,学生更应当具备抽丝剥茧的能力,将题设中的各个要素提取出来,在对各个要素进行排列的过程中,应结合图形进行,并将这些要素应用于证明问题的过程当中。读题的能力需要教师在教学过程中长期对学生进行引导,才能够促使学生在解题的过程中,不受其他因素的干扰,做出正确的判断,并提升解题速度。

三、几何推理与图形证明教学中引入定理和重要概念

在几何推理中,根本性因素是定理,在对定理进行推广的过程中,可以演变出更多的几何推理与图形证明知识。在这种情况下,教师在实际教学过程中,应积极引进各种定理和概念。同时,较高的概括性是定理的主要特点,如果一味的要求学生进行死记硬背,不仅不利于提升学习效率和质量,甚至还很容易打击学生的学习积极性,因此定理和相关概念的引入,必须注重应用科学的方法。在反复应用相关定理的基础上,多数几何推理题都能够迎刃而解。

例如,在以下例题中,教师就可以适当的引入定理,帮助学生对理论知识进行掌握和深入理解的同时,提升学生实际解题的能力。“已知三角形ABC如图一所示,边BC的中点为D,连接AD,E为AD上任意一点,并连接、延长BE,F是AC与BE的交点,此时AC=BE,那么证明EF=AF。”单纯的解读题干可以发现,题目内容相对复杂,然而,在对题干进行深入挖掘的过程中学生就能够意识到,该题干描述的是等腰三角形,而所涉及的定理是“等边对等角”。在这种情况下,学生通过对“中点”、“三角形”等基础知识的联想,就会意识到需要对HG和DG等辅助线进行构建,接下来,在进行角与角之间的转换过程中,需要对平行线段性质以及等腰三角形相关性质进行应用,最后在完成证明的过程中,对“等角对等边”的理论进行应用。

在这种情况下,实际证明过程如下:连接EC,G为EC中点,H为AE中点,接下来,分别对HG和DG进行连接,那么可知DG=GH。因此角1和角2相等,由于角2、角3、角5是相等的,而角1同角4是相等的,那么则说明角4同角5相等,因此可以得到AF=EF。

由该例题可以看出,在实际的几何推理与图形证明教学中,要求学生能够对各种定理进行充分的了解,并提升学生灵活应用定理的能力,才能够顺利解答任何题型。

结束语:

初中几何证明 篇9

1、已知:如图,CD⊥AD,DA⊥AB,∠1=∠2.求证:DF∥AE.C

D

E

AF

B2、已知:BF⊥AC于F,GD⊥AC于D,∠1=∠2.求证:EF∥BD.A

F

E

BDC

G3、已知:如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试判断直线AB、CD是否平行,为什么?

A

BE

D

C4、如图,已知∠ABC=52°, ∠ACB=64°,∠ABC和∠ACB的平分线相交于M,DE过M且DE∥BC.(1)求∠BMC的度数;(2)过M作EC的平行线,交BC于F,求∠BMF的度数.A

M

FDBEC5、已知:如图,AB、CD被EF所截,且AB∥CD,GM∥HN.求证:(1)∠3=∠4;(2)∠1=∠2.E

A

BND

CF6、如果,直线AB.CD被EF所截,∠1 =∠2,∠CNF =∠BME.求证:MP∥NQ.

A C

F7、已知:如图,AD∥BC, DE,CF分别平分∠ADC,∠BCG.求证:DE∥CF.D

2E B P D

Q

C

4GF

E

B

A8、已知∠1=∠2,∠C=∠F.请问∠A与∠D存在怎样的关系?验证你的结论.FE

D

B

C9、如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥BF.求证:AB∥DC.DA10、A、B、C三点在同一直线上,∠1=∠2,∠3=∠D.试说明BD∥CE.F

CB

E

A

B

C11、如图,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.

(要求给出两个以上答案,并选择其中一个加以证明)

12、已知:如图,在△ABC中,FE⊥AB,CD⊥AB,G在AC边上,并且∠1=∠2.求证:∠AGD=∠ACB.F C

A

E

B

D

ADEB

G

F

C13、已知:DM⊥BC于M,AC⊥CB于C,EF⊥AB于E,∠1=∠2.试说明CD⊥AB的理由.AE

D

F

B

M

C14、如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50,求∠2的度数.15、已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.

初一几何证明题 篇10

(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于O,过O作FG平行AB,交BC于F,交AC于G。求证CD=GA。

延长AE至F,使AE=EF。BE=ED,对顶角。证明ABE全等于DEF。=》AB=DF,角B=角EDF角ADB=角BAD=》AB=BD,CD=AB=》CD=DF。角ADE=BAD+B=ADB+EDF。AD=AD=》三角形ADF全等于ADC=》AC=AF=2AE。

题干中可能有笔误地方:第一题右边的E点应为C点,第二题求证的CD不可能等于GA,是否是求证CD=FA或CD=CO。如上猜测准确,证法如下:第一题证明:设F是AB边上中点,连接EF角ADB=角BAD,则三角形ABD为等腰三角形,AB=BD;∵AE是三角形ABD的中线,F是AB边上中点。∴EF为三角形ABD对应DA边的中位线,EF∥DA,则∠FED=∠ADC,且EF=1/2DA。∵∠FED=∠ADC,且EF=1/2DA,AF=1/2AB=1/2CD∴△AFE∽△CDA∴AE:CA=FE:DA=AF:CD=1:2AC=2AE得证第二题:证明:过D点作DH⊥AB交AB于H,连接OH,则∠DHB=90°;∵∠ACB=90°=∠DHB,且BD是角B的平分线,则∠DBC=∠DBH,直角△DBC与直角△DBH有公共边DB;∴△DBC≌△DBH,得∠CDB=∠HDB,CD=HD;∵DH⊥AB,CE⊥AB;∴DH∥CE,得∠HDB=∠COD=∠CDB,△CDO为等腰三角形,CD=CO=DH;四边形CDHO中CO与DH两边平行且相等,则四边形CDHO为平行四边形,HO∥CD且HO=CD∵GF∥AB,四边形AHOF中,AH∥OF,HO∥AF,则四边形AHOF为平行四边形,HO=FA∴CD=FA得证

有很多题

1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z

证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于p,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=Fp,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD

同理可证Fp=2DJ。

又因为FQ=Fp,EM=EN.FQ=2DJ,EN=2HD。

又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN

又因为

FQ=2DJ,EN=2HD。所以DO=HD+JD。

因为X=DO,Y=HY,Z=DJ.所以x=y+z。

2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠BON=108°时。BM=CN还成立

证明;如图5连结BD、CE.在△BCI)和△CDE中

∵BC=CD,∠BCD=∠CDE=108°,CD=DE

∴ΔBCD≌ΔCDE

∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN

∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN

∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°

∴∠MBC=∠NCD

又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN

∴ΔBDM≌ΔCNE∴BM=CN

3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()

因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。

因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN

所以∠NBD=58°,所以∠NBC=61°-58°=3°

4.在正方形ABCD中,p,Q分别为BC,CD边上的点。且角pAQ=45°,求证:pQ=pB+DQ

延长CB到M,使BM=DQ,连接MA

∵MB=DQAB=AD∠ABM=∠D=RT∠

∴三角形AMB≌三角形AQD

∴AM=AQ∠MAB=∠DAQ

∴∠MAp=∠MAB+∠pAB=45度=∠pAQ

∵∠MAp=∠pAQ

AM=AQAp为公共边

∴三角形AMp≌三角形AQp

∴Mp=pQ

∴MB+pB=pQ

∴pQ=pB+DQ

5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,Bp⊥MC于点p,求证Dp⊥Np

∵直角△BMp∽△CBp

∴pB/pC=MB/BC

∵MB=BN

正方形BC=DC

∴pB/pC=BN/CD

∵∠pBC=∠pCD

∴△pBN∽△pCD

∴∠BpN=∠CpD

∵Bp⊥MC

∴∠BpN+∠NpC=90°

∴∠CpD+∠NpC=90°

几何证明教学的点滴体会 篇11

一、兴趣是学生学习的动力

1.要消除学生害怕学习几何证明的心理。上课时,学生似乎听懂了老师讲的内容,但是自己动手起来,却觉得无从下手,从而觉得学习几何太难了。针对这一情况,上课时就应该尽量把知识点讲透,理清思路。对于简单的几何证明题,就让学生尝试证明,让学生品尝成功的喜悦。逐步培养学生学习几何的兴趣,摆脱害怕学习几何证明的阴影。

2.言传身教,及时鼓励。在课堂教学时,例题板演时,要尽量做到边分析边讲解边书写,有时让学生跟着老师一起书写证明过程。告诉学生,你一旦入门学习几何知识,就会知道其实几何证明并不难,关键是你能否灵活运用学过的有关定理公理;只要你静下心来学习几何证明,不断积累证明的经验,再难的几何题你也能攻克,做几何证明题其实是很有趣的,当你完成一道有难度的几何证明题时,内心不知有多高兴。

二、放低门槛,让学生觉得“我行”

1.要鼓励学生用自己的语言说明,可以结合图形进行说明,也可以用箭头等形式表达自己的思路。总之,不能一下子,就要求学生写出完整的证明步骤。特别对于七年级的学生显然是有一定的难度。所以,我们应以多种形式来引导学生。如:我们可以以填空的形式,让学生完成几何证明。这样做,也是降低证明难度的一种方法。这样,有意识地留出一些空间,让学生填出推导的结论,填出得出结论的理由,引导学生思考,使学生初步养成言之有据的习惯。从而,能逐步进行简单推理。

其次,依样画葫芦,也是一个降低难度的好办法。有意识地让学生模仿,试着写出推理过程。

例如:如图,D在AB上,E是AC上,AB=AC,∠B=∠C,求证:AD=AE。

证明:在△ACD与△ABE中,

∵△ACD≌△ABE(ASA)

∴AD=AE

那么,下面这道题就可以让学生模仿上面的证明步骤来证明。

在△ABC中,AD⊥BC,BE⊥AC,EC=CD,求证:AD=BE。

再次,大题小题化,启发引导学生完成几何证明。很多综合题都是由小题目组合而成的。把一道难度较大的综合题分成几个小题来证明,显然会降低其难度。

例如:如图AC和BD相交于点O,OA=OC,OB=OD。求证:DC∥AB。

这道题对初学几何证明的学生来说,也许有一定的难度。那么,我们就可以进行分步证明。如:可以添加一步证明△AOB≌△COD。引导学生要证明DC∥AB。必须先证明△AOB≌△COD。这样,这道题就显得简单多了。

第四,隐含条件显性化。对七年学生,我们要协助他们分析问题,解决问题,提高学生自己证明的自信心。

如:已知:以△ABC的边AB、AC,作等边△ABD和等边△AEC,连结DC、BE。求证:BE=DC。

对于这道题目,大部分学生都知道,要证明BE=DC,必须先证明△ADC≌△ABE。可是证明ADC≌△ABE的条件呢,因为题目的已知条件比较简单,要证明ADC≌△ABE的条件都被隐含起来。这时,教师应启发学生分析等边三解形有哪些性质,从而把已知条件显性化,达到解决问题的目的。

三、要学会几何证明,能正确分析题目是关键

在学生会进行简单的说理的基础上,就要加强逻辑推理能力的培养,完善证明步骤。那么,如何提高学生的逻辑推理证明的能力呢?首先,要教会学生如何分析题目。分析题目时,要看已知什么条件,隐含了什么条件,要求或要证明出结论,还需要什么条件等。在理清解题途径后,就用综合法写出证明过程。最后,要求学生检查写出的每一步骤是否合理,已知条件是否都有用了,判断证明是否正确。这种逐步培养学生分析问题能力必须始终贯穿于教学过程中。

最后,要“逼”学生做数学

上一篇:自传范文初二650字下一篇:公关社交礼仪考试