圆锥体积应用题(精选7篇)
圆锥体积应用题 篇1
1、求下面圆锥体的体积。
(1)底面积14.8平方厘米,高1分米。
(2)底面周长31.4米,高是3.9米。
2、一个圆锥形沙堆,底面周长50.24米,高6米。
(1)这堆沙的体积是多少立方米?
(2)如果每立方米沙重1.7吨,这堆沙有多少吨?
3、一个圆柱体,底面直径是8米,高是3米,求与它等底等高的圆锥体的体积。
4、用铁皮制一个圆柱形油桶,底面半径4分米,高的长度与底面半径的比是3:1。
(1)制作这个油桶至少需要铁皮多少平方分米?(用进一法取近似值,得数保留整平方分米。)
(2)这个油桶的容积是多少升?
5、一个圆锥形沙堆,底面积12.56平方米,高1.2米。用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
6、一个圆柱形油桶 ,装满了汽油,把桶里的`汽油倒出,还剩12升。油桶的底面积是5平方米,油桶的高是多少?
圆锥体积应用题 篇2
下面是这节课的教学片段。
【案例】
电脑再现自学提纲:
(1) 你自学圆锥的体积后, 得知哪些信息?
(2) 除书上介绍的实验外, 你想到其他的实验方法没有?
(3) 圆锥体积的计算公式是什么?是怎样得来的?
师:你自学了圆锥的体积后, 得到了哪些信息?
生1:圆锥的体积是等底等高圆柱体积的。
生2:圆锥的体积是等底等高长方体或正方体体积的。
生3:圆柱的体积是等底等高圆锥体积的3倍。长方体的体积是等底等高圆锥体积的3倍。正方体的体积是等底等高圆锥体积的3倍。
师:这些信息你是怎样获得的?除了书上介绍的方法外, 你还想到其他的实验方法没有?
一个具有挑战性的问题激起了学生的求知欲望, 由于学生课前经过了充分思考、探索, 于是他们争相交流着多种实验方案:
实验方案 (1) :我们准备了装满水的等底等高的圆柱和圆锥各一个, 把圆柱和圆锥里面的水分别倒入塑料袋里, 用弹簧秤测出圆柱里的水约重1斤7两, 圆锥里的水约重6两。由此, 我们得出圆柱体积是等底等高圆锥体积的3倍。
实验方案 (2) :我准备了一个等底等高的圆锥和圆柱, 把圆锥里装满的沙子倒入圆柱一次, 发现沙子的高度正好是圆柱高度的。说明圆柱的体积正好是等底等高圆锥的3倍。
实验方案 (3) :我和他们的方法不一样, 我准备了一个长方体的空盒, 盒子的底面和圆锥体的底面差不多大, 他们的高度也相等, 我在圆锥里装满了沙子, 然后倒入盒子里, 发现圆锥的体积也是等底等高长方体体积的。我把长方体的盒子换成了正方体的盒子来做实验, 得到同样的结果。
……
师:同学们, 你们做实验时, 都说到了等底等高, 这是为什么?
生1:我用不是等底等高的圆柱和圆锥按书上的方法进行实验得到的。
生2:我是回忆三角形和平行四边形面积公式的推导过程, 而联想到的。
生3:因为任何物体的体积都等于底面积乘以高, 那么圆锥的体积也应该是等底等高长方体、正方体体积的。
……
【反思】
(1) 学习的过程是学生创造的过程。荷兰数学教育家费赖登塔尔认为:学习数学的唯一正确方法是实行“再创造”, 也就是由学生本人把学习的东西自己去发现或创造出来;因此教师应提供一个让学生进行这种再创造的舞台, 让他们有充分施展再创造的机会。这节课的知识正是学生自己动手、动脑而获得的。这种学生通过自己动手实验的方法去探索、交流、经历数学“再创造”的过程, 不仅将抽象的圆锥体积公式具体地根植于学生的操作之中, 而且使学生在创造性学习的过程中感受到学习的乐趣, 增强了学好数学的信心, 真正成为学习的主人。
(2) 鼓励学生自学, 培养创新能力。自学, 是学生打开知识宝库的金钥匙, 自学成才者不乏其人, 我国著名数学家华罗庚就是自学成才的典范。因此, 在教学中我们应该鼓励学生自学, 让学生直接面对课本, 把教师的“教”建立在学生“学”的基础上。通过师生共同设计的自学提纲, 来引导学生质疑、操作、实验、探索, 从而培养他们的自学能力。本节课学生在认真自学圆锥的体积基础上, 既获取了书本以外的教学信息, 又在汇报交流不同实验方案的过程中, 充分体现了他们的创新精神。
(3) 学生拥有不可估量的潜能。小学生完全可以在探究、自主发现的教学模式中学习。这一节课当我提出“除了书上介绍的实验外, 你想到其他的实验方法没有?”这个问题时, 学生的回答是我在备课中始料未及的, 这说明学生确实拥有不可估量的潜力, 只要我们为学生营造一个能展现他们才能的氛围, 隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。
《圆锥的体积》教案设计 篇3
【中图分类号】G623.5【文献标识码】B【文章编号】1001-4128(2011)04-0194-02
1 教材简析
《圆锥的体积》是小学数学六年级下册第二单元《圆柱和圆锥》中的内容。
本单元是小学阶段学习几何知识的最后一部分内容,包括圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。圆柱和圆锥是人们在生活和生产中经常遇到的几何形体,教学这一部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。《圆锥的体积》是继已经学习《圆柱的体积》内容为基础而展开的学习内容。
2 学情分析
本内容教学过程中,学生容易停留在对实物的直观表象认识上,从圆锥实体抽象出圆锥概念与圆锥的体积公式,是学生进行学习的瓶颈,注意引导学生从“已知”去认识“不知”事物的观念上突破。以及从“已有方法”推出“未知方法” 诱导;同时为了解决学生对繁琐的计算也容易产生困乏的情绪,教学时有必要采用计算器以及必要图形予以辅助。
3 教学目标
(1)使学生理解求圆锥体积的计算公式。
(2)会运用公式计算圆锥的体积。
(3)掌握圆锥体积公式的推导过程,能灵活解决实际问题。
(4)培养学生观察、比较、归纳的能力,以及空间观念。
(5)培养学生逻辑思维能力,有条理性的解决问题的能力。
4 教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
5 教学方法
基于教学内容和学生实际,主要采用的教学方法有:直观观察法、实验法、反例比较法、课件演示法、探究发现法。
6 教学准备
(1)课件。
(2)实物圆柱體、圆锥体和沙等。
7 教学设计
7.1 情境引入观察发现
(1)复习旧知:
1)圆柱的体积公式是什么?
2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
(2)导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
7.2 积极参与探究感受
(1)了解用排水法求圆锥的体积。(学生有基础这个内容可以简略见教材)
(2)指导探究圆锥体积的计算公式.
1)学生分组实验:老师给每组同学都准备了两个圆锥体容器和两个圆柱体容器(其中有一个圆锥和一个圆柱是等底等高的,另外一个圆锥和圆柱体容器底和高跟它们各不相同)和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?(注:实验教学法,百闻不如一见,一个人最相信的是自己,是自己做的事情,它能给学生留下深刻的印象和想象的空间,取得较好的教学效果。实验法需要老师课前做充分的准备)
2)学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
……
(注:正反例比较法,将正例和反例进行比较,让学生知道圆锥的体积跟圆柱体积有什么关系,圆锥的体积是什么而不是什么,让学生更清楚的认识到圆锥的体积等于与它等底等高的圆柱的体积的三分之一,而不是等于其它圆柱体积的三分之一,从而突破了难点。)
3)引导学生发现: 圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .
板书:
圆锥的体积与它等底等高的圆柱体体积×高÷3
字母公式 v1/3v【sub】圆柱【/sub】h
V1/3sh
(探究发现法,是学生通过观察和实验进行综合、比较、归纳、逻辑推理发现规律和数学模式的过程,让学生从感性知识上升到理性知识。)
4)思考:①要求圆锥的体积,必须知道哪两个条件?②如果已知圆锥的体积和高怎样求底面积?③如果已知圆锥的体积和底面积怎样求高?
5)反馈练习
圆锥的底面积是5,高是3,体积是( )
圆锥的底面积是10,高是9,体积是( )
7.3 运用知识解决问题
(1)试做教材相关例题.
(2)运用公式
1)一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?
学生独立计算,集体订正.
2)一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
3)思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
a、已知圆锥的底面半径和高,求体积.
b、已知圆锥的底面直径和高,求体积.
c、已知圆锥的底面周长和高,求体积.
4)反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(3)求下面各圆锥的体积.
a、底面面积是7.8平方米,高是1.8米.
b、底面半径是4厘米,高是21厘米.
c、底面直径是6分米,高是6分米.
(4)计算并填表。(见课后习题)
(5)判断对错,并说明理由.
a、圆柱的体积相当于圆锥体积的3倍.( )
b、一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2∶1.( )
c、一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )
(6)公式的逆运用 。
1)一个圆锥的体积是31.4平方分米,高是3分米,求底面积.
2)一个圆锥的体积是68.2平方米,底面积是31.4平方米,求高。
7.4 思维训练。本课题内容的思维训练我认为主要是圆柱和圆锥的几种特殊的关系:(1)圆柱和圆锥等底等高时,圆锥体积是圆柱体积的三分之一。(2)圆柱和圆锥等体积等底面积时,则圆锥的高必须扩大到圆柱高的三倍。(3)圆柱和圆锥等体积等高时,则圆锥的底面积要扩大到圆柱底面积的三倍。第一种关系是本节课的重点已经解决,第二和第三种关系则是本节课内容的拓展,主要以启发式来引导,比如:怎样使原本与圆柱等底等高的圆锥的体积变得与圆柱体积一样大呢?学生小组讨论后引导学生理解:第一种方法是底面积不变高扩大(或增加)到原来的三倍,第二种方法是高不变底面积扩大到原来的三倍,第三其他方法。
7.5 全课总结概括新知:通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
7.6 布置作业。
8 教学反思
主要收获:在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
《圆锥体积》教学反思 篇4
2、陶行知先生倡导“手脑联盟”,他说“人生两个宝,双手和大脑”就是要学生手脑并用。在小学数学教学中,如果我们教师能给学生创造人人参与,既动手又动脑的情景,就能最大限度的激发学生的学习兴趣,激发学生的创新思维。让不同的学生在活动中得到不同的发展。
3、实验后的交流是培养学生思维的有力的催化剂。在交流中,学生通过比较、思考,加深了对公式的理解,不仅理解了圆柱体和圆锥体之间的关系,而且培养了学生的思维能力、表达能力、概括能力。
圆锥的体积教案 篇5
师:同学们我们在前面学习圆锥的认识时,曾经见过这个物体,知道这是什么吗?这是一个铅锤,它的外形类似于(圆锥),这个铅锤所占空间的大小,就是它的体积,你有没有什么办法能够测量它的体积。生:排水法 师:怎么测量?
师:好,我们来试试。这是一个量筒,我们把铅锤放入量筒中,请同学们仔细观察,水面(上升了),这时你如何测量铅锤的体积? 生……
师:刚才你们测量铅锤的体积用的是我们以前测量不规则图形体积的方法——排水法,你们谁愿意对这种方法进行下评价,觉得怎么样? 生……
师:就像刚才同学说的,这种方法比较麻烦,如果要是测量外形也像圆锥形的麦堆,能把它放到水里吗?看来这种方法有一定的局限性。今天我们就来寻找一种解决这类问题的普遍的方法,所以今天这节课,我们就来学习研究——圆锥的体积(板书)
师:同学们,我们已经学过哪些物体的体积的计算方法? 生:…… 你认为哪一种体积的计算方法可能和圆锥有关呢? 生:圆柱形
师:怎么会想到圆柱形? 生:都有一个圆的底面
师:是的,它们之间确实有一定的联系,你能大胆的猜一猜,他们的体积之间,会存在着什么样的关系呢? 生:
圆锥的体积是圆柱体积的三分之一,圆柱的体积是圆柱体积的三倍……
师:大家提出了这么多的猜想(板书),到底哪一个是正确的,下面我们就通过实验来验证我们的猜想。
出示课件:老师为每个小组准备了一些圆柱和圆锥的模具以及沙子和水,利用这些学具进行试验,看看我们的猜测是不是正确的,看看圆锥和圆柱之间的体积到底存在着什么样的关系.实验要求:①小组合作分工②记录好实验单(提前交代好1号2号的任务)我们先一起来看试验单,我们需要做几次试验,谁来给大家读读第二列的内容。
我们比较的是圆锥的什么? 生:底面积和高
师:下一步我们要做什么,你读读。这一列写的是你们通过试验后所选的圆柱和圆锥体积之间的关系,知道如何填写这个表了嘛。下面就按照要求一项一项来做。
温馨提示:不要将沙子和水洒到桌子上,不要粘到衣服上 生:操作
师:同学们,你们验证出结果了吗?哪个小组愿意上来分享下你的方法和结果.生:汇报
师:研究的过程很细致,方法很科学,我们给他鼓鼓掌吧,还有哪组愿意介绍下试验过程和结果。拿着试验单俩人来说就行。生:汇报
师:其他组的试验情况是不是和他们基本上是一致的,通过试验验证了你们的猜测吗?(验证了)在这里,你有没有什么疑问吗?我有一个疑问,我发现同学们几次的试验情况是不同的,谁来说说,为什么会不同。
生:只有是等底等高的情况下,他们的体积之间才是三倍的关系。
师:那也就是说,当圆柱和圆锥存在(等底等高)的关系时,他们之间的体积倍数关系才会固定,如果没有,就不固定,谁来具体说说,等底等高的圆柱与圆锥之间有什么关系,谁再来说说。
师:我们研究出了等底等高的情况下,圆柱体与圆锥体之间的体积关系对我们得到圆锥体的体积方法有什么样的帮助呢?谁来说说圆锥体体积的计算公式是什么? 生:
师:谁来更具体的说说 生:三分之一的SH 师:这也就是圆锥体体积的计算方法,在这个公式中,S、H分别表示什么呢?S乘H的积是什么呢?为什么要乘三分之一呢?(又忘了什么条件)
师:现在我们发现,想要知道圆锥的体积只需要知道? 生:S,H, 师:谁还有补充? 生:R,H, 师:怎么计算?(板书)生: 师:我们来回顾下,我们在计算圆锥体积的计算方法时,先观察,发现圆柱与圆锥他们的面之间有相似性,然后大胆的猜测,猜测可能具有的关系,接着又通过动手操做,试验,验证我们的猜测,最后对试验结果进行细致的分析,从而总结归纳出圆锥的体积计算公式。现在我们能计算出铅锤的体积吗?要想计算铅锤的体积,我们需要知道什么? 生……
师:这里,老师给你提供三组条件,让同学们从中任选一组进行计算。可以吗?开始?这位同学到黑板上来做。师:我们看下这位同学的计算结果,和你们的一样吗?我可看着很多同学的计算结果是300.44,是和这位同学不一样的,这里存在什么问题,谁发现了?如果不乘三分之一,得到的是谁的体积?还是要求的体积吗?所以,铅锤的体积应该是:100.48立方厘米。
师:观察她的计算过程,谁有更简便的方法?有吗? 生:用6乘三分之一
师:这方法可以吗?所以我们以后再计算的时候应该?先观察数据的特点,能直接约分的就利用交换律和结合律进行简算,这样就更计算更加快速和方便了。
师:这位同学是个善于观察数据的孩子,我发现大部分的同学都选用的是第一组的数据,你们为什么都选择第一组呢? 生:第一组计算底面积方便简单。第二,第三还要求半径。师:我们在计算圆锥体的体积时,都是先求圆锥的底面积,然后再按照公式去求圆锥的体积。
《圆锥体积》教学反思 篇6
为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。
在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。
圆锥的体积教学案例及反思 篇7
教学目标:
1.使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并解决简单的实际问题。
2.在推导公式过程中,通过小组合作、动手实验的方法,培养学生分析、推理的能力及抽象概括能力。
3.在探究公式的过程中,向学生渗透“事物之间是相互联系”的,并通过活动,使学生形成良好的合作探究意识。
教学重点:掌握圆锥体积的计算公式。
教学难点:圆锥体积公式的推导过程。
一、提出问题,激发兴趣
师:揭示课题后,让学生自由地说一说用什么方法能求出圆锥的体积。
生1:变成圆柱体。
生2:变成长方体。
生3:放入水中求上涨的水的体积。
生4:把空圆锥装满水倒入量杯或量筒。
…………
师:这些方法都很好,都是把圆锥转化成我们学过的立体图形。今天,我们共同探究一种更为一般的计算圆锥体积的方法。你愿意选择哪一种立体图形来作为研究的工具?
生:圆柱体。
师:为什么呢?
生:因为它和圆锥的共同点很多,都有一个曲面,而且底面都是圆形。
生:我猜想它们的体积之间有一定的联系。
师:请各小组从实验器材(两只圆柱和两只圆锥容器)中选一只圆柱和圆锥,做实验来验证你们的猜想。
二、动手实验,合作探索
师:请小组合作,利用圆柱容器、圆锥容器、水进行实验,共同探究圆柱体积与圆锥体积之间的关系。
6个小组展开合作实验:有的拿着圆柱,有的拿着圆锥,用圆锥装水往圆柱里倒,有的用圆柱装满水再倒入圆锥,有的观察水的高度,有的记录实验数据。必须说明的是,其中三个小组使用的圆柱和圆锥分别是等底等高的,另外三个小组使用的分别是等底不等高、等高不等底、或底高均不相等的。
三、汇报交流,引出冲突
师:通过实验,你们有何发现?
组1:我们实验时,用圆锥三次装满水连续倒在圆柱里,圆柱正好装满。这说明圆锥的体积是圆柱体积的1/3。
组2:我们用圆柱装满水往圆锥里倒,等到圆锥第三次装满水,圆柱里的水也正好倒完。这说明圆柱的体积是圆锥体积的3倍。
组3:我们组实验的结果与前面两组基本一致。
组4:我们用圆锥三次装满水连续往圆柱里倒,圆柱并没有装满,所以,我们认为圆锥的体积不是圆柱体积的1/3。
组5:我们组实验时,用圆锥装满水往圆柱里倒,倒完第二次后圆柱就满了。
组6:我们还要快,圆锥第一次装满水倒入圆柱后,圆柱就满了。
师:根据这些实验组的汇报,把结论分成两大类:1、圆锥的体积是圆柱的三分之一 ;2、圆锥体积不是圆柱的的三分之一 。
师:这是怎么回事呢?同样的实验为什么会得到不同的结果呢?
学生陷入了沉思,开始对整个实验过程进行回顾。
生:是不是我们实验所用的圆柱和圆锥有什么差别呢?
“一语惊醒梦中人”,学生开始用各种方式比较各组所用的圆柱和圆锥,也有的拿起尺开始测量圆柱和圆锥的底和高……
四、柳暗花明,又一春
师:请小组相互间交流一下,找一找结论不一样的原因。
持有两种不同观点的实验小组互换实验器材,进行实验操作。
生再次汇报交流,经过辨析,得出结论:在等底等高的情况下,圆锥的体积是圆柱的1/3。如果不等底不等高,圆锥的体积有可能不是圆柱的1/3。
概括公式V锥=V柱=1/3sh
(等底等高)
五、巩固练习
(一)判断:用手势来回答
1.圆柱的体积是圆锥体积的3倍。( )
2.一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )
3.把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )
(二)思考题
你能想办法算出你手中圆锥体的体积吗?说说测量和计算的方法。
六、课堂小结:这节课你有什么收获?
板书:圆锥的体积
圆锥的体积=1/3×底面积×高
等底等高V=1/3Sh
七、反思
1.注重体验,引导发现
重视数学学习过程的体验是国家数学课程标准的一项重要指导思想。体验使学习过程不仅成为知识增长的过程,同时也是身心和人格健全、发展的过程。在圆锥体积公式的学习,关键是建构“圆锥的体积是等底等高的圆柱体积的1/3”这一概念。而这一概念的形成,靠文字解释和直观形象的观摩演示,都是苍白无力的,它需要学生发自内心、倾心投入的亲身体验。于是便有了上述实验,学生们借助不同的学具得到了不同的结果。“同样的实验为什么会得到不同的结果呢?”再次发问引发了学生对实验材料的对比与反思。结果可想而知,学生对“等底等高”这一认知重点因充分体验而获得深刻领悟。
2.精心预设、有效指导
《数学课程标准(实验稿)》明确指出:“数学教学活动必须建立在学生认知发展水平和已有的知识经验的基础上。”这就要求教师在教学方案的预设中,必须对学生的直接经验有所估计,使教学成为学生已有的知识和直接经验的逻辑归纳和引申,增加学生学习的体验性和生成性。文中先通过发散性的问题,让学生运用“转化”的数学方法自由地想出求圆锥体积的方法,再加以巧妙引导,使学生自然想到选择“圆柱”作为研究工具。由此看出,我们不但要使学生能够进行某种目的和意义的实验操作,还要使他们懂得为什么要这样操作,这样才真正体现实验操作的价值。
3.尊重选择,发展个性
【圆锥体积应用题】推荐阅读:
圆锥体积公式07-13
圆锥体积的计算07-29
圆锥的体积教学反思10-19
《圆锥的体积》说课稿11-12
圆锥的体积怎么求11-20
圆锥体的体积公式05-29
《圆锥的体积》优秀教学反思10-18
圆锥的体积导学案10-25
六年级数学下册《圆锥体积》说课稿08-30
“圆锥的体积”教学设计与评析09-10