初中数学经典命题证明

2024-12-24

初中数学经典命题证明(通用13篇)

初中数学经典命题证明 篇1

命题与证明

一、选择题

1、(2012年上海黄浦二模)下列命题中,假命题是()

A.一组邻边相等的平行四边形是菱形;

B.一组邻边相等的矩形是正方形;

C.一组对边相等且有一个角是直角的四边形是矩形;

D.一组对边平行且另一组对边不平行的四边形是梯形.答案:C2、(2012温州市泰顺九校模拟)下列命题,正确的是()

A.如果|a|=|b|,那么a=b

B.等腰梯形的对角线互相垂直

C.顺次连结四边形各边中点所得到的四边形是平行四边形

D.相等的圆周角所对的弧相等

答案:C

3(2012年中考数学新编及改编题试卷)下列语句中,属于命题的是()..

(A)作线段的垂直平分线(B)等角的补角相等吗

(C)平行四边形是轴对称图形(D)用三条线段去拼成一个三角形

答案:C4、(2012年上海市黄浦二模)下列命题中,假命题是(▲)

A.一组邻边相等的平行四边形是菱形;

B.一组邻边相等的矩形是正方形;

C.一组对边相等且有一个角是直角的四边形是矩形;

D.一组对边平行且另一组对边不平行的四边形是梯形.答案:C5、(2012年上海金山区中考模拟)在下列命题中,真命题是……………………………………………………………………………………………()

(A)两条对角线相等的四边形是矩形

(B)两条对角线互相垂直的四边形是菱形

(C)两条对角线互相平分的四边形是平行四边形

(D)两条对角线互相垂直且相等的四边形是正方形

答案:C

二、填空题

1、三、解答题

1.(2012年江苏海安县质量与反馈)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.

⑴求证:点D是AB的中点;

⑵证明DE是⊙O的切线.

答案:22.(1)略;(2)略.

2.(2012年江苏通州兴仁中学一模)如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.

E C

答案:由□ABCD得AB∥CD,∴∠CDF=∠F,∠CBF=∠C.

又∵E为BC的中点,∴△DEC≌△FEB.

∴DC=FB.

由□ABCD得AB=CD,∵DC=FB,AB=CD,∴AB=BF.

3、(盐城地区2011~2012学适应性训练)(本题满分10分)如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.(1)判断直线BP和⊙O的位置关系,并说明你的理由;

(2)当⊙O5,AC=2,BE=1时,求BP的长.(1)直线BP和⊙O相切.……1分

理由:连接BC,∵AB是⊙O直径,∴∠ACB=90°.……2分

∵PF∥AC,∴BC⊥PF, 则∠PBH+∠BPF=90°.……3分

P

∵∠BPF=∠ADC,∠ADC=∠ABC,得AB⊥BP,……4分

所以直线BP和⊙O相切.……5分

(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4.……6分

∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB∽△EBP,……8分

∴ACBC解得BP=2.即BP的长为2.……10分 BEBP

4.(盐城市第一初级中学2011~2012学年期中考试)(本题满分10分)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;

(1)求证:AP=AC;

(2)若AC=3,求PC的长.

答案(1)证明过程略;(5分)

(2)3

35(徐州市2012年模拟)(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BECF,AFDE.

求证:(1)△ABF≌△DCE;

(2)四边形ABCD是矩形. A D

B C E F

(第21题)答案:解:(1)BECF,BFBEEF,CECFEF,······························· 1分 BFCE.

四边形ABCD是平行四边形,ABDC. ······························ 2分 在△ABF和△DCE中,ABDC,BFCE,AFDE,△ABF≌△DCE. ··························· 3分

△ABF≌△DCE,(2)解法一:

BC. ······························ 4分 四边形ABCD是平行四边形,AB∥CD.

BC180.

BC90. ···························· 5分

·························· 6分 四边形ABCD是矩形.

解法二:连接AC,DB.

△ABF≌△DCE,AFBDEC.

AFCDEB. ··························· 4分 在△AFC和△DEB中,AFDE,AFCDEB,CFBE,△AFC≌△DEB.

ACDB. ······························ 5分 四边形ABCD是平行四边形,·························· 6分 四边形ABCD是矩形.

6.(盐城地区2011~2012学适应性训练)(本题满分12分)如图,△AEF中,∠

EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

(1)求证:四边形ABCD是正方形;

(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM2,求AG、MN的长.

AHBENFDC(1)由∠BAD=∠ABC=∠ADC=90°,得矩形ABCD,……2分

由AB=AD,得四边形ABCD是正方形.……3分

222(2)MN=ND+DH.……4分

理由:连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°, ∴∠NDH=90°,……6分

再证△AMN≌△AHN,得MN=NH,……7分

222∴MN=ND+DH.……8分

(3)设AG=x,则EC=x-4,CF=x-6,22由Rt△ECF,得(x-4)+(x-6)=100,x1=12,x2=-2(舍去)∴AG=12.……10分

由AG=AB=AD=12,得BD=122,∴MD=92,222设NH=y,由Rt△NHD,得y=(92-y)2),y=52,即MN=52.……12分

7.(盐城地区2011~2012学适应性训练)(本题满分8分)如图,已知E、F分别是□

ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;

(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

AFD

BEC

证:(1)由□ABCD,得AD=BC,AD∥BC.……2分

由BE=DF,得AF=CE, ∴AF=CE,AF∥CE.……3分

∴四边形AECF是平行四边形;

(2)由菱形AECF,得AE=EC,∴∠EAC=∠ACE.由∠BAC=90°,得∠BAE=∠B,∴AE=EB.∴BE=AE=EC,BE=5.……4分 ……5分 ……7分 ……8分

初中数学经典命题证明 篇2

在长期应试教育的环境下, 初中数学命题的教学受到了很大程度的压制, 导致新课标出台后数学教学依旧需要很长的改革缓冲阶段.客观来说, 我国目前初中数学命题教学的现状还存在着不少问题, 主要有:

1.在数学命题的选择中, 教师通常将命题考试与教学分开来看, 导致考试偏离了数学命题教学.

2.数学命题不注重学生的已有经验, 偏离学生的生活常识或学科联系, 从而背离数学命题目的.

3.命题者只注重在教学中是否能讲解难题、典型题, 却不注重学生基础能力的考查, 而正是这些难题和典型题使学生在命题理解和分析中失去信心, 从而对数学学习产生畏难情绪.

4.命题者在学生阶段性的考查中往往忽略了学生已有的水平, 过于心急, 致力于快速拔高学生的数学思维和能力, 导致学生在中考备考环境下产生疲劳综合征.

5.数学命题教学随意性比较大, 忽视了数学命题教学的系统性和科学性, 导致命题教学没有梯度或梯度过大, 且存在知识点重复等问题.

二、初中数学命题教学的原则

基于数学命题的相关特征以及上述数学命题教学现状, 笔者认为在数学命题教学中应当有以下几个原则.

1.数学命题教学需要以学生为中心

新课标提出学生和教师的关系是新型的教学合作关系, 学生是学习活动的主体, 教师为指导, 积极引导学生对相关数学命题进行分析、推理和讨论, 鼓励学生用自主、合作、探究的新型学习方式进行数学学习, 同时, 教师要对数学命题教学进行适当的改进, 从而降低纯理论知识的教学, 培养学生推理探究的数学思维和解决实际问题的能力.

2.数学命题教学需要尊重并促进知识的建构

命题强调了各知识点之间的联系, 所以学生是否能够很好地进行知识的迁移取决于原有的认知结构与新知识之间的建构能否容易进行, 因此教师在审视初中数学命题教学时需要重视知识的再建构.例如, 在学习初中数学内容正余弦的定义时, 教师需要在学生原有的直角三角形有关基础上进行建构.因此, 数学命题不仅要突出新知识的重点, 还要重视新旧知识之间的联系, 积极引导学生的认知冲突, 从而进行图式的顺应.

3.数学命题教学需要创设相应的学习情境

数学命题教学的关键在于能够快速适当地引入命题, 这也是影响数学课堂成为高效课堂的重要因素之一.因此, 在讲解新命题之前, 教师应当采取一些必要的手段来激发学生对新命题的兴趣, 最有效的方法便是教师根据数学课标的教学内容投入一定的情感, 并且对命题内容进行适当地挖掘以及问题设置.

4.数学命题教学的展示可以借助于多媒体等多种教学手段

多媒体教学手段的优势在于多媒体能够集中展示图片、文字以及动画, 这样就会使书写命题形象化、具体化.而且改变了数学课本上原有命题静止教学的不足, 从而生动形象地向学生传达数学命题所负载的信息, 帮助学生更容易地分析推理数学命题与其他命题之间的关系以及推广数学命题的实际运用.

三、数学命题教学的设计

根据以上数学命题教学的原则, 笔者试图对初中数学命题教学进行设计.

第一, 初中数学命题教学设计.在数学命题教学过程中, 对数学命题教学的思考应当包括四个方面: (1) 例子的选取.在数学命题导入时, 教师应当选取符合所要讲解的数学命题的条件, 相关背景材料要求简练、有效、有趣味性, 从而降低学生在理解命题中的干扰以及增加这一过程中的趣味性, 与现实生活相关. (2) 情境的创设.在讲解图形、线段、角度等内容时, 可以借助于尺规等工具做一些基本图形, 甚至可以借助于实物模型、教具等各种比较形象化的手段. (3) 提问的安排.教师在展示数学命题时, 应当赋予命题适当的问题和空白, 从而引导学生对其进行思考、分析、推理和验证.要重视提问的深度, 尽可能避免简单的是非式或填空式的提问. (4) 多媒体教学的设计.教师在讲解数学命题时可以利用多媒体课件的辅助功能.借助于多媒体形象化的图像和鲜艳的色彩, 常能事半功倍.

第二, 数学命题应用的设计.数学命题的教学离不开命题的推广应用, 只有在应用中才能反馈学生的接受程度.因此, 在数学命题应用设计方面, 需要思考以下两个方面:

(1) 命题相关例题的设计.例题的作用在于巩固和运用所学的数学命题.因此, 在命题应用设计中, 应当注意命题条件的验证, 命题的合理应用.

概率方法在证明数学命题中的应用 篇3

[关键词] 概率方法 数学证明 随机模型 中心极限定理 Jessen不等式

[Abstract] Applications of probability methods have become a very novel direction of probability theory.This paper proves several mathematical propositions of other mathematics fields based on probability method,such as combinatorial identity, algebraic identical equation, integral inequality and so on.

[Key words] probability method mathematical proof random model central limit theorem Jessen inequality

20世纪以来,起源于机会游戏的概率论飞速发展,已经发展成为一门理论严谨的数学科学。其内容丰富,结论深刻,趣味性浓厚,有自己独特的思想和方法。并且概率论的应用很广泛,其中运用概率论的思想方法来解决其它数学领域中的问题已经成为概率论的一个很新颖的方向。

下文将利用概率方法证明其它数学领域中的一些数学命题.例如利用概率方法证明代数恒等式、组合恒等式和积分不等式等.利用概率方法的关键,是根据不同的数学问题,巧妙建立随机模型,然后利用概率论中的相关知识来解决该数学问题。

1 利用概率方法证明一些组合恒等式

例1 求证:

证明 建立随机模型:设且相互独立,记,则有

另一方面:可以认为是重贝努里试验中前次试验中成功的次数,是第次到次试验中成功的次数,为从第次到次试验中成功的次数,所以

所以

2 利用概率方法证明一些代数恒等式

例2 求证:

证明 建立随机模型:假设口袋中袋有个球,其中个为白球,从中每次取出一球,不放回。

令=“迟早取来到白球”,则有。

令=“前次取球,只有第次取出的球为白球”,,则有

所以

3 利用概率方法求级数的和

例3 求证:

证明 建立随机模型:设为独立同分布随机变量,且,即.

根据泊松分布的可加性,所以,则

而.

由中心极限定理,得

例4 求证:

证明 建立随机模型:令是只有两个基本事件与的随机试验,试验独立重复进行可列无限多次,在第次试验中,出现的概率为,不出现的概率为.

设 “首次出现在第次试验中”,则

=“在所有试验中都没发生”.

故 .

4 利用概率方法证明积分不等式

例5 设在上可积,且有界,,是上的凹函数,

证明:

证明 建立随机模型:设连续性随机变量的密度函数为

显然满足,且非负.

又设,所以

因为在上是凹函数,由Jessen不等式得,,

5 利用概率方法证明数学中的一些重要定理

例6 设,则

证明: 建立随机模型:设随机变量的分布列为

由Jessen不等式得

则 ,即

6 利用概率方法证明积分的极限

例7 设

证明:

证明: 建立随机模型:设随机变量在上服从均匀分布,且相互独立,则有

由于独立同分布,所以也独立同分布.

由辛钦大数定律,得

由于

所以

参考文献:

[1]茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004,7.

初中数学经典命题证明 篇4

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

1极限的四则运算法则

2极限的脱帽定理

3无穷小的定阶定理

4函数连续性定理的证明

5函数奇偶性与周期性的证明

6费马定理、柯西定理及牛顿莱布尼茨定理的证明

7洛必达法则证明

8函数凹凸性判定法则的证明

9不等式的证明与方程根的证明

10含有一个中值或者两个中值的证明

11关于定积分等式与不等式的证明

12定积分重要性质与结论的证明

13曲线积分与路径无关性的证明(数学一)

14格林公式与高斯定理的证明(数学一)

15证明常数项级数的收敛性

16矩阵秩的相关证明

17证明向量小组线性无关

18证明方程组的基础解系及性质

19证明两个矩阵相似与合同的方法

中公考研,让考研变得简单!

查看更多考研数学辅导资料

点这里,看更多数学资料

20证明矩阵是正定矩阵的方法

21证明函数为随机变量的分布函数的方法

22证明两个随机变量相互独立与不相关

23证明一个统计量服从卡方分布、t分布及F分布

24证明一个估计量为无偏估计!

在紧张的复习中,中公考研提醒您一定要充分利用备考资料和真题,并且持之以恒,最后一定可以赢得胜利。更多考研数学复习资料欢迎关注中公考研网。

中公考研,让考研变得简单!

初中数学经典命题证明 篇5

1、指出下列命题的题设和结论:

(1)如果两个数互为相反数,这两个数的商为-1;

(2)两直线平行,同旁内角互补;

(3)同旁内角互补,两直线平行;

(4)等式两边乘同一个数,结果仍是等式;

(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°

2、把下列命题改写成“如果……那么……”的形式:

(1)互补的两个角不可能都是锐角:。

(2)垂直于同一条直线的两条直线平行:。

(3)对顶角相等:。

3、判断下列命题是否正确:

(1)同位角相等

(2)如果两个角是邻补角,这两个角互补;

(3)如果两个角互补,这两个角是邻补角.五、自我检测:

1、判断下列语句是不是命题

(1)延长线段AB()

(2)两条直线相交,只有一交点()

(3)画线段AB的中点()

(4)若|x|=2,则x=2()

(5)角平分线是一条射线()

2、选择题

(1)下列语句不是命题的是()

A、两点之间,线段最短B、不平行的两条直线有一个交点

C、x与y的和等于0吗?D、对顶角不相等。

(2)下列命题中真命题是()

A、两个锐角之和为钝角B、两个锐角之和为锐角

C、钝角大于它的补角D、锐角小于它的余角

(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有()

A、1个B、2个C、3个D、4个

3、分别指出下列各命题的题设和结论。

(1)如果a∥b,b∥c,那么a∥c

(2)同旁内角互补,两直线平行。

4、分别把下列命题写成“如果……,那么……”的形式。

(1)两点确定一条直线;

(2)等角的补角相等;

初中数学命题方法技巧 篇6

根据数学教学大纲的要求,越来越多的数学应用题都从我们的日常生产、生活角度出发. 因此,初中数学的应用题的题型,基本上都是在对生活中实际的问题进行加工,其中省略那些复杂的内容,进而编写成的. 所以,初中学生在解答数学应用题的时候,首要问题就要了解这题目的背景条件,这就要求学生在课余时间要多多的了解国家的大事小情,关心本地的大事要事. 这样,在遇见以此为背景的应用题,其内容就很容易被理解,学生也很快的适应此题目,同时,也就避免了抵触心理的产生.

此外,数学应用题本身就具有说明文的性质,字数较多,信息量也比较大,这就需要学生在作答时要多多的审题,在审题中了解这题目的大致意思,抓主干,以便解答题目.

归纳数学应用题类型的分类

初中数学应用题不仅是对学生数学解答技巧的考核,更重要的是对学生分析和理解文字内涵的考核. 数学题中的文字就是解题的关键,但总的来说,数学应用题的类型无非就是那几类,比如,行程问题(匀速运动)、相遇问题(同时出发)、追及问题(同时出发)、水中航行、工程问题、配料问题以及增长率的问题,等等. 初中生在作答应用题时,首先要看清属于哪类问题,然后脑子里形成解答此类问题所需要的内容条件是什么,带着这样的问题进行解答,可以很快的完成这道应用题.

初中数学证明题解题方法探讨 篇7

关键词:初中数学,证明题,解题方法

一、证明题解题中“读题”的处理方法

“读题”是解证明题的第一个步骤, 它非常重要, 决定着解题“分析”的思路方向, 如果方向不明确, 或是方向错误, 就会严重降低解题的速度, 甚至得出错误的解题结果。“读题”之所以打引号, 是因为它不只是“阅读问题”这么简单, 在“读题”过程当中除了要弄清楚到底需要证明什么之外, 还应当抓准问题中所有可用的信息, 因为这些信息一般都是解题的关键[1]。

第一, 细心“读题”。在“读题”过程当中, 首先要做到细心, 不能被题目当中的陷阱迷惑, 更不要“犯经验主义”, 因为有的学生在“读题”的时候, 或觉得和曾经做过的练习题一样, 于是就直接开始写证明过程, 岂知自己连问题都没有真正弄清楚, 这是非常低级的错误。所以“读题”必须要细心、严谨, 要从头读到尾, 弄清楚到底要证明什么, 又有哪些条件和信息是可以使用的。

第二, “读题”时要记。这里的“记”包含两个方面的含义, 一个是标记, 另一个是记忆。例如:在几何证明题当中, “读题”时所获得一切条件、信息都应当在图中标记出来, 比如:读题的过程当中, 给出了直接的条件对边相等, 就可以在图中用边相等的符号将其标记出来, 这在解题“分析”过程当中非常有用, 可以直接通过看图来获得信息, 而不需要再次“读题”, 降低解题速度;同时, 还要将一些不能在图中标记出来的信息记录在大脑中, 加强记忆, 以提高解题速度。

第三, “读题”时注意引申。很多证明题解题所需的关键条件都不是直接给出的, 而是以一种更加隐晦的方式存在于问题中, 所以在“读题”的时候必须要对已知的条件进行引申, 从而获得关键的解题条件、基础信息。例如:在下面这个题当中, 平行四边形ABCD中 (图1) , 以CA为斜边作直角三角形ACE, 连结BE和DE, 若∠BED=90°, 求证:四边形ABCD都是矩形。根据四边形ABCD是平行四边形进行引申, 可得到隐含条件O是线段AC和BD的中点, 而线段AC和BD分别是直角三角形AEC和直角三角形BDE的斜边, 连结OE, 线段OE是直角三角形AEC和直角三角形BDE的斜边上的中线, 利用直角三角形斜边上的中线等于斜边的一半即可完成求证解题。

二、证明题解题中“分析”的处理方法

“分析”是证明题解题的核心步骤, 它和最终的解题结果正确与否直接相关。在实际的证明题“分析”过程当中, 应当掌握3种不同的思维方法。

第一, 正向思维。这是一种较为常规的思维方式, 即根据已知的条件, 逐步推论, 最终得出结果。

第二, 逆向思维。逆向思维是一种和正向思维完全相反的思维方式, 它不是根据已知的条件进行逐步推论, 而是从结论往源头进行反方向思考与分析, 看要证明结论需要哪些条件, 这些条件又要怎么获得, 然后逐步解决这些问题, 获得条件, 直到得出最后的证明结果。例如:有证明题需要证明三角形全等, 利用逆向思维就是先思考一个全等三角形具有哪些必须要的条件, 然后再看已知条件中还缺少什么条件才能证明三角形全等, 这些缺少的条件又需要怎么获得, 是否需要做辅助线……一直这样逆流而上的进行思考、分析, 就能够找到解决问题的途径, 从而证明三角形全等[2]。

第三, 正逆结合思维。正逆结合思维是一种将正向思维和逆向思维结合起来的思维方法, 在实际的解题过程当中, 可以将已知条件与需要证明的结论结合起来进行分析, 找出要证明结论所缺失的一环, 然后再想办法得出这一环, 从而得到最终的证明结果, 在现实的证明题解题中, 正逆结合思维往往是运用得最多得一种思维, 所以学生必须要掌握这种思维方法。

三、证明题解题中“书写”的处理方法

“书写”是证明题解题的最后一个环节, 它对数学符号与数学语言的应用要求较高, 任何的“因为、所以”在书写时都要符合公理、定理、推论或与已知条件相吻合。所有的表述都要有根有据, 已知条件要表达清楚, 未知条件要写清楚求得过程, 不能无中生有。证明过程书写完后, 对证明过程的每一步进行检查是非常重要的, 这是防止证明过程出现遗漏的关键。

总之, 在初中证明题的解题过程当中, 掌握正确的解题方法非常重要, 教师不仅要重视对学生基础知识的教学, 更要重视对学生证明题解题方法的传授, 这样才能让学生快速、正确的完成解题。

参考文献

[1]张绿平.分析初中数学证明题的解题策略[J].数理化解题研究 (初中版) , 2014, 11:16.

初中数学经典命题证明 篇8

姓名:

学号:

四川省成都市大邑县韩场镇学校:龚永彬

1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.

2、如图,已知: AD是BC上的中线 ,且DF=DE.

求证:BE∥CF.

3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF.

4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。求证:AD⊥BC,BEAGFDCABDCE5、如图,已知AB=DE,BC=EF,AF=DC。求证:∠EFD=∠BCA

AD CF

B

6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。

A(1)∠DBH=∠DAC;

(2)ΔBDH≌ΔADC。

E H

BDC7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.

ADM

PN

C

B

11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.

F

A E

D、BC

12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.A

D

FC B

E

13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,ADE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF;

F请你判断BE+CF与EF的大小关系,并说明理由。E

BCD

14、如图①,E、F分别为线段AC上的两个动点,且G DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

i.求证:MB=MD,ME=MF

ii.当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

15、如图(1),(1)已知△ABC中, ∠BAC=90, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD

几何证明方法(初中数学) 篇9

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一)

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

*8.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.垂径定理

二、证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.相似三角形的对应角相等。

7.圆的内接四边形的外角等于内对角。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角(直角三角形

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。垂径定理

*11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形 梯形的中位线平行于第三边,底边。

6.平行于同一直线的两直线平行。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

一个图,你看着哪好像差根线,你就用铅笔描一下,分析一下有了这根线哪线角相等,哪相角互补之类的.不可以只盯着原图看.另外,看已知条件里,把它们标注在图里,看人家给这个条件,你可以知道什么,这个条件有什么用,可以由此推出什么.从求证出发你就要想,这道题要求证这个,就要有.....这些条件,再看已知,有了这些条件了,噢,还差这个条件。然后就找条件来证明这个还差的条件,然后全部都搭配齐全了,就证出了题目了记住,做题要倒推走把已知的条件从笔在图上表示出来,方便分析而且你要牢牢记住一些定理,还有一些特殊角,特殊形状等等他们的关系当一些题实在证不出来时,你要注意了,可能要添辅助线,比如刚才我说的还差什么条件,你就可以画一个线段,平行线什么的来补充条件,你下子你就一目了然了,不过有些很难的看出的辅助线就要靠你的做题的作战经验了,你还要认真做题。把这些牢牢记住,在记住老师教你们的公里定理些,你就已经成功大半了。

初中数学证明题能力训练 篇10

一、证明题:

1、在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED并延长分别交AD、AB于F、G

(1)求证:EF=EG;

EFD的度数.

2、已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;

(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEM 是什么特殊四边形?并证明你的结论.

D

B3、已知:如图,△ABC为等腰直角三角形,且∠ACB=90°,若点D是△ABC内一点,且∠CAD=∠CBD=15°,则:(1)若E为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;(2)当BD=2时,求AC的长.B4、在正方形ABCD中,点E、F分别在BC、CD上,且∠BAE=30º,∠DAF=15 º.(1)求证: EF=BE+DF;(2)若AB=3,求△AEF的面积。

F5、已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连结DF、CF分别交AB于G、H点(1)求证:FG=FH

(2)若∠E=60°,且AE=8时,求梯形AECD的面积。

D

B C6、如图,在直角梯形ABCD中,AD//BC,ABC90,BDDC,E为CD的中点,AE交BC的延长线于F.(1)证明:EFEA

(2)过D作DGBC于G,连接EG,试证明:EGAF

F

F7、如图,已知在正方形ABCD中,AB=2,P是边BC上的任意一点,E是边BC延长线上一点,E是边BC延长线上一点,连接AP,过点P作PF垂直于AP,与角DCE的平分线CF相交于点F,连接AF,于边CD相交于点G,连接PG。(1)求证:AP=FP

(2)当BP取何值时,PG//CF8、已知:如图,在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE的中点.(1)求证:BF⊥DF;

(2)若矩形ABCD的面积为48,且AB:AD=4:3,求DF的长.

9、在正方形ABCD中,点E、F分别在BC、CD上,且∠BAE=30,∠DAF=15

.(1)求证:EF=BE+DF;

(2)若AEF的面积.

A

D

F

E

B

C

24题图

A

DF

B

EC10、如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G. 求AG的长

E

B

H C F11、如图,四边形ABCD为一梯形纸片,AB∥CD,ADBC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CEAB.(1)求证:EF∥BD;

C(2)若AB7,CD3,求线段EF的长. D

F

A12、如图,在梯形ABCD中,AD∥BC,CA平分∠BCD,DE∥AC,交BC的延长线于点E,∠B2∠E.(1)求证:ABDC; D A(2)若tgB

2,ABBC的长.

B13、已知:如图,且BBE平分ABC,△ABC中,CDAB于D,EACABC45°,于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BFAC;(2)求证:CE

BF;

2A

(3)CE与BG的大小关系如何?试证明你的结论.

B

D

F

G H

E

C14、如图1.1-12,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tanADC2.(1)求证:DC=BC;

(2)若E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,当BE∶CE=1∶2,∠BEC=1350时,求sinBFE的值.

15、已知,如图,正方形ABCD,菱形EFGP,点E、F、G分别在AB、AD、CD上,延长DC,PHDC于H。(1)求证:GH=AE

E A B

4(2)若菱形EFGP的周长为20cm,cosAFE,FD2,求PGC的面积

P

F D

G

C H16、已知:如图 2-4-10所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.

17、如图,四边形ABCD是边长为4的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F.(1)求证:AE=EF;(2)求△AEF的面积。

18、.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.A(1)求证:△ADF∽△DEC

初中数学几何证明中考知识点真题 篇11

CG

2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.

其中正确的结论个数为()

A.4 B. 3

考点: 四边形综合题..分析: ①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;

②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积; ③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF; ④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;

⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°. 解答: 解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;

②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴GM=CG,CM=

CG,∴S四边形CMGN=2S△CMG=2××CG×CG=

CG2,故本选项错误;

③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,C.∴ 2 FP:BE=FP:

=1:D6.,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;

④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;

⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;

综上所述,正确的结论有①③⑤,共3个,故选B.

初中数学经典命题证明 篇12

初中几何证明题不但是学习的重点。而且是学习的难点,很多同学对几何证明题。不知从何着手,一部分学生虽然知道答案,但叙述不清楚,说不出理由,对逻辑推理的证明过程几乎不会写,这样,导致大部分的学生失去了几何学习的信心,虽然新的课程理念要求,推理的过程不能过繁。一切从简,但证明的过程要求做到事实准确、道理严密,证明过程方能完整,教学中怎样才能把几何证明题的求解过程叙述清楚呢?根据教学经验,我在教学中是这样做的,希望与大家一起探讨。

(1)“读”——读题

如何指导学生读题?仁者见仁、智者见智,我们课题组结合我们的研究和本校学生的实际,将读题分为三步:第一步,粗读(类似语文阅读的浏览)。快速地将题目从头到尾浏览一遍,大致了解题目的意思和要求;第二步,细读。在大致了解题目的意思和要求的情况下,再认真地有针对性地读题,弄清题目的题设和结论,搞清已知是什么、需要证明的是什么?并尽可能地将已知条件在图形中用符号简明扼要地表示出来(如哪两个角相等,哪两条线段相等,垂直关系,等等),若题中给出的条件不明显的(即有隐含条件的),还要指导学生如何去挖掘它们、发现它们;第三步,记忆复述。在前面粗读和细读的基础上,先将已知条件和要证明的结论在心里默记一遍,再结合图形中自己所标的符号将原题的意思复述出来。到此读题这一环节,才算完成。

对于读题这一环节,我们之所以要求这么复杂,是因为在实际证题的过程中,学生找不到证明的思路或方法,很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件,而将已知记在心里并能复述出来就可以很好地避免这些情况的发生。

(2)“析”——分析

指导学生用数学方法中的“分析法”,执果索因,一步一步探究证明的思路和方法。教师用启发性的语言或提问指导学生,学生在教师的指导下经过一系列的质疑、判断、比较、选择,以及相应的分析、综合、概括等认识活动,思考、探究,小组内讨论、交流、发现解决问题的思路和方法。

(3)“述”——口述

学生学习小组推选小组代表,由小组代表分析自己那一组探究到的证明的思路和方法,口述证明过程及每一步的依据。我们知道学习语文、外语及其他语言都是从“说”开始学起的,那么学习几何语言,也可以尝试先“说”后写。特别是初一初二的学生,让他们先在小组内自主探索、讨论交流,弄清证题思路,然后再让学生代表口述证题过程,这对于训练学生应用和提高几何语言的表达能力很有好处。

(4)“择”——选择最简易的方法

在各位学生代表口述完解题过程后,教师引导学生比较、选择最简单的一种证题方法,这样做,不仅能帮助学生进一步理清证明思路、记忆相关的几何定理、性质,而且还增加了学生学习的兴趣和好奇心,从而激发学生学习的积极性和主动性。

(5)“演”——板演

在学生集体复述解题的基础上,教师板演上述解题过程,给学生作证题的书写示范,让学生体会怎样合理、规范、科学地书写证明过程。

(6)“练”——变式练习

变式,既是一种重要的思想方法,又是一种行之有效的教学方法。通过变式训练,在课堂上展现知识发生、发展、形成的完整认知过程。在教学实践中,笔者深深体会到:变式教学符合学生是认知规律,能有层次地推进,为学生提供一个求异、思变的空间,让学生把学到的概念、公式、定理、法则灵活应用道各种情景中去,培养学生灵活多变的思维品质,提高学生研究、探索问题的能力,提高数学素养,从而有效地提高数学教学效果。

因此,在学生获得某种基本的证法后,教师可以通过变式,改变问题中的条件,转换探求的结论,变化问题的形式或图形的形状位置等多种途径,指导学生从不同的方向、不同的角度、不同的层次去思考问题。

命题与证明平行四边形 教案 篇13

1、定义(一般地,能清楚地规定某一名称或术语意义的句子叫做该名称或术语的定义)

2、命题(一般地,判断一件事情的句子叫做命题)命题是一个“判断句”,判断“是”或“非”.其中正确的命题叫做真命题,错误的命题叫做假命题,如“对顶角相等”是真命题,“相等的角是对顶角”是假命题.注意:(1)命题是语句,而且必须是能判断正确和错误的句子.(2)错误的命题也是命题.

过直线外一点做一条直线与已知直线垂直。

过直线外一点做一条直线,要么与已知直线相交,要么与已知直线平行。

3、每个命题是由条件(题设)和结论(题断)两部分组成.条件是已知事项,结论是由已知事项推出的事项,命题常写成“如果……那么……”的形式.一般形式是“如果p,那么q”,其中用“如果”开始的部分是条件,用“那么”开始的部分是结论.(判断清楚哪些是条件,哪些是结论)

写成“如果,那么”的形式

①在同一个三角形中 等角对等边

②角平分线上的点到角两边的距离相等

③同角的余角相等

3、公理、定理、推论

人们在长期实践中检验所得的真命题,并作为判断其他命题真假的依据,这样的真命题叫做公理.如“过两点有且只有一条直线”;“两点之间,线段最短”等等.有些命题的正确性是通过推理证实的,并被选定作为判定其它命题真假的依据,这样的真命题叫定理.由公理、定理直接得出的真命题叫做推论. 如 三角形内角和定理三角形的内角和等于180°.

推论1 直角三角形的两锐角互余.

推论2 三角形的一个外角等于与它不相邻的两个内角的和.

推论3 三角形的一个外角大于与它不相邻的任何一个内角.

4、证明真命题的方法

根据题设、定义、公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫证明.证明一个真命题一般按以下步骤进行:

(1)审题,分清命题的条件与结论.(2)画图,依题意画出图形,画图时应做到图形正确且具有一般性,切忌将图形特殊化.(3)写“已知”“求证”,按照图形,分析、探求解题思路,然后写出证明过程,证明的每一步都要做到叙述清楚,而且要有理有据.5、证明假命题的方法

证明一个命题是假命题,只需举一个“反例”即可,也就是举出一个符合命题的条件而不符合结论的例子.用反证证明下列命题是假命题

有一条边、两个角相等的两个三角形全等

任何三条线段都能组成三角形

6、重难点及归纳

①命题的理解:本节的一个难点是找出一个命题的题设和结论,它是后面证明中,书写已知求证的基础,对那些条件结论不明显的命题.应在学习中多练,必要时结合图形来区分.例如命题“如果两条直线和

第三条直线平行,那么这两条直线也互相平行”,其中“两条直线和第三条直线平行”是条件,“这两条直线也平行”是结论.再如命题,“对顶角相等”,它的条件和结论不明显,应将它改成“如果两个角为对顶角,那么这两个角相等”,再指出条件和结论.

②定义、命题、公理和定理之间的联系与区别

这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,只不过公理是最原始的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其他命题真假的依据.

③证明真命题的方法和步骤,难点是分析证明思路,有条理地写出推理过程.

④三角形内角和定理的三个推论常用来求角的大小和进行角的比较.

7、证明的思路: ①从已知出发,推出可能的结果,并与要证明的结论比较,直至推出最后的结果。②从

要证明的结论出发,探索要使结论成立,需要什么条件,并与已知条件对照,直到找到所需要的并且是已知的条件。

探索证明:在三角形的内角中,至少有一个角大于或等于60度

9、用反证法(证明的思路如何,苦李子的故事)

用反证法证明命题,一般有三个步骤:

反设 假设命题的结论不成立(即假设命题结论的反面成立)

归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾,或者与假设所推出的任何一个已知相矛盾)结论 从而得出命题结论正确。

例如用反证法证明:

在同一个平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

在三角形的内角中,至少有一个角大于或等于60度

例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行

已知:如图∠1=∠2A1B

求证:AB∥CD

证明:设AB与CD不平行C2D

那么它们必相交,设交点为MD

这时,∠1是△GHM的外角A

1∴∠1>∠2G这与已知条件相矛盾

2∴AB与CD不平行的假设不能成立H

∴AB∥CDC

例2.求证两条直线相交只有一个交点

证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。

(从以上两例看出,证明中的三个步骤,最关键的是第二步——推出矛盾。但有的题目,第一步“反设”也要认真对待)。

例3.已知:m2是3的倍数,求证:m 也是3的倍数

例4.求证:2不是有理数

《平行四边形》

1、四边形的定义

2、定理:四边形的内角和等于360度

推论:四边形的外角和等于360度

N边形的内角和外角和(为什么)

正五边形能镶嵌平面吗(为什么)

单独和镶嵌平面的正多边形有哪几种?为什么只有这几种?

(2011浙江省,8,3分)如图,在五边形ABCDE中,∠BAE=120°, ∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()(如何作辅助线,培养感觉)

A.100°B.110°C.120°D.130°

3、平行四边形的定义性质

定理:平行四边形的对角相等

定理1:平行四边形的两组对边分别相等。

推论1:夹在两条平行线间的平行线段相等。

推论1:夹在两条平行线间的垂线段相等。

定理2:平行四边形的对角线互相平分。

4、中心对称图形定义 对称中心

性质:对称中心平分两个对称点的线段。(在平面直角坐标系中,点(x,y)关于原点对称的点的坐标是多少?为什么?)

5、平行四边形的判定

①定义②定理1:一组对边平行且相等的四边形是平行四边形③定理2:两组对边分别相等的四边形是平行四边形④定理3:对角线互相平分的四边形是平行四边形

6、三角形的中位线定理(如何证明?)

7、逆命题与逆定理

两个命题,如果第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。每个命题都有逆命题。每个定理都有逆命题。如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理。

因此,每个命题有逆命题;每个定理有逆命题,但不一定有逆定理。

1.(2011浙江金华,15,4分)如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是

.3.(2011四川成都,20,10分)如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.5CD

1(1)若BK=2KC,求AB的值;(2)连接BE,若BE平分∠ABC,则当AE=2AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=nAD(n2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.

6、如图,已知△ABC中,ABC45,F是高AD和BE的交点,CD4,则线段DF的长度为().A

.B. 4C

.D

上一篇:解决问题的策略小学三年级数学说课稿下一篇:各乡镇街道通知