比较图形的面积优秀教学反思

2024-07-10

比较图形的面积优秀教学反思(精选8篇)

比较图形的面积优秀教学反思 篇1

这节课是北师版数学五年级上册第四单元第一课。本节课的教材内容,是以方格纸做背景,呈现出l0个不同的平面图形,观察并比较各图形的面积有什么关系。借助于三个问题:1、找出两个面积相等的图形。2、发现两个图形的面积之和等于第三个图形的面积。3、利用出入相补的原理,采用割补法,比较图形的面积。通过观察比较交流归纳等活动,知道比较图形面积大小方法的多样性,体验图形变化与面积大小变化的关系。为后面探索平行四边形的面积,三角形的面积、梯形的面积做好铺垫。

在备课的时候,为了给孩子更大的学习空间。在设计问题的时候,并没有按照上面的三个问题,一个一个的问。而是把主题图,抛出之后提出问题。“观察这些图形的面积,你有什么发现?用附页2的图形试一试。在学生观察,操作之后,进行交流。老师根据孩子的情况进行归类。把两个面积相等的图形板书在一起。把两个图形的面积相加等于第三个图形的面积这一类的板书在一起,并请同学交流用的是什么样的方法。尽而总结数方格,重叠,割补,拼的方法。最担心的就是图四。没有找到面积和它相等的图形。还有图三加图四的面积等于图八的面积。估计同学们发现不了。这样的话,教师可以引导同学们去观察图四。进一步去发现。

在上课时,像预设得那样,同学们基本上都能找到图一与图三的面积相等,图二图五图六的面积相等,图八图九图什的面积相等。还能发现,图五图六任意两个的面积之和等于图八图九或者图十。对于图四,同学们,没有提及到。

这时候老师提出来,请同学们观察图四看看你有没有什么新发现?有的同学发现图四可以经过割补转化成一个正方形。有的`同学发现,图四经过割补可以转化成一个长方形。在这儿引起了小小的争议,经过同学们分析,发现图四可以转化成长是三格,宽是2.5格的长方形。我们可以数出它的面积。六个整格儿加3个半格是7.5格。那么我用数方格的方法得到图形的面积。其他的图形能不能也用数方格的到她的面积呢?同学们,有介绍了数方格的方法,先数整格儿,再拼剩下的不到满格的格。这时候得到图形一图形三的面积都是4.5格,这时候老师又问你们现在又发现了什么?同学们,观察了半天,仍然没有发现。老师又进一步引导,把板书上的图形三图形四个面积和图形八的面积格数圈起来。这时候有个别的同学发现4.5+7.5=12。图形三的面积加图形四的面积等于图形八的面积。真的是有点儿费尽了力终于达到了预设中的答案。因此也浪费了时间。没有完成课后的习题。

回过头来再想想这节课,为了验证图形三图形四的面积之和等于图形八的面积。费了相当长的时间。有这个必要吗?再看看书上呈现的三个问题。也没有提及图形四。但是在教参上提及到。图三的面加图四的面积等于图八的面积。对于孩子的实际情况来说啊,这个很难发现。这两天一直在反复的琢磨这个问题。

再看这节课的教学目标:借助于方格纸能直接判断图形面积的大小,初步体验数方格,及割补法在图形面积探索中的应用,积累探索图形面积的活动经验。通过观察比较交流归纳等活动,知道比较图形面积大小方法的多样性。体验图形形状变化与面积大小变化的关系发展空间观念。根据孩子的实际情况,孩子在发现了图一与图三的面积相等,图二图五图六的面积相等,图八图九图什的面积相等。还能发现,图五图六任意两个的面积之和等于图八图九或者图十的面积,之后能发现没有与图形四面积相等的图形,或者图四能转化成一个长方形,数方格数出它的面积是7.5就可以了。

心头的疑惑算是解开了。教材是教师教学和学生学习的第一手材料。教参为老师上课提供了参考,真正的课堂还是从学生的实际情况出发,合理的利用好教材教参帮助学生学习。在课堂教学中。根据孩子的课堂实际情况处理好预设的内容,有效,高效的学习。

比较图形的面积优秀教学反思 篇2

1.让学生剪出四个相同的直角三角形。

让学生试一试拿两个直角三角形,可以拼成什么图形? (学生拼成了长方形、平行四边形、三角形。)

2.拿四个同样的直角三角形,可拼出哪些图形?

小组合作,比一比哪一组拼的图形多,把拼成的图形逐一展示。

师:现在,请从整体上来看,以上几个图形之间有什么内在联系?

学生讨论后得出:这几个图形的形状不同,但这些图形通过旋转、平移等方法可以互相转化。 (多媒体动态演示转化过程)

让学生动手做一做,把图 (1) 转化成图 (2) ,图 (4) 转化成图 (5) ……

师:在转化的过程中大家有什么发现?

生:无论图形怎样变化,它们的面积大小是不变的。

师:对!一个图形,可以用折、割、移、补等方法改变它的形状,但它的面积大小是不变的。根据这个原理,我们来计算下面这个图形的面积。

片段二:计算面积

计算左图的面积 (单位:厘米) 。

学生拿出准备好的平行四边形纸片操作探究,然后学生口述,教师操作电脑逐一演示。

生A:分割成四个直角三角形,先求一个直角三角形的面积,再求总面积,算式是:6×3÷2×4=36。

生B:移动四个三角形,使之转化为长方形来计算面积,算式是6×2×3=36。

生C:原图形由四个大小相等的直角三角形组成,可以用这几个直角三角形拼成两个长方形,所求图形的面积就是6×3×2=36。

……

反思

一、尊重学生,注重学生动手操作

根据教学内容的特点,我有意识地采用操作实践、自主探究、合作交流等活动方式。实践证明,这样教学,学生的个性得到了发展,创造欲得到了满足,并体验到了发现数学知识的乐趣,同时把教师“教”的主观愿望转化为学生渴望“学”的内在需要,真正体现了新课程倡导的“学生的数学学习活动应当是一个生动活泼的、主动的、富有个性的过程”新理念。

二、形成解决问题的一些基本策略

“策略”是选择和使用解题方法的思想指导,以适应问题的千变万化。本课注重让学生掌握解决问题的基本方法,形成解决问题的一些基本策略。如,1.把实际问题数学化,建立解决问题的数学模式;2数形结合的方法,解题有困难时用示意图帮助思考;3.逆向思考的方法,直接解题有困难就间接思考;正面解题有困难就从它的反面去思考;顺向解题有困难就逆向而思考;4.“退”的策略,将复杂问题“退”到具体简单的事例,化繁为简,化难为易,然后找出解题模型;5.大胆猜想,认真检验。

三、培养学生的发散性思维与空间想象能力

计算机技术可以形象地再现知识的发生过程,促使学生多向思维、发散思维,培养其空间想象能力和创造力。本案例“等积变形”等演示,拓宽了学生的思维空间,从多角度去分析问题,把解决问题的探求过程展示出来,使学生的思维向高层次升华。

在猜想中萌发创新。科学领域的知识和探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉、灵感等多种思维形式,推出猜想,最后通过实验予以验证。“边长不知道该怎么办?有没有别的办法?请展开合理的想象,说出你的办法。”通过这种思维“路标”的指示,学生大胆猜测,小心求证,从而培养他们的发散性思维与空间想象能力。

比较图形的面积优秀教学反思 篇3

教材简析:

本节课在本册教材的第二单元,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形的面积。一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合学习能力。我在教学中既拓展使用教材,又遵循教材的内容,采用观察七巧板拼图、动手操作、合作交流等方式,引导学生在活动中从多角度思考解决组合图形面积的计算问题,发展学生空间观念,并获得良好的情感体验。

学情分析:

5年级的学生在第二单元的教学中已经掌握了平行四边形、三角形与梯形面积的计算方法,并能运用计算的方法解决生活中一些简单的实际问题。本节课教学使学生对学过的图形进行巩固,同时将所学的知识进行综合运用,提高学生综合能力,符合学生的年龄特征和认知规律。通过动手拼摆激发学生的学习兴趣,也在学习活动中体会转化的思想,将不规则的平面图形转化成已学的规则平面图形来解决问题,学生可能在分割与添补的方法的运用中有困难,我就将学生生活中熟悉的七巧板引入课堂,在具体操作中发展学生的空间观念。

教学目标:

1.在探索活动中,归纳组合图形面积的计算方法。

2.能正确计算组合图形的面积,并能解决相应的实际问题。

教学重、难点:从多角度思考解决组合图形面积的计算问题。在有效的情境中渗透转化的数学思想,将所学的知识进行综合运用,提高学生综合能力。

教学过程:

一、激发兴趣,感知策略

师:今天,老师为同学们准备了一份小礼物——七巧板拼图送给你们,想看吗?那一起来猜猜我拼的是什么吧。(师动手拼鱼、兔子、猫。)

师:喜欢吗?那同学们来观察一下这两幅拼图,有什么共同特征吗?

生:都是由七巧板拼成的。

生:面积相等。

生:都是由几个图形拼成的。

师:也就是说都是由几个简单图形组合而成,那你能给这样的图形起个名字吗?

生:七巧板拼图、动物拼图、组合图形。

师:这样的图形就是组合图形。如果让你求这些组合图形的面积,你还会吗?这节课我们就一起来探究组合图形的面积。(板书:组合图形面积。)

【设计意图:将原来简单的复习平面图形改由七巧板拼图引入,既是结合学生的心理特点,激发学生兴趣,让学生感到新奇、好玩,让教学更生动,同时也是让学生初步感受到什么是组合图形,为下一步的学习做铺垫。】

二、动手实践,引入策略

1.通过学生动手拼图,初步感受简单几何图形可以拼成组合图形

师:在桌上,老师为大家准备了一些简单的平面图形,你能选择其中的几个也来拼成一个喜欢的组合图形吗?现在请同学们动手拼摆,将拼好后的图形固定在卡纸上。老师要选拼得漂亮的作品到黑板上展示。

(生动手拼图,师找出3幅组合图形及一幅叠加图形到黑板上展示。)

师:组合好的同学和你的同桌交流一下你用了哪些图形。组合成了什么图案?怎样来求它的面积?

师:拼完了吗?举起来互相欣赏一下。好,一起再来欣赏一下这几位同学的作品。来,和大家交流一下,这个组合图形是由哪些图形拼成的?怎样来求它的面积?

生1:我是用两个三角形和一个长方形拼成了一个帆船,用两个三角形的面积再加上长方形的面积就可以了。

生2:我用一个三角形和一个长方形组合成了一个笔筒,用三角形的面积加上长方形的面积就能求出这个组合图形的面积了。

生3:我是用3个三角形和一个正方形拼成了一个圣诞树,用3个三角形的面积加上正方形的面积就是这个图形的面积了。

师追问:仔细观察一下,你同意这位同学的说法吗?说说理由。

生:我不同意他的说法。因为虽然用的是3个三角形。但在拼图形的时候另外两个三角形被上面的图形挡住了,所以不能将3个三角形的面积相加,应该用一个三角形面积+两个梯形面积+一个正方形面积才是这个组合图形的面积。

师:你真是一个善于观察,爱动脑筋的孩子。的确,我们在组合图形的时候一定要注意这种叠加现象,如果出现这种叠加情况,其实就改变了原来图形面积的大小。

师:同学们,通过刚才这几名同学的发言,我们知道了,求组合图形的面积可以用什么方法?

生:相加方法。

师:你真是一个善于倾听的孩子。将几个简单图形的面积相加可以求出组合图形的面积。你们太棒了。不仅拼得好,而且很善于总结方法。为了奖励你们,老师就把这些美丽的图案作为礼物送给大家了。好,现在请先将它收好,放到书桌的左侧。

【设计意图:这一环节通过学生动手拼组合图形——交流过程——研究面积——总结方法这一过程,让学生感受组合图形面积与简单图形面积的关系,体会组合图形是由简单图形组合而成的。这样的活动使得学生学习由简到难、层层递进,学生在观察、思考、交流、感受中体会知识的本质。也为分割法、添补法的学习做好铺垫。】

2.探索求不规则图形面积的多种方法

师:刚才,同学们通过动手操作、独立思考,知道了用相加的方法求出组合图形的面积。老师这里还带来了一个组合图形,同学们来看看,这个组合图形你还能求出它的面积吗?(课件出示教材例题图。)

师:请同学们拿出书桌内的学具卡片,动脑想一想,你怎样求这个组合图形的面积。咱们比一比,看一看谁的方法既简便又与众不同。

(生动手研究例题图。动笔画、剪刀剪、动手折……把具有代表性的方法在黑板上展示。)

师:同学们想出了这么多的办法,你们太了不起了,那现在把你的方法和同桌交流一下。

生1:我将这个组合图形分成了两个长方形,用两个长方形的面积相加就求出这个组合图形的面积。

师:你是将这个图形转成了我们熟悉的长方形。你真是太聪明了,是啊,我们既可以把简单图形拼成一个组合图形,也可以把一个组合图形分成学过的简单图形。那你能给你的这种方法起个名字吗?

生:折分法。

生:分割法。

师:那我们可以准确地把这种方法叫做分割法。

生2:我也是用分割法将这个图形分成了一个长方形和一个正方形。

生3:我也是用分割法将这个组合图形分成了两个梯形。

生4:我和他们的不同,我是添补上一个正方形后变成一个长方形,然后再减去添补的面积就求出这个组合图形的面积。我把这种方法叫做添补法。

师:这位同学的思维很独特,是运用的添补的方法。

生5:我将组合图形分成多个三角形。再将这几个三角形的面积相加求出组合图形的面积。

师追问:那同学们觉得这种方法怎么样?

小结:我们在分割的时候一定要注意,分割的简单图形越少,其解题方法也将越简单。

师:咱们同学真是太聪明了。通过动手操作、自主探究找到了求组合图形的面积还可以用分割的方法、添补的方法。都是将组合图形转化成我们学过的简单图形。这种转化的思想也是一种有效的解题策略。

3.运用方法,出示数据计算,解决例题

师:刚才所研究的这个组合图形就是小华新家的客厅平面图。(课件出示例题。)

师:这几天他想在客厅铺地板,所以特意将测量的数据带来,想让咱们同学帮他算一算,你愿意帮他吗?好,一起来看看他都给我们带来了哪些数据。(学生审题)。请你选择其中一种方法计算出它的面积。

(指名板前演算,反馈汇报。)

师:经过同学们的帮忙,相信小华一定能买到合适的地板。

【设计意图:这一环节的设计既尊重教材,让学生感受数学来源于生活,用数学知识解决生活中的问题,激发学生的学习兴趣,拓展思维,也让学生进一步体会到组合图形可以分成简单图形,简单图形可以拼成组合图形。这样的设计环环相扣,突破知识的重难点,实现“由简单出发,向本质迈进”这一教学设想,使学生真正成为学习的主人。】

三、拓展延伸,应用实践

1.同学们已经会用所学的知识来解决生活中的问题,那现在我们来做几道练习,敢接受挑战吗?好,我们来看教材76页练一练第一题:你能将下面的图形分成哪些我们学过的图形?

学生交流、汇报。小结:同学们可真聪明,找出了这么多简捷的分割方案,看来解决问题时要根据实际情况适当分割成简单图形来计算。

2.教材76页第二题,这道题请同学们独立完成。

3.你能巧算阴影部分的面积吗?

【设计意图:练习的设计为学生呈现了这样一道须要翻转填补的提高题,意在练习有梯度,激发探究欲望。同时促进他们的问题解决能力的发展。】

四、总结全课

师:这节课,同学们充分运用转化的思想,在探索活动中归纳出了分割法、添补法来计算组合图形面积,并且运用了多种策略解决相应的实际问题,真是太了不起了。其实,在我们的生活中组合图形处处可见、应用广泛。只要我们细心观察、动脑思考,就会掌握其中的规律。

反思:

《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”为此,本节课的教学围绕这一思想主要突出了以下几方面:

1.在充分的观察和感知活动中,理解和建立组合图形面积的概念

传统的教学往往是教师通过几个简单的图形组合欣赏,告诉学生组合图形的概念。而本节课的教学从生活中的七巧板引入,既吸引学生的注意力,同时也让学生感受数学源于生活。七巧板拼图让学生通过观察共同的特征,初步感受什么是组合图形。这一感受是源自学生主体的。

2.在充分的操作与合作交流中,体会组合图形与简单图形之间的关系

让学生动手拼一拼的活动,使学生进一步体会到组合图形可以分成简单图形,简单图形可以拼成组合图形,这样学生在充分的感知、实践、领悟中学习新知、建立良好的数学模型,为后面的分割法、添补法的学习做好铺垫。学生在任意的拼摆中,叠加情况的研讨,又激发了学生进一步探索面积方法的强烈愿望。教师很好地抓住这一时机,因势利导,组织学生观察、交流的活动,这一系列的探索、交流的学习活动,有利于学生知识的形成和建构,培养了学生探索意识和合作能力。

3.渗透了转化的教学思想,鼓励学生多种解题策略

本节课注重对学生学习方法的引导,通过例题图的研究环节,使学生借助已经建立的知识体系,在不断探索、交流中寻找多种解题策略。教学中充分尊重学生,发扬教学的民主性,以学生为探究主体,充分运用转化的思想将复杂的图形简单化,使学生的思维过程尽可能地显露。这样层层深入,环环相扣的教学符合学生的认知探索规律,实现了教学设计初的“从简单出发,向本质迈进”的主旨,让学生成为学习的真正主人。

总之,本节课的设计紧密联系学生的生活实际,在学生认知的基础上展开探索性学习,注重了学习过程的探索性,渗透了多种解题策略及转化的思想,很好地体现了学生的主体性、教师的引导性,有利于学生在具体情景中培养自己的学习能力、解决问题的能力,重视了学生知识的形成过程,符合新课程标准的教育理念。

(作者单位:佳木斯市第十一小学)

比较图形的面积优秀教学反思 篇4

《比较图形的面积》一课,小学数学第九册的教学内容。本课的教学任务就是要 使学生借助方格纸,能直接判断图形面积的大小,同时,教会学生运用合理、简单的方 法,帮助学生体会到割补、转化的方法是比较图形面积大小的基本方法并体会图形形状 的变化与面积大小的关系。

该课的教学主要有以下几个特点: 1.利用多媒体信息技术,提高课堂教学效率。在数学教学中,如果把数学知识放在一个生动、活泼的情境中去学习,更容易激发学生的学习兴趣,而多媒体计算机系统可展示优美的 图像、动听的音乐、有趣的动画,是创设情境的最佳工具。兴趣被充分调动起来,尤其 是比较图形的面积时,小组内学生有很多的假想,在产生疑问后,进行猜测、实验、验 证、讨论等一系列的活动后,学生纷纷说出并用实物演示出自己比较的方法,从而对比 较图形的方法有充分的感悟和认识。

2.给学生充分的时间和空间探索学习。本节课预先创设情境,让学生体验到数学无 处不在,激发学生比较简单图形面积的兴趣。通过比较简单图形的面积,让学生自主探 索学习并总结出进行简单图形的比较的方法,使学生体验图形的等积变换。在探索学习过程中收获新知,积累方法。

《平面图形的面积》教师教学反思 篇5

剖析 本节课,教师的确把学生放在了最为突出的主体地位,学生真正成了课堂的主角。从公式的推导到知识网络的构建,80%的话都是由学生讲出来的,教师退而居其次。学生的个性得到了极大的张扬,学生的创造力得到了极大的施展,学生以极大的热情参与到数学活动的全过程。孩子们构建的网络图,虽然有的不太合理,但毕竟是他们自己的理解,自己的创造。然而,遗憾的是,本节课在汇报交流过程中,花费的时间太多,而没有应用所学知识解决一些实际问题。

《组合图形面积》教学反思 篇6

1、例1第二种算法教学失败。

教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。

我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?

【再教设计】

再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。

2、作业的格式教学失败。

教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。

其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。

【再教设计】

要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧

困惑:当把图形变形后的列式该如何评价?

有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)(52)这种列式可行吗?

比较图形的面积优秀教学反思 篇7

“圆的面积”是小学数学几何教学中重要的课程内容, 它是平面图形的认识和测量中, 由直线图形变为曲线图形的关键点, 从研究直线图形到研究曲线图形, 对学生而言是一个很大的跨跃。人教版教材采用实验的方法推导圆的面积计算公式。推导出圆的面积计算公式之后, 教材安排了两道例题, 应用圆的面积计算公式解决实际问题。例1是已知直径, 先求出半径, 再求面积;例2是求圆环的面积。在这样的教学后, 笔者对“圆的面积”进行了教学后测。

后测试题:

(1) 已知正方形的面积为36平方厘米, 求圆的面积。 (见下图)

(2) 已知正方形的面积为20平方厘米, 求圆的面积。 (见上图)

笔者对两个班级82名学生进行了测试, 答题情况见表1。

二、分析与诊断

透过错例现象, 经过思辨加工, 从中梳理归纳其产生问题的原因。

(一) 缺少面积意义的感悟体验

在学习“圆的面积”之前, 学生已经学习了正方形、长方形等平面图形的周长与面积, 学生能用自己的语言表述出什么是图形的周长, 什么是图形的面积。因此, 教师在教学“圆的面积”时会觉得学生对圆的面积意义的理解已经没有困难了, 无须加以体会。从上述的后测中可以看到, 正方形的面积为20平方厘米, 学生想到了边长为5厘米。由此可见, 在小学图形与几何教学中, 往往容易混淆圆的周长和面积的概念。

(二) 缺少公式本质的推理分析

从上述的后测中可知, 学生会根据“36”这个特殊的数据很快知道正方形的边长是6厘米, 正方形的边长也就是圆的半径, 然后运用圆面积公式S=πr²顺利地求出圆的面积。但把题中的“36”改成“20”后, 学生就显得束手无策了。学生总是试图先求出半径, 再利用S=πr²这一公式得出圆的面积。可在我们的教学中却忽视了“圆的面积是r²的π倍”, 其实圆的面积与r²有着更为直接的倍数关系。

(三) 缺少丰厚多样的探究经历

在教学中, 很多教师考虑到小学生的认知发展规律, 认为小学阶段学生只要能认同圆的面积公式就可以了, 不需要经历过长的探索过程。“圆的面积”一课教材只要求学生把圆分成若干 (偶数) 等份, 剪开后用近似等腰三角形拼成一个近似的平行四边形 (长方形) , 由平行四边形或长方形面积公式推导出圆面积公式。在几何图形面积公式的推导过程中, 不能简单地用单一的方法获取计算公式, 还应加强推导过程中求异思维训练, 让学生经历异中求同的探究计算公式的过程。

(四) 缺少过程理解的运用练习

在探究出圆的面积计算公式后, 很多教师就把主要精力放在套用公式的计算上。在练习设计中, 总是设计一些已知半径或是直径可以直接套用公式求圆面积的题目, 或者是设计一些已知圆的周长求圆面积的题目。这样一来, 通过观察、操作、推理等手段推导出的计算公式, 在练习中缺少了过程理解的运用, 只是机械地套用公式进行计算, 不利于学生对计算公式的深入理解, 这不是我们教学的最终的目的。

三、对策和措施

新课改的数学课堂注重过程性学习, 提高学生思维能力, 关注学生个性体验, 可在几何图形计算公式教学中, 还陷入“公式化”教学模式:追求快速推导出公式, 拘泥于“套用公式”的练习。怎样才能真正让几何图形计算公式“灵活”起来。现以六年级上册“圆的面积”一课为例, 谈谈笔者的一些尝试。

(一) 重视情境操作, 感悟“面积意义”

研究表明, 适当的操作和具体的图像对小学生的数学学习, 特别是对图形的周长、面积和体积等概念的理解是非常有帮助的。教学中应重视结合一些具体操作情境, 使学生对所要测量的量 (如长度、周长、面积、体积) 的实际意义与变化本质加以体会。在“圆的面积”一课的导入环节中, 笔者设计这样的活动:描一描下面图形的周长与面积, 想一想圆的面积大小与什么有关? (见下图)

1. 描绘, 感悟周长、面积概念的本质区别

导入活动中利用4个大小不一的圆, 让学生用喜欢的方式表示圆的周长与面积。学生能用多种表征方式 (用笔来描、用线绕圆形、用手指笔画、语言描述) 来感悟圆的周长;再用 (用阴影表示、用手摸、语言描述) 来理解圆的面积。通过用线绕圆形后将线拉直表示圆周长与用阴影表示圆面积进行比较, 让学生再次感受周长与面积的本质区别。

2. 比较, 感悟面积大小变化的主要因素

导入活动中4个大小不一的圆也为学生“主动地进行观察、实验、猜想、验证”提供了充分的准备。学生通过观察、比较, 引发学生进行思考:“圆的面积的大小跟圆的什么有关?”在交流中初步发现引起圆的面积大小变化的主要因素——直径和半径。在教学中充分运用比较的方法, 有助于凸显面积变化的主要因素, 提高辨别能力, 发展逻辑思维能力。

通过描绘、比较活动, 帮助学生建立图形认知, 丰富学生的表象, 以进一步理解图形中周长与面积的概念, 更为学生深入地探究圆的面积计算公式奠定基础。

(二) 借助几何直观, 聚焦“公式本质”

在“圆的面积”探究中设计揭示圆面积与正方形面积的关系的几何直观活动, 深入计算公式的知识本质。

1. 猜想, 初步感知圆与正方形面积的关系

研究圆与正方形之间的面积关系, 有助于学生更好地理解圆面积公式的本质, 同时拓宽解题的路径。教学时设计了这样一个活动:先后出示三个大小不等的正方形和一个圆, 猜测它们之间的面积关系。 (见下图)

先让学生比比图2、图3分别与图1的面积关系, 学生运用计算、剪拼等方法得出图2面积是图1面积的4倍, 图3面积是图1面积的2倍。进而引起学生猜想, “图4面积与图1面积有什么关系?”发现正方形的边长与圆的半径长度相等, 引发学生用重叠、比较等方法进行估测。

2. 估测, 深入感知圆与正方形面积的关系

“课件出示一个正方形, 再以正方形的一个顶点为圆心, 边长为半径画一个圆, 估测:圆的面积大约是正方形面积的几倍? (见下图)

从学生熟悉的“数方格”初步验证猜想, 借助圆内接正方形, 圆外切正方形得出圆的面积是正方形面积的 (2~4) 倍, 让学生理解, 圆的面积与r²有着更为直接的倍数关系, 同时所得结论与接下来用转化推导出来的公式相互印证, 能使学生充分感受圆面积公式推导过程的合理性。

(三) 凸显多维策略, 注重“探索验证”

推导圆面积计算公式这一环节是本节课的重点, 也是难点, 凸显多维策略, 注重动手操作、直观演示、抽象概括等探索验证活动, 才能引导学生理解和掌握圆的面积公式。

1. 转化, 形式多样的探索中体会数学思想

教学中笔者直接提示学生“你能用剪拼的方法把圆转化成我们已经学过的图形吗?以小组为单位先讨论方法, 再把4个大小不一的圆进行转化”。由于圆的大小不同和平均分割的份数不同, 给学生提供了丰富的研究素材。学生通过观察、比较、分析发现, 虽然圆的大小不一, 但都可以转化成近似长方形。相等的圆等分的份数加倍与拼成图形的变化趋势, 想象等分份数无限加倍时的“极限状态”。学生通过观察圆在转化成近似长方形的过程中, 发现了变与不变的关系, 从而得出圆面积的计算公式。

2. 验证, 方法多样的推算中明确计算公式

作为教材, 仅呈现了将圆等分拼成近似长方形推导出圆的面积公式, 教材提供的仅是一种研究方法。因此, 在教学了这种研究方法后, 笔者引导学生继续探索:“将圆形16等分后还能转化成我们学过的什么图形?你们能运用转化的图形推算出圆形的面积公式吗?以小组为单位进行探索研究。” (见下图)

(四) 运用创意练习, 体现“过程理解”

教材练习题的编排层次分明:基本图形求面积 (直接应用公式) —文字信息求面积 (正、逆间接运用公式) —应用圆面积公式解决实际问题。这样的练习巩固了面积公式, 但缺少了过程理解的运用, 只是机械地应用公式进行计算, 不利于学生对计算公式推导过程的深入理解。在这一课的巩固练习中, 笔者在原有教材练习题的基础上进行了创新练习的设计, 体现计算公式的“过程理解”。

1. 再现, 设计注重推导过程的练习

“圆的面积”一课, 设计了再现推导过程的创新练习。

练习1:把一个圆沿着半径剪成若干等份, 拼成一个近似长方形 (见下图) , 这个近似长方形的长是12.56厘米、宽是8厘米。你能求出圆的面积是多少平方厘米吗?

这个练习的设计让学生再次回顾了圆面积公式的推导过程, 加深对转化前后图形一一对应关系的理解, 通过长方形长、宽与圆的周长、半径之间的关系计算圆的面积。通过在多种方法的展示比较中, 既是对所学圆面积公式的推导过程的有效巩固, 又是对新知的拓展与延伸。

2. 追溯, 设计凸显知识本源的练习

推导出圆面积计算公式后, 教材练习题的编排都是两类练习:一类运用计算公式求图形面积;另一类运用计算公式解决生活中的问题。缺少凸显知识本源的变式练习。为了突破单一思维习惯, 达到多维目的, 笔者设计了凸显知识本源的练习。

练习2:下面三幅图中正方形的面积都是20平方米 (见下图) , 每个圆的面积各是多少平方米?

这个练习的设计是引导学生克服思维定势, 进行多维思考。追问学生“要求出圆的面积, 需要先找到什么条件?”给学生解决问题提供了广阔的空间, 求圆的面积可以先找半径, 也可以先找半径的平方是多少。知道了半径的平方是多少 (即图中正方形的面积) , 再直接乘π的值就可以轻松求出圆的面积。这个练习深化了对圆与正方形面积比的理解, 使学生意识到方法灵活运用的重要性, 真正关注公式本质, 打破了套用公式的思维定势。

四、结束语

比较图形的面积优秀教学反思 篇8

一、任务说明

(一)任务及目标

1.任务内容

2.任务目标

(1)结合观察、操作活动,认识组合图形,并能把它分成若干个基本图形。

(2)经历选择数据计算和交流分享的过程,掌握组合图形面积计算的一般方法。

(3)在解决问题的过程中,感受图形之间的转化及其联系,发展空间观念。

(二)设计说明

关于组合图形的面积计算,教材的学习任务设计如下:

该学习任务以解决生活问题“墙面面积”为素材,结合图示,让学生学习计算组合图形的面积。虽然该任务非常清晰,目的也很明确,但是从以往的教学实践看,教学效果不理想。从对学生的教学后测及数据分析中可以看得更清楚。

教学后测题:请测量并计算下面这一图形的面积。

参加测试的五年级学生共49人,是学生在学习了组合图形的面积计算之后的两个月进行的测试。

其中正确人数是26人,占全班人数的53.06%,错误人数23人,占46.94%。具体错误分类见下表:

错误原因不会

解决计算

错误测量

错误画错

平行线或高

人数(人)8636

占实测人数百分比16.33%12.24%6.12%12.24%

占错误人数百分比34.78%26.09%13.04%26.09%

参加后测的六年级学生共52人,是学生学习了组合图形的面积计算之后的一年两个月进行的测试。结果正确人数是32人,占全班人数的61.54%,错误人数20人,占38.46%。具体错误分类见下表:

错误原因不会

解决计算

错误测量

错误画错平行线或高

人数(人)9434

占实测人数百分比17.31%7.69%5.77%7.69%

占错误人数百分比45.00%20.00%15.00%20.00%

出现上述正确率不高的情况,我们认为和新课教学的学习任务密切相关。主要原因有三点:一是教材已经把例题中的组合图形作了分割,学生一眼就看出其由正方形和三角形组成,无法让学生经历组合图形转化为基本图形的学习过程;二是例题中给出的图形结构简单,计算其面积的方法单一,基本没有留给学生选择的余地,开放度不够;三是例题给出的关键数据太明显,而寻找隐藏的数据信息是本课教学的难点,在教材的该项学习任务中无法实现有效突破难点。除此之外,我们还需要加强对学生在测量和画平行线与高方面的指导。

新设计的学习任务,正好和教材给定的任务相反,其挑战性在于三个方面。

1.学习任务提供的是“原材料”图形,未作一点人为加工

当学生看到这个图形时,他们会发现运用原来的基本图形面积的计算公式,无法直接求得它的面积。那该怎么办呢?挑战性的学习任务让学生“跳一跳才能摘到桃子”,可以让学生集中注意力,促使他们主动思考。教学实践证明,根据学生的已有经验,经过独立思考,他们是能想到把组合图形转化为基本图形的。这个过程,其实也就是学生区别组合图形和基本图形、认识组合图形的学习过程。

2.学习任务提供的是“开放性”图形,计算方法多样化

有别于教材给定的墙面图,该图形转化为基本图形的方式很多。它可以转化为长方形+三角形、梯形+三角形、梯形+三角形和三个三角形,还可以从外部结构看,转化为梯形-三角形、长方形-梯形。同样给解决问题的方法也带来了多样化,学生可以选择一种方法解决问题,也可以选择多种方法进行尝试,给不同水平的学生提供了不同的发展空间。

3.学习任务提供的是“选择性”数据,关键数据要思考获得

如果学生将图形分为三角形+梯形(如图①),那么三角形的高在哪里,有多长?这是解决问题的关键。教学实践表明,在其他转化图形的过程中,找不到隐藏的数据往往是学生的主要困难。

总的来讲,新的学习任务,无论从认知水平和思维难度上,都有了明显的提高。这既符合“教学要创造最近发展区”的理论,也符合挑战性学习任务“不能立即解决,需要想一想,做一做”和“解决方式具有个性化和差异性”这两个基本特征。

二、任务教学

这一学习任务可以按以下教学程序展开。

首先,呈现图形,请学生观察、思考:能像长方形、三角形一样直接计算它的面积吗?然后追问:为什么?让学生明白这不是一个基本图形。继续追问:要知道它的面积,可以怎么办?引导学生进行图形转化。一般情况下,学生会侧重于从内部进行分割,除了上述图①之外,还会出现以下情况(如图②~⑤)。

教师再适当启发:除了从图形内部思考之外,再从外部想想,还可以怎么办呢?引导学生从另一角度思考(如图⑥~⑦)。

接着,观察上述转化后的图形,共同选择一个,比如三角形+梯形。学生独立计算面积。教师要关注学生中存在的典型错误和主要问题,搜集学生作品组织反馈。可以分两步走:第一步,请学生说说计算过程,讲清楚每一个算式在计算什么?第二步,关注学生在寻找隐藏的数据时是如何思考的?强调根据各种图形的边的特征,通过计算得到需要的关键数据。

最后,请学生从其他分法中任意选择一种,计算图形面积。先同桌交流,再组织集体分享。重点交流三件事:第一,分析外补图形的转化方法,突出最后要用大图形的面积减去小图形的面积,得到组合图形的面积;第二,分析图④,这种分法和图①相比比较麻烦,在方法选择上,要优化;第三,分析图⑤,由于不知道梯形的上底,也不知道三角形的另一条边(或高),根据给定的数据,这种方法不能解决问题,看来转化时还要分析可行性。

从教材的学习任务到新设计的挑战性学习任务,我们更多地期望:数学教学的学习任务设计,在达成基本知识和基本技能的基础上,还要关注学生基本数学活动经验的积累和基本数学思想方法的渗透。“组合图形的面积”任务设计与教学,就是站在这样的立场思考完成的。

上一篇:军训让我成为强者作文下一篇:中国社会主义法治理论