带分数乘法

2024-05-23

带分数乘法(共9篇)

带分数乘法 篇1

分数乘法这节课的教学要求是学生加深对分数乘法意义的理解,掌握带分数乘法的计算方法.并能正确灵活地进行计算。为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享人教版《带分数乘法》数学教案,希望大家在学习中得到提高。

教学目的:

1.使学生掌握带分数的乘法的计算方法,能够正确地进行带分数乘法的计算。

2.使学生掌握分数连乘的计算方法,能够用比较简便的方法进行分数连乘的计算。

教学过程:

一、复习

1.把下面各带分数化成假分数。

让学生先说一说带分数化假分数的方法,然后再把带分数化成假分数。

2.计算下面各题。

12把全班学生分成三组,每组计算一道题,鼓励学生能口算的尽量口算。集体订正时,指名说一说计算的方法,复习分数乘以分数的计算法则。

二、新课

1.教学例4(带分数乘法)。

学生读题,明确题意。

(1)教学带分数乘以整数的方法。

教师:第一问要求什么?(黑板的长是多少米。)

根据题目给出的条件应该怎样列式?

教师根据学生的回答板书算式:

教师提问:1 能不能直接计算?(不能。如果有学生说出用乘法分配律来计算,应该肯定是正确的,但要说明,在一般情况下,用乘法分配律计算比较麻烦。所以我们要学习普遍适用的简便算法。)

接着提问:我们已经学过分数乘以分数的计算法则,能不能把带分数的乘法转化成我们学过的方法进行计算呢?怎样才能把它转化成已学过的分数乘法?(把带分数化成假分数。)如果学生一时想不出来,教师可以进一步启发引导:

在分数乘以分数的计算法则中,只提到分子相乘的积作分子,分母相乘的积作分母,而带分数除了有分子和分母,还有整数部分。如果把带分数化成只有分子和分母的分数,我们就可以用分数乘以分数的计算法则计算了。那么,我们应该怎样把带分数转化成只有分子和分母的分数呢?(把带分数化成假分数。也就是要把1 变成假分数,然后再和2相乘。)

根据学生的回答,教师板书计算过程: 2= 2= =(米)

(1)教学带分数乘以带分数的方法。

教师:第二问是求什么?(黑板的面积是多少平方米。)

应该怎样列式?根据学生的回答,教师板书算式:

这道题应该怎样计算呢?不必让学生回答,只要求思考。然后,让学生独立计算。教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导。

学生做完后,指名说一说是怎样想的。

教师:根据上面这道题第一问和第二问的计算,大家能不能说一说带分数乘法计算的一般方法?多让几名学生说一说。最后,进行简单归纳:分数乘法中有带分数的,通常先把带分数化成假分数,然后再乘。

2.做教科书第9页的做一做

学生独立计算,教师巡视,对学习有困难的学生进行个别辅导。

3.教学例5(分数连乘)。

教师可以根据本班的具体情况采取不同的教法。

(1)如果学生对前面学习的知识掌握得比较好,可以适当放手。例如,让全班学生先在练习本上试算,然后让一些学生说一说他们是怎样计算的。教师把不同的计算方法都写在黑板上,让学生进行讨论,哪些方法的对的,哪些方法比较简便。通过讨论引导学生总结出三个分数相乘的简便算法:三个分数相乘,可以把带分数先化成假分数,再把所有分数的分子和分母约分,然后把约简的分子、分母分别相乘。

(2)如果学生对前面学习的知识还存在一些问题,教师就要注意引导学生先按照一般的方法计算,然后再教学简便的算法。例如,在教学完一般的方法(例题中小新的算法)后,教师可以提问:还有没有更简便的计算方法?

如果学生回答有困难,教师可进一步引导: 我们能不能先把题目中的带分数都化成假分数?(可以。)

然后,把题目中的两个带分数都化成假分数。

接着看小强的约分方法。

教师说明:这样做就可以把两步约分合并成一步,使计算更简便。

最后,教师进一步说明,分数连乘在约分的过程,不必考虑计算的顺序,只要是分子和分母有哪两个数能约分就约分。使学生加深对简便算法的认识。

4.做教科书第10页的做一做。

(1)第1题。学生独立计算,教师巡视,注意了解学生中是否把所有能约分的分子、分母,都进行了约分。针对学生出现的错误及时给予指导和订正。

(2)第2题。如果学生独立列式有困难,或学生列出的算式中有除法而无法计算,教师可以适当加以引导。先让学生想一想正方体的体积应该怎样计算。当学生说出正方体体积计算的公式后,再让学生计算。

三、巩固练习

1.做练习三的第1题的第一行(3道题)。

学生独立计算,教师巡视,个别辅导,集体订正。

2.做练习三的第2题的第一行(3道题)。

学生独立计算,教师巡视,个别辅导,要提醒学生把所有能约分的分子、分母都进行约分。集体订正。

3.做练习三的第5题。

学生独立解答。教师巡视,个别辅导。集体订正时,指名说一说是怎样想的。

对学有余力的学生,让他们思考练习三的第7*题。

四、小结(略)

五、作业

练习三的第1、2题中没有做的题目,第3、4、6题。

以上就是数学网小编分享人教版《带分数乘法》数学教案的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

带分数乘法 篇2

第一层次:求一个数的几分之几是多少。

例:李伯伯家有一块1/2公顷的地, 种土豆的面积占这块地的1/5, 种玉米的面积占3/5, (1) 种土豆的面积占多少公顷? (2) 种玉米的面积占多少公顷?

第二层次:连续求一个数的几分之几是多少。

例:一个大棚共480 平方米, 其中一半种各种萝卜, 红萝卜地的面积占整块萝卜地的1/4, 红萝卜地有多少平方米?

第三层次:求比一个数多或少几分之几的数是多少。

例:人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75 次, 婴儿每分钟心跳的次数比青少年多4/5, 婴儿每分钟心跳多少次?

第一层次的教学, 在学习一个数乘分数的意义时, 已经概括出:一个数乘分数, 表示求这个数的几分之几是多少, 因此, 在教学第一层次的例题时, 只要让学生抓住关键句“种土豆的面积占这块地的1/5”来理解“1/5”的含义, 从而进一步理解土豆面积占这块地的1/5, 即1/2公顷的1/5, 根据“一个数乘分数, 表示求这个数的几分之几”知道“求一个数的几分之几是多少”要用乘法计算, 因此学生可以顺利列出算式解答。在这个例题的教学之后, 学生对这一数量关系有了更深的体会。教师在此基础上可以设计一些类似练习, 让学生巩固模型。如:1.六 (1) 班有学生50人, 男生占其中的3/5, 男生有多少人?2.一条水沟长10米, 第一天挖了它的1/5, 还剩多少米没挖?3.一个长方形长12米, 宽是长的3/4, 这个长方形的面积是多少平方米?在由易到难的巩固练习中, 让学生对此类题型有一个深刻的印象, 初步感知“求一个数的几分之几是多少”的应用题模型。

第二层次的教学和第一层次稍有不同, 教师可以采取以下五个步骤, 让学生进一步建立起数学模型, 为后继的分数应用题教学奠定扎实的基础。

以义务教育教科书六年级上册第一单元分数乘法例8 (也就是第二层次) 为例:这个大棚共480 平方米, 其中一半种各种萝卜, 红萝卜地的面积占整块萝卜地的1/4, 红萝卜地有多少平方米?

1.找准关键句:先读题, 找到本题的关键句:一半种各种萝卜, 红萝卜地的面积占整块萝卜地的1/4, 然后根据关键句进行分析。

2.找出单位“1”:根据关键句找出本题的单位“1”有:整个大棚的面积、各种萝卜地的面积, 不同的单位“1”对应不同的分率, “一半”对应的单位“1”是整个大棚的面积, “1/4”对应的单位“1”是各种萝卜地的面积。

3.画出线段图或其他图:本题是分数连乘的应用题, 用线段图或方形图可以比较清晰、直观地表示出数量之间的关系。体现在———借助线段图可以帮助理解分数的意义, 理解题中数量的对应关系。

4.写出数量关系:整个大棚的面积×1/2=各种萝卜的面积, 各种萝卜地的面积×1/4=红萝卜地的面积。

5.根据数量关系列式解答。

通过对这五个步骤的研究, 进一步建立“求一个数的几分之几是多少”问题的模型, 为进行第三层次的教学扫清障碍, 做好充分的知识储备。

第三层次的教学:人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75次, 婴儿每分钟心跳的次数比青少年多4/5, 婴儿每分钟心跳多少次?这题和前一层次相比, 重点要引导学生理解4/5”表示的含义:“4/5”表示多的部分是青少年心跳次数的4/5。教师在引导学生理解其含义的过程中, 其实就已经帮助学生把此类问题归类到“求一个数的几分之几是多少”的应用题中了, 分析问题时要特别注意运用数形结合的方法, 即画出线段图, 利用线段图帮助学生直观看出两个数量之间的关系, 在此基础上写出数量关系, 并根据数量关系列式解答。

通过这三个层次循序渐进地教学, 学生对于各类分数乘法应用题基本上掌握了, 在这个过程中值得注意的是, 教师要坚持让学生在解题前先找出单位“1”, 利用数形结合的方法画出线段图, 并写出数量关系。正所谓“万变不离其宗”, 分数乘法应用题的实质是“求一个数的几分之几是多少”, 因此帮助学生建立起了分数乘法应用题的模型, 不管是解决稍复杂的分数乘法应用题, 还是分数除法应用题, 或是百分数应用题, 都不会有任何障碍。

总之, 在教学分数乘法应用题时, 关键是要培养学生的建模能力。帮助学生建立分数乘法应用题模型的目的, 不仅仅是让学生能够熟练解决分数、百分数应用题, 而是在此过程中培养学生主动建模的意识, 提高学生运用模型解决实际问题的能力。只要我们在教学中把数学教学与数学建模有效地结合起来, 就能使学生自觉地应用知识去分析、解决实际问题, 从而提高学生的各种能力。

参考文献

谈分数乘法的教学 篇3

一、揭示知识的内在联系,实现知识迁移

数学是一门逻辑性、系统性很强的学科,前面知识的学习,往往是后面有关知识的基础,在新旧知识的联系上是非常紧密的。由此,教材在修改上十分重视揭示的内在联系,以使学生在已有知识的基础上进行知识的迁移,掌握新的知识,学会知识的迁移。数学要求我们去发掘这一特点,更好地组织教学。比如,分数乘法的意义和计算是建立整数乘法的意义与计算法则的基础上,由此,教材在先讲分数乘以整数时,安排了两个复习内容,一是求几个几是多少,怎样列式,突出整数乘法的意义;二是同分母分数相加,为学习分数乘以整数的计算方法作好准备。教学时,就应紧紧抓住这两个复习内容,通过复习旧知,导出新知,运用旧知学习新知,使学生掌握学习新知识的迁移规律和迁移方法。教学例1就可分四步:第一步,揭示例题题意,抓住人跑一步相当于袋鼠跳一下的2/11;第二步,引导学生想:人跑3步是袋鼠跳一下3个2/11,可用以前学过的分数的连加的方法求2/11+2/11+2/11是多少?第三步,引导学生根据整数乘法的意义,把连加算式改写成乘法算式;第四步,归纳出乘以整数的意义就是几人相同分数连加的简便运算;计算法则就是用分数的分子和整数的积作分子,分母不变,能约分的先约分,可使计算简便。从而使学生从整数乘法的意义和计算法则,通过迁移较好地理解和掌握其分数乘以整数的意义及计算法则。

二、抓住学生的思维特点,培养学生的概括能力

数学具有抽象性,这是数学的又一个特点,而小学生的思维又是以形象思维为主,处于直观形象思维向抽象思维过渡期,对于数学知识的理解与掌握往往都需借助形象直观和具体操作实践。由此,如何把抽象的数学知识形象具体化,通过直观形象的思维,又抽象出数学知识,培养学生的抽象思维能力,这是教学中应十分重视的一个问题。而通过修改后的教材正反映和体现了这一特点。比如,分数乘以分数就是通过学生熟知的生活实际引入进行知识迁移。一瓶桔汁重3/5千克,3瓶重多少千克?1/2瓶重多少千克?2/3瓶重多少千克?通过这个实例来理解抽象出一个数乘以分数的意义,就是求这个数的几分之几是多少?又如分数乘法的计算法则难点是分数乘以分数的计算法则的理解与掌握。教学中就应抓住学生的思维特点,依据教材的安排来组织好教学,可分四步进行:第一步,出示例3,理解题意,一个粉刷工一小时粉刷这面墙的1/5,出示意图,从图意加深对单位1理解;第二步,1/4小时粉刷面墙的几分之分?第三步,拿出一张纸,用它表示这面墙,涂出它的1/5,再涂出1/5的1/4是多少?第四步,引导学生对照自己涂的列式并计算,总结出分数乘以分数的计算法则。

三、认清分数乘法应用题的本质特征,提高学生解决实际问题的能力

数学知识来源于实践,又回到实践,更好地为实践服务,以提高学生解决实际问题的能力。这是修改后的教材在这方面体现得更为突出的又一明显的特点。那么如何抓住这一特点组织好应用题是求一个数的几分之几的简单分数乘法的应用题,它是学习较复杂的分数乘除应用题的基础。其次,抓住分数意义的理解,认识简单的分数乘法应用题与学过的整数乘除应用题的联系;根据一个数乘以分数的意义列式计算。三是教会学生理解题意,学会画线段图,通过线段图理解题意,理清数量关系,找到解题规律。线段图可以是单纯,也可以是复线,一般涉及一个量用单线,涉及两个量用复线表示。不论用单线还是复线表示,关键是先找出单位1的量;然后找出比较量,如何表示出比较量,这样,根据一个数乘以分数的意义来计算,问题就迎刃而解了。四是抓住一个数乘经分数的意义理解题意,正确区分比倍与比差两灯不同应用题。比如可示:(1)学校买来100千克白菜,吃了4/5,吃了多少千克?还剩多少千克?学生计算比较,从而看到前者的4是表示份数,分数是无计量单位名的,后者的4/5千克是一个数量,有计量单位名。前者要用乘法先求出吃了多少千克,再用减法求剩余,后者则是直接用减法计算求剩余。一字之差,反映了两类一同的应用题。

《分数乘法》教学反思 篇4

《分数乘法》教学反思1

《分数乘法(一)》是分数乘法这一单元的第一课时,主要是结合具体情境,学生在具体操作活动中,探索并理解分数乘整数的意义。同时,探索并掌握分数乘整数的计算方法,能进行正确计算,进而能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

在教学伊始,我直接出示“1个苹果图占整张纸的1/5,3个这样的图形就占整张纸的几分之几?”问题情境,让学生带着问题去思考,并寻找解决问题的策略。有的学生会通过具体图形语言来数一数;有的学生会直接用算式来计算。在黑板上,呈现所有学生的方法,并引导学生找出之间的联系。紧接着,让学生回忆在整数乘法意义的基础上来学习分数乘法意义,便于学生更好地学习,培养知识迁移能力。在探索分数乘整数的计算方法时,学生运用自己的语言来说明计算结果。接着,学生在结合问题、图形进一步体会分数乘整数的计算方法。

这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。学生的计算过程虽能正确地写出来,但是在结果上会出现没约分化简。这可能跟自己,在帮助学生理解那两种约分方法所存在的问题。在对比两种约分方法,我是先让学生试着说一说,两种约分方法的不同之处,学生也能说出来。我也做了一个小结:一种是在结果上约分;另一种是在过程上约分。但是,我却忘了让学生体会在过程上约分的优越性与简便性。所以,从学生第一次交上来的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。仔细地想,自己常常鼓励学生方法多样性,却忽视优化方法。

《分数乘法》教学反思2

这节课是上周上的,杂事纷扰,一直没有闲暇来好好写写当时教这节课的感受。

这节课上下来,有两个重点需要把握,一个是理解分数乘分数的意义,这是解决分数乘分数所有的实际问题的前提,如果意义不理解,问题解决犹如空中楼阁。那教学的第一个板块就是意义的教学,上一节课我们已经知道分数乘整数的另外一个意义,即求一个数的几分之几的是多少,我从这个意义入手,延伸到一个分数的几分之几也是需要用分数乘法的。

借助《庄子。天下》那句“一尺之锤,日取一半,万世不竭”入手,先回顾一个整数的几分之几用分数乘法,再引申到当一个分数的几分之几时同样也是可以用分数乘法的,在出示分数乘分数的时候,同时出示具体的木棒截取的过程,让孩子在具体实物中理解,其实其中一个分数表示一个具体的量,而另外一个分数就是一种分法(或是按照孩子们的想法叫做截法),或是有些孩子理解到分数乘分数其实是分了两次。在这个环节,孩子们需要重点理解意义,同时也初步感受到分数乘分数可以用分母乘分母,分子乘分子。

那接下来的环节就直捣黄龙了,深入探索分数乘分数的方法,当然很多孩子已经知道方法就是分母乘分母,分子乘分子,但是不知道为什么那样,那下面的探索环节就是要弄清楚方法的原理。算理的理解还是需要借助直观模型,因为算理在学生头脑里是一个很抽象的东西。当然在探索之前,我们还是对意义进行了再次强调,还把两个乘数反一反,再说意义。紧接着出示书本例题,放手让孩子去画图,在一个长方形中涂出最后的结果。涂完之后,把不同的结果反馈到黑板上,孩子们分别说,说的过程中我进行一些重点追问,这些追问无非就是在关注每一次分法。全部说完之后,再次沟通各种方式。开始提炼这些图形与算式之间的共同联系,这种联系就是在明晰算理的内在原理,孩子们归纳发现,原来在图形中,被分了2次之后,这个总份数其实就是分母乘分母(也就是最终结果的分母),比较难理解的是在图形中怎么体现分子乘分子,经过一番激辩,孩子们渐渐明白两次取出份数之积就是最终答案的分子,在图形中就是先取了几份,再在这几份中取出几份,也就是说是几份中的几份,那最红取出的总份数就是把两次取出份数乘起来就好了。

最后强调先约分,而不是最终结果出来在约分,这样计算会更加简洁,不过从课后作业来看,如何约分还是需要细讲。

《分数乘法》教学反思3

在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:

首先我不仅注重了情境的导入,提高孩子们的参与热情。

开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。

同上我还鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。

第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;

第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!

《分数乘法》教学反思4

一、让学生在探索的过程中理解。

在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。

在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(1)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(3)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。

二、回顾学生所做作业,出现问题集中表现在以下几点;

1、脱式计算(自觉运用简便运算)的题,有许多学生盲目运用运算定律进行简算。

采取应对措施:注意让学生明白简算的目的,分数的简算,原则上与整数、小数简算相同,都是在不改变结果的前提下改变运算顺序,尽可能减少计算的繁琐性。但方法却不同,整数和小数往往是凑整十、整百的数,而分数则是为了好约分。

2、在教学中我注重了对单位“1”的理解、根据分数意义来分析题意,而忽略了单位化聚的计算方法的复习,以及两步计算的求一个数的几分之几是多少的应用题的重点评讲。

三、采取应对措施:

练习课中先复习求一个数的几分之几是多少的文字题,结合复习题让学生回忆一个数乘分数的意义,对分数的意义进一步加深。帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同,为学习相应的分数应用题打基础。

复习分数乘法应用题时,根据分数乘法的数学模型,说出问题也就是求什么,写出题目中的数量关系。教学中要注意用线段图表示题目的条件和问题,强化分率与数量的一一对应关系,这有利于学生弄清以谁为标准,以及分率和数量之间的关系。

问题可以引发思考,思考促进改变方法,得法扭转教学局面。说明教师教学不怕有问题,有了问题想办法解决就会使教学损失减少到最小。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态,根据实际情况来教学,提高教学质量。当然,教学前的准备细致周到,教学失误的可能性就会更小。

《分数乘法》教学反思5

这节整理复习课我对分数乘法知识进行一次梳理,给学生建立一个完整的分数乘法知识体系,巩固对乘法知识的掌握和理解应用。

一、以合作交流为主,发挥学生主体地位。

本节课是一节复习课,内容学生都已经基本掌握,所以,我放手让学生自想、自做、自讲、自论。先是让学生课前用自己喜欢的方法对本单元的知识进行整理和复习,课上再采用小组合作交流的形式互相讨论交流,发现自己有遗漏的知识点,在小组内自行补充,完善了本单元的知识结构,同学们表现的积极主动,找到了各种整理方法,使知识的学习不流于形式。

二、课前布置同学们对易错题的整理,让孩子在课前寻找在本单元做错的题目,再找出共性的易错点进行交流,重点让学生说说错误原因和提醒同学们应该注意的问题,加深对错题的认识,避免下次犯类似的错误。在教学时由于时间有限,对于学生找的易错题没有完全交流到位,课前老师自己也应找一些典型的错题进行整理,这样能对学生整理不到位的地方进行一个补充。

《分数乘法》教学反思6

教学就是一个摸索的过程,年轻人有朝气但缺经验,老教师有经验但缺热情。虽然教了几次六年级对于很多内容的教法却一直没有定型也不能定型。

原来对于分数乘法只是从做法上进行教学师生都感觉很简单,一般第一单元测试基础差、思维差的同学也能考到90多分,所以为了节约时间,让学生不只是乘,而把乘法这个单元一带而过,和分数除法一起学习,在对比中让学生明白道理,选择做法。但综合到一起学习,学生刚开始也是错误百出,只能机械地告诉学生单位1已知用乘法,单位1未知用除法,加上学生约分出现约分不彻底,成了一锅浆糊慢慢理。不过,这样好像也能比进度慢的老师成绩好一点,但对于基础特差的学生似乎有点残酷。

我决定在分数乘法这一单元让学生彻底明白道理,深入每位学生心里,一步一个脚印地学习。于是在学新课之前,我先对五年级的公因数、公倍数问题进行复习,发现这个难点依然值得深入复习,学生对互质数等基本概念都忘了,特殊数的最大公因数更是错误百出。深入对约分环节打好基础,也为整个小学阶段的复习打下坚实的基础。

然后让学生应用中多说道理,同桌互为老师讲一讲道理,避免学生理解表面化,真正理解了分数乘整数的意义。分数乘分数让学生折一折、涂一涂,操作中自然理解更深入,学习更有兴趣。虽然多耗点时间,但这样学习才能真正面向全体,基础更扎实,后续学习更高效而有兴趣。

知其然更要知其所以然,说着容易,但体现在教学的`每一步并不容易。

《分数乘法》教学反思7

新世纪小学数学五年级下册第一单元是《分数乘法》,本单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法;分数乘法(二)的主要内容是求一个数的几分之几,将分数乘整数的意义加以扩展;分数乘法(三)的主要内容是分数乘分数的意义及计算方法。在教学如何引导学生理解分数乘法的意义时,我进行了一些思考。

一、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。

小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。

本册教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?

教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。

又如:教材第5页:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?

教学时,通过直观图引导学生理解题目的意思后(6个苹果的1/2是3个苹果),要有意引导“求淘气有多少苹果,就是求6的1/2是多少?”再通过另一种解决问题的方法:把每个苹果都平均分成2份,淘气是6个1/2,也就是6×1/2或1/2×6,从而用6×1/2或1/2×6两种列式方法解决了问题。最后,再引导学生比较两种不同的理解,从而拓宽了分数乘法的意义。也让学生初步体会到求6的1/2是多少?可以用6×1/2解决也可以用1/2×6解决。

二、注意让学生在具体的情境中理解分数乘法中隐藏的数学意义。

书写顺序中不区分被乘数与乘数,更要求我们在教学中一定要注意让学生在具体的情境中,理解情境描述中隐藏的数学意义!因此,通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:上面所讲教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。

又如:刚才所举的例子:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?当学生用6×1/2或1/2×6解决了问题后,一定要有意让学生明白:本题情境可以理解为求6的1/2是多少?从而让学生体验到求一个数的几分之几是多少可以用乘法计算。

三、要让学生从多角度理解分数乘法的意义

在避开具体的情境下,要让学生从多角度理解分数乘法的意义。如:1/5×3(3×1/5)表示的意义可以是求3个1/5的和是多少?求1/5的3倍是多少?或者把3缩小到原来的1/5实际上就是求3的1/5是多少?等。

又如:求3的1/5是多少?列式解答可以是1/5×3也可以是3×1/5。

关于分数乘法的以上解释,并不是哪一种解释是正确的,重要的是对于一个数学概念,我们应该尽可能多地让学生认识到不同的解释,这对于发展学生的数学概念是非常有益的。

《分数乘法》教学反思8

《分数乘法》这一单元教学后的总体感受是:再简单的知识对学生来说也还是难的,主要原因是学生没有静心读题,按要求完成题目。就算是 简单的计算,学生的错误也很多,不是题目抄错就是把分数加法算成分数乘法,分数乘法的计算在通分。所以我觉得可以采用如下做法:

⑴每节课的内容不易过多,不能贪多 ,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化;

⑵分数乘法中:求一个数的几分之几是本册中重点,所有数与代数教学内容都是围绕着这一中心展开的。在教学中要重点对待,要求学生能根据题意画出线段图;

⑶对于教复杂的求一个数的几分之几的解决问题,在教学中要强化分率与数量的一一对应关系,让学生用画图的方式强化理解一个分数的几分之几用乘法计算,帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同。

⑷通过对比训练区分带单位的分数和不带单位的分数计算。如比30千克多3/4是多少和比30千克多3/4千克是多少。

《分数乘法》教学反思9

在教学较复杂的分数乘法应用题时,我是这样设计本节课教学过程的:

1、复习时我设计了找单位“1”和写数量相等关系式的练习,是为了学习新课做准备。

2、出示新课,让学生找单位“1”,画线段图分析。

引到学生想:画图时,先画什么,再画什么?怎样画?

3、根据线段图,写关系式。

4、根据关系式列算式,并解答。

学生根据自己的想法,列出了两种不同的数量关系式,根据不同的关系式,列出了两种不同的算式。但是,在讲解算式的每一步算的是什么时,有一部分人对第二种算法中括号部分算的是什么,有点模糊,不能清楚地表述出来。在教学后,我真正感觉到,要让学生理解一个分率表示什么量的重要性,虽然在教学中也注意到了这点,但因为单位1加几分之几这样的分率是学生第一次接触到,因此要更为重视与注意引导学生理解它们的含义。

本课通过教学设计与实践操作,并反思教学过程,颇有收获。在以后的教学中,我要更深入地研究理解教材,把握其重难点,更深入地研究理解学生,考虑他们的学习方式,理解不同的教学设计对学生成长的利弊,力求使教学设计得更有利于他们去体验、去理解,注重对学生学习方法、学习情感的培养,从而真正促进学生的发展,培养他们良好的学习与思维品质。

《分数乘法》教学反思10

年级分数除法(三)的内容是用方程解决简单有关分数的实际问题,初步体会方程是解决实际问题的重要模型。教学时,由于我认为很简单,对学生分析不够,过于相信学生,用方程解答完成后,就让学生用别的方法解,同时要求画出线段图。学生虽能列出正确的算术式计算,但不能熟练画图。

发现这个问题后,我就及时的对学生进行画图能力的训练,经过一节课的练习,大部分学生基本掌握画图的技巧。通过这节课的教学,使我深深的体会到,要想让知识真正地在师生互动中,学生得到理解、接受并掌握起来,教师就要认真地备学生,只有从学生的实际出发,因材施教,才能达到教育的最优化。

《分数乘法》教学反思11

小学数学《分数乘法》这节课是让学生理解分数乘整数的意义,掌握分数的计算法则。依据知识的迁移,我首先进行了必要的铺垫,复习整数乘法的意义,利用知识之间的联系,使学生顺利掌握“分数乘以整数的意义与整数乘法意义相同”。同时,复习分数加法,为后续教学铺垫。

在教学分数乘法在过程中约分时,书上的例题是:6×5/9,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性,因此,我将题目改得稍复杂些,变成“6×17/18”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。

《分数乘法》教学反思12

在教学这部分内容的时候我更加深刻感受到“求一个数的几分之几“用乘法这部分内容需要补充的必要性。同时有以下想法。

1、画线段图现在就应该加强。

学生画线段图的技能相对较弱。在学生这部分内容的时候我加强了学生画线段图的练习。效果不错。同时为后面更加复杂的内容的学习打好基础。

2、加强对表示两者关系的分数的理解。

虽然学生能够结合线段图理解分数的含义。我觉得还是不够的 ,应该让学生多说,说一说分数所表示的含义究竟是什么,也可以用手“比划“的方法。充分说一说是把谁平均分成多少份,谁相当于其中的多少份。让学生对于单位1有充分的认识。

3、继续巩固求一个数的几分之几用乘法。

让学生结合具体的问题多来说一说为什么用乘法。在理解题意的基础上说一说求谁,就是求谁的几分之几,用乘法计算。说的练习是一个内化的过程。我觉得是非常非常重要的环节。

4、抓住练习题中有代表性的问题加强巩固。

练习四中第4题是存在两个单位1的分数乘法应用题。在解决这个的问题的时候,不能图快。要让班里每一位同学都彻底明白这个问题中存在两个单位1.如何分步进行计算。

《分数乘法》教学反思13

一、教材分析:

六年级上册第二单元围绕“分数乘法”这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。

根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决“求一个数的几分之几是多少”这一类问题组成“解决问题”一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。

学情分析:

六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。

二、单元目标解读

根据第三学段提出的“计算和运用”目标和本单元的特点确定本单元的教学目标:

1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。

2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。

3、会解答求一个数的几分之几是多少的实际问题。

4、理解倒数的意义,掌握求倒数的方法。

本单元的教学重点,难点是:

1、掌握分数乘法的计算方法,会进行分数乘法的计算。

2、会解答求一个数的同分之几是多少的实际问题。

3、理解和掌握求倒数的方法。

三、主题单元教学构想:

(一)注意三个原则

1、在已有知识的基础上,帮助学生自主构建新的知识。

2、让学生在现实情景中学习计算。

3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。

(二)设计思路

本单元教学内容计划用15课时。

第一部分:分数乘法(7课时)

1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。

2、加强自主探索与合作交流。

第二部分:解决问题(5课时)

1、紧密联系分数乘法的意义,理解和掌握解决问题的思路与方法。

2、借助线段图帮助学生理解数量关系。

第三部分:倒数的认识(1课时)

1、让学生充分观察讨论,找出算式的特点。

2、特别理解“互为倒数”的含义

第四部分:整理和复习(2课时)

1、以知识整理措施形式回顾本单元的主要学习内容。

2、安排练习。

四、教学反思

“分数乘法”是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:

1、分数乘法解决问题对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的上面。为以后应用题教学作好辅垫。

2、在以后教学前我还要深钻教材,把握好课本的度。

3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。

《分数乘法》教学反思14

在本节课的教学中,我以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。探索并掌握分数乘分数的计算方法,并能够正确计算,还要能运用分数乘分数的知识解决简单的实际问题。我还重视将操作过程、文字语言、图形语言和符号语言的结合,相辅相成,鼓励学生讨论如何折纸表示3/41/4及其结果,这样不仅解释了符号语言的意义,也直观形象地展示了3/41/4的计算方法,使学生在折纸过程中,充分体会到分数乘分数的意义,感受计算分数乘分数时为什么是分子乘分子,分母乘分母的道理。满足了学生多样化的学习需求。

在分数乘法(二)中我结合教材和课程标准的需求,首先向孩子们提出并应用了数形结合的方法。例如在引入中:把一张长方形的纸对折一次,用斜线涂出它的 1/2,然后对其再对折第二次,用红色涂出斜线部分的1/2,请你说一说红色部分占整张纸的几分之几。从学生的反馈来看,能够直观得从图中看出网格部分所占几分之几,但是学生很难列出乘法算式。(14的比较多)。说明学生不能够充分理解两次做为单位1的量。两次折纸中有两个单位1,比如第一次的1份占整个图形的1/2,此时的单位1是1,但是网格部分却占斜线部分的1/2,此时的单位1是1/2,也就是说网格部分对于整个长方形来说是1/4,这其间隐含着两个不同的单位1。在此说明,学生对于分数的意义掌握还不牢固。又例如在验证分数乘法法则的过程中,让学生通过折纸的方式来理解。

其次,本课我力图让学生亲自经历学习过程。即让学生在动手操作探究算法举例验证交流评价法则统整等一系列活动中经历分数乘分数计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。在教学的整体设计上是由特殊(分子位1分数相乘)去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出分数乘分数只要分子相乘,分母相乘的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法。但是对于折纸的验证方法,有个别学生还是很难理解,允许他们用小数的方法来验证,但这种方法只适用与能够化成有限小数的分数,因此在出现不能转化为有限小数的分数相乘时,这些学生就只能听同学发言,没有自己的思考过程了。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个问题。

把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。

不足之处:

1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。

2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。

在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。

《分数乘法》教学反思15

《分数乘法》是北师大版小学数学新课标教材五年级下册第三单元分数乘法第二课第一课时的内容,它是在学生理解了整数乘法的意义,分数的意义,并学会“求几个几分之几是多少?”的基础上进行教学的。通过授课反思如下:

一、关注学生的学习状态

新课程标准指出:“要关注学生数学学习的水平,更要关注他们在教学活动中所表现出来的情感和态度。”为此,教师在教学中为了让学生能真正主动地、投入地参与到探究过程中来,就应该设法让其在一开始就产生探究的内在需要,这是非常关键的。

因此,这就需要老师既兼顾知识本身的特点,又兼顾学生的认知和学生已有的水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,从而产生“我也来研究研究这个问题”的兴趣。这节课一开始,我就让学生经历折纸操作——合作交流——寻找计算方法这一过程,使学生发现并掌握分数单位乘分数单位的计算方法。

由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情特别高涨,兴趣特别浓厚,都想通过自己的努力,寻找出“我的发现”,而对自己寻找出的法则印象特别深,同时又产生了继续探索、验证两个一般分数相乘的计算方法的欲望。

二、关注结论,更关注过程

传统教学是教师利用复合投影片等手段,让学生理解算理,再利用其计算法则进行大量练习,以实现“熟能生巧”。“新课程标准”指

出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历的一个数学化的过程,是学生自己建构数学知识的活动。

因此,教学本课时力图让学生亲自经历学习过程,即让学生在动手操作——探究算法-举例验证——交流评价——法则整理等一系列活动中经历计算法则的形成过程。这里实现了让学生自己去做、去悟、去经历、去体验、去创造,同时也考虑了学生解题策略的自主选择,顾及了合作意识的培养,我深信这比单纯掌握计算方法再熟练生巧更有意义。

三、科学的学习方法的渗透

新课程标准指出:“帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动经验。”所以教师在引导学生经过不断思考获得规律的过程中,着眼点不能知识规律的本身,更重要的是一种“发现”的体验。

在这种体验中感受数学的思维方法,体会科学的学习方法。本课从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。

四、困惑之处

如何关注全体?本课第一阶段研究“求一个数的几分之几”时,由于学生是在自己操作的基础上去发现规律的,所以全体学生兴趣高涨,都积极主动地参与到了探究的过程。

而到第二阶段去验证交流“求一个数的几分之几用乘法”中,除了用折纸法验证交流外,其余的环节几乎都被几名“优等生”“占领”,虽然教师多次这样引导:“谁能听懂他的意思?你能再解释一下吗?”,“用他的方法去试试看。”但部分学生还是不能参与其中,成了“伴学者”。

《分数乘法(一)》教案 篇5

2、探索并掌握分数乘整数的计算方法,并能正确计算;

3、能正确运用“先约分再计算”的方法进行计算。

教学重点:

1、结合具体情境, ,探索并理解分数乘整数的意义;

2、探索并掌握分数乘整数的计算方法,并能正确计算;

教学难点:

能正确运用“先约分再计算”的方法进行计算。

教学过程:

一、探索分数乘整数的意义和计算方法。

1、出示情境:剪一个这样的图案要用一张彩纸的1/5,剪3个这样的图案需要多少张彩纸?

2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。

3、组织全班交流。师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗? 教师在学生讨论的过程中,把加法的板书和乘法的板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。

4、练一练:教科书第2页“涂一涂,算一算”。学生独立完成后,让学生说说自己的思路。讨论:你能用自己的语言说一说整数乘分数的计算方法吗? 小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。练习:教科书“试一试”第1、2题。

5、探讨“先约分再计算”的方法。

出示 6×5/9。让学生独立完成,指名板演。学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。

练习:

(1)教科书“练一练”第1题。

(2)计算

二、巩固练习

1、教科书第4页“练一练”第2、3、4、题。学生先独立完成,指名板演,在集体讲评。

2、教科书第4页“练一练”第5题。让学生把计算结果写在课本上,再仔细观察,看看发现了什么?

分数乘法教学反思 篇6

教学就是一个摸索的过程,年轻人有朝气但缺经验,老教师有经验但缺热情。虽然教了几次六年级对于很多资料的教法却一向没有定型也不能定型。

原先对于分数乘法只是从做法上进行教学师生都感觉很简单,一般第一单元测试基础差、思维差的同学也能考到90多分,所以为了节约时间,让学生不只是乘,而把乘法这个单元一带而过,和分数除法一齐学习,在比较中让学生明白道理,选取做法。但综合到一齐学习,学生刚开始也是错误百出,只能机械地告诉学生单位1已知用乘法,单位1未知用除法,加上学生约分出现约分不彻底,成了一锅浆糊慢慢理。但是,这样好像也能比进度慢的老师成绩好一点,但对于基础特差的学生似乎有点残酷。

我决定在分数乘法这一单元让学生彻底明白道理,深入每位学生心里,一步一个脚印地学习。于是在学新课之前,我先对五年级的公因数、公倍数问题进行复习,发现这个难点依然值得深入复习,学生对互质数等基本概念都忘了,特殊数的最大公因数更是错误百出。深入对约分环节打好基础,也为整个小学阶段的复习打下坚实的基础。

然后让学生应用中多说道理,同桌互为老师讲一讲道理,避免学生理解表面化,真正理解了分数乘整数的好处。分数乘分数让学生折一折、涂一涂,操作中自然理解更深入,学习更有兴趣。虽然多耗点时间,但这样学习才能真正面向全体,基础更扎实,后续学习更高效而有兴趣。

图乘法的运用 篇7

2图乘法的推导过程及满足条件

如何将简化后的位移计算公式变为方便计算的图乘法公式呢?我们要从弯矩方程入手, 经推导得到计算公式。

Mp图为梁或钢架在荷载作用下的实际弯矩图, 图为梁或钢架在单位荷载作用下的虚拟弯矩图。

由推导过程可知应用图乘法必须满足以下三个条件:

(1) 杆件的轴线为直线。

(2) 杆件的截面不变, EI为常数。

(3) Mp图和图中至少有一个为直线。

前两个条件是由结构、材料这些固有属性决定的, 第三个条件中图是由单位荷载法得到的, 易出现直线图形, 若Mp也为直线图形, 不光可以由上述公式求解, 还将可以采用什么公式呢?

由此可概括出图乘法规则:

3常见图形面积及形心位置

特别注意:图中所示抛物线均为标准抛物线 (含有顶点且在顶点处切线斜率为零, 即在顶点处剪力

4图乘法运用的一般步骤

(1) 先画出结构在荷载作用下的实际弯矩图Mp图。

(2) 在欲求截面上施加虚拟单位力, 并画出该结构在这一虚力作用下的虚拟弯矩图图。

5结束语

图乘法高效便捷地解决了梁和钢架的变形位移问题, 使工程技术人员可以在进行结构设计时, 快速计算出所求截面的位移, 从而保证结构满足刚度要求。当然使用图乘法也有许多条件的限制, 故运用该法时, 要充分认识图乘法的实质, 灵活地将其运用到结构计算之中。

摘要:在进行结构位移计算时, 工程技术人员总想将复杂的积分运算转化为方便使用的四则运算。而对于工程中常见的梁和钢架, 采用图乘法求解位移既方便又实用。本文将对图乘法的适用对象、推导过程、满足条件等进行介绍, 使读者对图乘法有深刻的认识, 从而方便快捷地计算结构位移。

关键词:图乘法,图,图

参考文献

[1]杜云海主编.材料力学 (Ⅰ) .郑州.郑州大学出版社.2012

[2]樊友景高洪波主编.结构力学上册.郑州.郑州大学出版社.2012

[3]张代理张宇主编.结构力学辅导与习题精解.延边.延边大学出版社.2011

解决分数乘法应用题的几点策略 篇8

1.引导学生通过关键句子分析数量关系。学生在经历了分数乘法计算及分数意义教学后,已经有了一定的数量模型。教学中,笔者抓住关键句子,注重引导学生找出两个相比较的量,分析两个量之间的数量关系,弄清楚哪一个是表示单位“1”的量,要求的量是单位“1”的几分之几,再根据乘法的意义列式解答。例如,让学生理解“玫瑰的花期是芍药的”这句话时,先让学生找出表示单位“1”的量是“芍药的花期”,再让学生理解玫瑰的花期当于芍药花期的,从而得出数量关系式:玫瑰的花期=芍药的花期×。鉴于学生的个体差异,讲解的时候,多出示几个相关的练习,讓学生多读、多说,找出单位“1”的量,理清两个相比较的量之间的数量关系。

2.借助线段图,使学生直观地看到两个量之间的数量关系。《标准(2011版)》指出:“借助几何直观可以把复杂的数学问题变得简单、形象,有助于探索解决问题的思路,预测结果。”画图既可以将学生对题意的理解加以外显,又可以将现实情境抽象为数学模型,帮助分析和解决问题。学生在对句子进行充分理解后,引导学生尝试画出线段图表示两个量之间的关系,这样直观的表达方式,可以很清楚地看见两个量之间的关系,从而引导学生列出算式。

例如:李爷爷家养了18只鸡,鸭的只数比鸡的少,李爷爷家养了多少只鸭?学生在理解“鸭的只数比鸡的多”这个关键句子时,学生仅仅凭借这句话理解起来很吃力,很难找出数量关系。

教学中,我们可以引导学生通过画线段图的方式,来帮助分析数量关系。首先,可以画出表示单位“1”的量,也就是鸡的数量。然后再根据关键句子画出鸭的数量,这里知道了养鸭的数量比养鸡的更多一些,多多少呢?多的是鸡的数量的,这个怎么表示出来呢?通过题意,我们可以知道这里的1/6也就是把鸡的数量平均分成6份,鸭的数量多了这样的1份。鸡的数量和鸭的数量通过直观的线段图表示出来了,这样的直观表征方式,可以很清楚地看清楚两个数量之间的关系,为列式提供了很好的帮助。

3.引导学生尝试多样化的解题方法,提高思维的发散性。数学的表达与交流,是学习数学的重要方法。分数应用题的解题方法是多样化的,教师要注意组织学生进行比较和交流,同时说一说不同解法之间的联系与区别,拓宽思路。引导学生学会把解题思路有理有据地表述出来,同时听一听别人是怎样思考的,通过互相交流,提高思维的发散性。

在对分数乘法应用题进行整理和复习的时候,笔者给出这样两条信息:校园里有杨树20棵,柳树比杨树少。让学生自己提出问题并且进行解答,学生提出的问题有:柳树比杨树少多少棵?柳树有多少棵?柳树和杨树一共有多少棵?解决这些单一的问题都很简单,教学中,应当重视对问题的分析和比较,找出解决问题的相同之处和不同之处,得出基本数量关系是:单位“1”的量×分率=分率对应量。对于问题:杨树和柳树一共有多少棵?学生给出的答案一是20×(1-)+20,二是20-20×+20。他们的解题思路都是先求出柳树有多少棵,在求柳树和杨树一共有多少棵?在教学的时候笔者肯定这种解题思路,同时问学生:还有什么方法?引导学生理解杨树和柳树一共占了杨树的几分之几,杨树相当于杨树的“1”倍,柳树相当于杨树的(1-),杨树和柳树一共占了杨树的(1+1-),所以求杨树和柳树一共有多少棵,相当于求杨树的是多少。

分数乘法教案 篇9

练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。

练习过程:

一、基础练习

1、口算

××××

14×15×××5

2、计算

××427×

过程要求:

(1)请三位学生上台板演,其余学生做在练习本上。

(2)集体反馈,学生计算过程。

(3)着重强调约分的操作步骤。

二、专项练习:

完成练习二第5~10题

1、第5题

(1)提问各算式的意义。

要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?

(2)将结果写在书上。

2、第6题

(1)认真审题,弄清题意。

(2)分别说明三个问题各属于什么类型的问题。

(3)列式计算。

3、第7题

学生独立完成后,说一说你是怎样做的?

4、第8题

学生列式计算,教师巡视,然后集体订正。

5、第9题

(1)学生判断正误,并说明原因。

(2)改正算式。

6、第10题

(1)学生列式计算,教师巡视进行个别指导。

(2)说一说你有什么体会。

三、课后作业设计:

一、计算。

×××14×

×120××24×18

二、列式计算

1、米的是多少米?

2、千克的是多少千克?

3、吨的是多少吨?

三、解答下列问题。

1、一辆汽车每小时行驶60千米,小时行驶多少千米?

2、一个长方体长米,宽米,高米,它的体积是多少立方米?

上一篇:垂丝海棠花的养殖方法下一篇:三甲复审心得体会