高中数学选修21测试题

2025-01-29

高中数学选修21测试题(共10篇)

高中数学选修21测试题 篇1

高中数学人教版选修4-4经典测试题

班级:

姓名:

一、选择题(5*12=60)

1.直线,(为参数)上与点的距离等于的点的坐标是()

A.

B.或

C.

D.或

2.圆的圆心坐标是

A.

B.

C.

D.

3.表示的图形是()

A.一条射线

B.一条直线

C.一条线段

D.圆

4.已知直线为参数)与曲线:交于两点,则()A.

B.

C.

D.

5.若直线的参数方程为,则直线的斜率为().

A.

B.

C.

D.

6.已知过曲线上一点P,原点为O,直线PO的倾斜角为,则P点坐标是()

A、(3,4)

B、C、(-3,-4)

D、7.曲线为参数)的对称中心()

A、在直线y=2x上

B、在直线y=-2x上

C、在直线y=x-1上

D、在直线y=x+1上

8.直线的参数方程为

(t为参数),则直线的倾斜角为()

A.

B.

C.

D.

9.曲线的极坐标方程化为直角坐标为()

A.B.C.D.10.曲线的参数方程为(t是参数),则曲线是()

A、线段

B、直线

C、圆

D、射线

11.在极坐标系中,定点,动点在直线上运动,当线段最短时,动点的极坐标是

A.

B.

C.

D.

12.在平面直角坐标系中,圆的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与圆相切,则实数的取值个数为()

A

.0

B.1

C.2

D.3

二、填空题(5*4=20)

13.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是________;

14.在极坐标系中,点关于直线的对称点的一个极坐标为_____.15.已知圆M:x2+y2-2x-4y+1=0,则圆心M到直线(t为参数)的距离为

16.(选修4-4:坐标系与参数方程)曲线,极坐标系(与直角坐标系xOy取相同的单位长度,以原点O为极点,x轴正半轴为极轴)中,直线被曲线C截得的线段长为

三、解答题

17.(本小题满分10分)已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程.

(Ⅰ)判断直线与曲线的位置关系;

(Ⅱ)设为曲线上任意一点,求的取值范围.

18.(本小题满分12分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为

(φ为参数,0≤φ≤π).

(1)求C1的直角坐标方程;

(2)当C1与C2有两个不同公共点时,求实数a的取值范围.

19.(本小题满分12分)已知曲线,直线(t为参数).

(1)写出曲线C的参数方程,直线的普通方程;

(2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.

20.(本小题满分12分)在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.

(Ⅰ)求直线的普通方程和圆的圆心的极坐标;

(Ⅱ)设直线和圆的交点为、,求弦的长.

21.(本小题满分12分)极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴,曲线的极坐标方程为,曲线的参数方程为(为参数,),射线与曲线交于(不包括极点O)三点

(1)求证:;

(2)当时,B,C两点在曲线上,求与的值

22.(本小题满分12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为.

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点坐标为,圆与直线交于,两点,求的值.

参考答案

1.D

【解析】

试题分析:

设直线,(为参数)上与点的距离等于的点的坐标是,则有

即,所以所求点的坐标为或.

故选D.

考点:两点间的距离公式及直线的参数方程.

2.A

【解析】

试题分析:,圆心为,化为极坐标为

考点:1.直角坐标与极坐标的转化;2.圆的方程

3.A

【解析】

试题分析:,表示一和三象限的角平分线,表示第三象限的角平分线.

考点:极坐标与直角坐标的互化

4.D

【解析】

试题分析:将直线化为普通方程为,将曲线化为直角坐标方程为,即,所以曲线为以为圆心,半径的圆.

圆心到直线的距离.

根据,解得.故D正确.

考点:1参数方程,极坐标方程与直角坐标方程间的互化;2直线与圆的相交弦.

5.B

【解析】

试题分析:由直线的参数方程知直线过定点(1,2),取t=1得直线过(3,-1),由斜率公式得直线的斜率为,选B

考点:直线的参数方程与直线的斜率公式.

6.D

【解析】

试题分析:直线PO的倾斜角为,则可设,代入点P可求得结果,选B。

考点:椭圆的参数方程

7.B

【解析】

试题分析:由题可知:,故参数方程是一个圆心为(-1,2)半径为1的圆,所以对称中心为圆心(-1,2),即(-1,2)只满足直线y=-2x的方程。

考点:圆的参数方程

8.C

【解析】

试题分析:由参数方程为消去可得,即,所以直线的倾斜角满足,所以.故选C.考点:参数方程的应用;直线倾斜角的求法.9.B.【解析】

试题分析:∵,∴,又∵,∴,即.考点:圆的参数方程与普通方程的互化.10.D

【解析】

试题分析:消去参数t,得,故是一条射线,故选D.考点:参数方程与普通方程的互化

11.B

【解析】

试题分析:的直角坐标为,线段最短即与直线垂直,设的直角坐标为,则斜率为,所以的直角坐标为,极坐标为.故选B.考点:极坐标.12.C

【解析】

试题分析:圆的普通方程为,直线的直角坐标方程为,因为直线与圆相切,所以圆心到直线的距离等于圆的半径,即,故选.考点:1.极坐标与参数方程;2.直线与圆的位置关系.13.

【解析】

试题分析:直线平面直角坐标方程为,圆的平面直角坐标方程为,此时圆心到直线的距离,等于圆的半径,所以直线与圆的公共点的个数为个.

考点:曲线的极坐标方程与平面直角坐标方程的转换,圆与直角的位置关系.

14.(或其它等价写法)

【解析】

试题分析:转化为直角坐标,则关于直线的对称点的对称点为,再转化为极坐标为.考点:1.极坐标;2.点关于直线对称.15.2

【解析】

试题分析:由于圆M的标准方程为:,所以圆心,又因为直线(t为参数)消去参数得普通方程为,由点到直线的距离公式得所求距离;

故答案为:2.

考点:1.化圆的方程为标准方程;2.直线的参数方程化为普通方程;3.点到直线的距离公式.

16.【解析】

试题分析:将曲线化为普通方程得知:曲线C是以(2,0)为圆心,2为半径的圆;

再化直线的极坐标方程为直角坐标方程得,所以圆心到直线的距离为;

故求弦长为.所以答案为:.考点:坐标系与参数方程.17.(Ⅰ)直线与曲线的位置关系为相离.(Ⅱ).

【解析】

试题分析:(Ⅰ)转化成直线的普通方程,曲线的直角坐标系下的方程,即研究直线与圆的位置关系,由“几何法”得出结论.

(Ⅱ)根据圆的参数方程,设,转化成三角函数问题.

试题解析:(Ⅰ)直线的普通方程为,曲线的直角坐标系下的方程为,圆心到直线的距离为

所以直线与曲线的位置关系为相离.

(Ⅱ)设,则.

考点:1.简单曲线的极坐标方程、参数方程;2.直线与圆的位置关系;3.三角函数的图象和性质.

18.(1);(2).

【解析】

试题分析:(1)首先根据两角和的正弦公式展开,然后根据直角坐标与极坐标的互化公式,进行化简,求直角坐标方程;(2)消参得到圆的普通方程,并注意参数的取值方范围,取得得到的是半圆,当半圆与直线有两个不同交点时,可以采用数形结合的思想确定参数的范围.表示斜率为的一组平行线,与半圆有两个不同交点的问题.

试题解析:(1)将曲线C1的极坐标方程变形,ρ(sinθ+cosθ)=a,即ρcosθ+ρsinθ=a,∴曲线C1的直角坐标方程为x+y-a=0.

(2)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(-1≤y≤0),为半圆弧,如图所示,曲线C1为一组平行于直线x+y=0的直线

当直线C1与C2相切时,由得,舍去a=-2-,得a=-2+,当直线C1过A(0,-1)、B(-1,0)两点时,a=-1.

∴由图可知,当-1≤a<-2+时,曲线C1与曲线C2有两个公共点.

考点:1.极坐标与直角坐标的互化;2.参数方程与普通方程的互化;3.数形结合求参数的范围.

19.(1)(θ为参数),(2)最大值为,最小值为.

【解析】

试题分析:第一问根据椭圆的参数方程的形式,将参数方程写出,关于直线由参数方程向普通方程转化,消参即可,第二问根据线段的长度关系,将问题转化为曲线上的点到直线的距离来求解.

试题解析:(1)曲线C的参数方程为(θ为参数).直线的普通方程为.

(2)曲线C上任意一点到的距离为,则,其中为锐角,且.

当时,|PA|取得最大值,最大值为.

当时,|PA|取得最小值,最小值为.

考点:椭圆的参数方程,直线的参数方程与普通方程的转换,距离的最值的求解.

20.(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】

试题分析:(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为

2分

圆的直角坐标方程,4分

所以圆心的直角坐标为,因此圆心的一个极坐标为.6分

(答案不唯一,只要符合要求就给分)

(Ⅱ)由(Ⅰ)知圆心到直线的距离,8分

所以.10分

考点:1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.21.(1)见解析(2)

【解析】

试题分析:(1)利用极坐标方程可得

计算可得;(2)将

B,C两点极坐标化为直角坐标,又因为经过点B,C的直线方程为可求与的值

试题解析:(1)依题意

+4cos

=+=

=

(2)当时,B,C两点的极坐标分别为

化为直角坐标为B,C

是经过点且倾斜角为的直线,又因为经过点B,C的直线方程为

所以

考点:极坐标的意义,极坐标与直角坐标的互化

22.(1)直线的普通方程为;;(2).

【解析】

试题分析:(1)首先联立直线的参数方程并消去参数即可得到其普通方程,然后运用极坐标与直角坐标

转化公式将圆转化为直角坐标方程即可;(2)首先将直线的参数方程直接代入圆的直角坐标方程,并整理得到关于参数的一元二次方程,由韦达定理可得,最后根据直线的参数方程的几何

意义即可求出所求的值.

试题解析:(1)由得直线的普通方程为

又由得圆C的直角坐标方程为,即.

(2)把直线的参数方程代入圆的直角坐标方程,得,即

由于,故可设是上述方程的两实数根,所以又直线过点,两点对应的参数分别为,所以.

考点:1、参数方程;2、极坐标系;3、直角坐标与极坐标系之间的转化;4、参数方程与普通方程之间的转化;

高中数学选修21测试题 篇2

《普通高中数学课程标准 (实验) 》设置了4个系列共5个模块和16个专题的选修课程, 其中虽有数学探究、数学建模和数学文化等内容, 但对数学思想方法未作专题列及.本文将对高中开设数学思想方法选修课程的必要性和可行性作一些思考.

1 问题的提出

数学思想方法作为数学的灵魂和精髓, 是数学学习和科学研究的一种指导思想和普遍运用的方法, 是铭记在人们头脑中起永恒作用的精神和态度, 是数学的观点和文化.它能使人们领悟数学的真谛, 懂得数学的价值, 学会数学地思考和解决问题, 它能把知识的学习和培养能力、发展智力有机地联系起来.数学思想方法作为数学知识的本质, 它为分析、处理和解决数学问题提供了指导方法和解题策略, 为学生进行探究性数学学习提供了工具.波利亚 (G.Polya) 指出, 与其给人以死板的知识, 不如给人以生动、活泼的方法, 点石成金的策略、手段.对于学生进行探究性学习来说, 最重要的就是掌握数学思想方法, 而数学知识是第二位的.数学思想方法是数学宝库中的重要组成部分, 也是数学科学赖以建立和发展的重要因素.综观数学发展史, 大凡有所成就的数学家, 在数学思想方法上都有良好的素质, 他们从研究数学的成功与失败中探索研究数学的思维规律、掌握数学思想方法.数学思想方法诱发了数学家创造性思维的火花, 促进数学科学成果的涌现.如果学生能够掌握数学思想方法, 会对其终身的数学发现与创新有很大的帮助.无论是数学创新还是数学再创造, 绝不是数学材料、事实、知识的积累和增加, 而必须有新的思想方法的参与, 才会有数学创新, 才会有数学再创造.数学思想方法是人们对数学知识内容的本质认识, 是人们学习和应用数学知识过程中思维活动的向导, 拥有它, 就等于找到了数学创新思维的突破口.数学课程改革强调培养学生的数学创新意识, 这就不仅要求让学生掌握扎实的数学基础知识和基本技能, 而且让学生掌握数学思想方法.在当今的数学课程改革中, 数学思想方法成为数学素质教育的推进器, 它传导着数学创造的精神, 对学生的数学创造意识施加着深刻而持久的影响.

数学是一门主课, 传统的观点认为, 数学是抽象、严谨的学问, 很多学生在没有全面理解数学时, 就被灌输了数学枯燥乏味的思想.事实上, 数学有丰富多彩的内容, 数学思想方法是科学研究的锐利武器, 正如爱因斯坦 (A.Einstein) 所说:难以想象数学作为不依赖于客观世界的形式思维的产物竟能如此巧妙的切合于客观实际.数学教育要有趣味, 学校教育就要打破单一的课程教学形式, 充分调动学生的学习积极性, 使他们感到学起来有兴趣, 学完了有用.而开展有效的数学思想方法教学是一条使学生全面理解数学、促进学生数学学习水平提高的重要途径.事实上, 数学思想方法作为“在具体认识过程中提炼出来的观念和意向, 是一种高层次的认知策略, 具有普遍意义和相对稳定的特征, 故在后继的学习活动中对主体的思维策略水平有较大的影响[1] ”.这种高层次的认知策略与操作阶段的学习完全不同, 不能仅凭借一两节课或几个例题的讲解就能使学生完全接受和掌握, 也不能依靠生硬的说教或学生大题量的训练.《高中数学课程标准》为了满足学生的兴趣爱好和对未来发展的知识需求, 设立了4个系列共5个模块和16个专题的选修课程.这虽然为适应学生的个性成长, 提供了发展平台, 但对数学思想方法的渗透仍然是零散的, 不系统的, 因此也就无法落实课程目标中提出的“体会其中所蕴含的数学思想和方法, 以及它们在后续学习中的作用[2] ”.“学生通过数学学习, 形成一定的数学思想方法, 应该是数学课程的一个重要目的[3] ”.

为了提高学生的数学素质, 培养其适应未来社会的创新精神和创新能力, 笔者设想, 在高中开设《中学数学思想方法》选修课程, 将“数学思想方法”作为一门专门课程来提高学生的数学思想方法素养.果真如此, 数学思想方法教学就既有系统性又有实践性, 可以更好地发挥数学思想方法的教育功能和教学价值, 同时对学生形成数学观念, 领略数学文化的奥妙, 也是十分有益的.

2高中开设数学思想方法选修课程的必要性

高中开设数学思想方法选修课程, 是由数学思想方法的教育功能和教学价值所决定的.

2.1 数学思想方法教学, 充分体现了数学的文化教育功能

“数学在人类文明中一直是一种主要的文化力量[4] ”.数学教育的意义就是培养学生的数学文化修养, 这种文化修养既涵盖求真务实的科学态度, 推理严谨、言必有据和条理化的思维习惯, 也涵盖理解数学的科学意义、领悟数学的文化内涵、体会数学的应用价值等数学意识.数学思想方法统摄数学知识而成为数学的灵魂, 数学教育在本质上是传承文明、传递文化、创造新思想的一种文化教育.所以, 数学的学习和训练, 决非单纯地获取知识, 更重要的是通过数学学习接受数学精神、数学思想和数学方法的熏陶, 提高文化品位, 陶冶一个人的品格和思维习惯, 提升个人素质的综合水平.数学不仅在科学研究中具有重要价值和核心作用, 而且对人类文化及文明发展产生了广泛影响.这种影响说到底是数学思想方法和创造性思维发挥了更为直接的作用.通过数学思想方法教学和创新能力的培养, 可以帮助人们更好的认识自然和人类社会, 塑造人们改造世界的理性精神, 形成科学的世界观、人生观和价值观, 提高国民的基本素质和生活质量, 为人的一生可持续发展奠定基础.

2.2 数学思想方法教学, 有助于学生欣赏美、发现美和创造美

美, 作为现实世界中物质产品和精神产品的属性总和, 具有均匀、对称、和谐、秩序、统一、简单、奇异、新颖等特征, 作为精神产品的数学就包括了上述美的全部特征.无论是数学学习和数学创造, 数学思想方法都具有至高无尚的地位, 它精巧绝伦, 奇美无比, 其美育效果非同寻常.它的美学价值绝不仅仅在于它给人以美的享受、美的熏陶, 而且在于它给人以美的启迪, 有助于完善人的审美结构.从认识论角度讲, 学习者是由于受到了“美”的引导和启迪, 激发了兴趣和动机, 才显现出发现和创造愿望的.所以, 可以这样说, “数学美”是数学学习和创造的动因之一.数学思想方法是一道道绚丽多彩的耀眼光芒, 无疑是数学理性美的化身[5] , 它的美感因素和美育价值, 充分体现了数学发现的魅力和数学创造的精神, 它们在问题解决过程中无时不在、无处不在地显露出令人叫绝的优美特征, 常常使人赏心悦目, 心旷神怡, 春风化雨般地启迪和激励着数学学习者的学习兴趣和创造欲望.在教学活动中, 教师要充分利用教材, 加强数学思想方法教学并通过数学思想方法的“精美”, 适时点拨和有意引导使学生在“数学美”的熏陶下得到美的启迪, 有利于认识数学的科学意义和文化内涵, 对促进学生思维发展以及逐步培养学生的创新精神和实践能力都具有十分重要的意义.

2.3 数学思想方法教学, 有利于培养学生的创新能力和实施素质教育

当今时代, 最有创造性者得胜利, 加强创新精神和创新能力的培养是世界各国教育改革的共同趋势.创新教育作为素质教育的重要组成部分, 要为青少年终身发展奠定基础, 把个性发展和社会发展结合起来, 使学生学会认知、学会做事、学会共同生活、学会生存, 实现人的可持续发展.在新的世纪, 新的时代, 人们对创新精神和实践能力的培养提出了更高的要求, 对中学数学教学而言就是要努力使学生想创新、敢创新、能创新、会创新, 逐渐形成创新的意识和能力.任何一门学科, 只有站在思想方法的高度上去审视和认识, 才能真正理解它的科学意义和实践价值.就中学数学教学而言, 数学思想方法比较零散的隐藏在教材之中, 只要我们深刻地感受、自觉地运用, 使学生在自主学习的过程中即可启迪创造性思维品质, 它无疑是数学素质教育的极好内容.一旦学生掌握了数学思想方法, 就能更快捷地获取知识, 更透彻地理解知识、更灵活地运用知识, 在知识的获取、理解、运用过程中, 自觉地产生创新意识, 使创造性思维得以充分体现.所以数学思想方法教学和创新能力培养会使学生受益终生, 它正是数学素质教育的本质所在.

2.4 数学思想方法教学, 有助于优化学生的人格品质

从数学发展的历史和数学家们创造探索的过程可以看出, 数学家们始终遵循着数学思想方法所指引的方向从事创新活动, 而这种思想方法在其创新活动中又得以不断升华和发展, 使他们每个人都具有高尚的道德情操、远大的理想、非凡的勇气和忘我的献身精神, 这正是科学创造活动本身对创造者提出的客观要求, 也正是创造者必须具备的人格特质.中学生作为未来科学发展的主力军, 其人格品质的培养就显得尤为重要, 而数学思想方法的学习和运用也理所当然的成为其桥梁和纽带.数学思想方法教学和创新能力培养可让学生认识作为数学精髓和创新基础的数学思想方法, 有利于培养学生良好的心理品质, 对进一步提高学生学习数学的兴趣, 增强学生意志和自信心具有积极作用.同时在数学思想方法的运用中, 既能够培养学生严肃认真的科学态度和勇于创新的进取精神, 又能够培养学生乐于探索、善于思考、勇于实践的个性品质及沉着冷静、果断机智、百折不挠、勇往直前的意志品质, 更有助于培养学生有序、有理、有条不紊的生活态度及习惯.而这种精神、品质和习惯对于其适应复杂多变的信息化社会是非常必要的.

2.5 数学思想方法教学, 有助于学生完善数学认知结构和提高数学素养

我们知道, 数学思想方法是新、旧知识之间联系的桥梁, 能够优化新、旧知识的组织方式, 促进新、旧知识的融合, 它也是数学知识结构中的核心要素之一.当学生掌握了一些数学思想方法、再去学习相关的数学知识, 学生就能够挖掘数学体系内在的、深层的意义, 对数学知识做出深刻的解释和理解.促进了学生数学认知结构的发展和完善.数学思想方法作为数学中的一般性原理具有高度的概括性, 它不仅有助于学习的迁移, 更有利于长久保持, 应用的范围也非常广阔, 可以随时运用于任何情景中的类似问题.数学知识的积累为数学素养的形成创造条件, 数学思想方法的运用是数学素养进一步完善的可靠保证.只有全面掌握数学思想方法, 才能真正领会数学的本质、掌握数学的真谛;才能在学习和应用数学知识的过程中点燃思维的火花, 疏通思维的渠道, 使学生的创造性思维能力得到有效地培养和开发;才能使学生在成功解决数学问题的愉悦中增强创新意识、树立创新精神、逐步培养创新能力.

3开设中学数学思想方法选修课程的可行性

3.1 具备新课程理念的设计要求

《普通高中数学课程标准 (实验) 》指出:数学教育“使学生掌握数学的基本知识、基本技能、基本思想[2] ”.数学课程应适当反映“数学科学的思想体系, 数学的美学价值, 数学家的创新精神[2] ”.并且在课程目标中更为清楚地描述道:高中数学课程使学生在九年义务教育的基础上“获得必要的数学基础知识和基本技能, 理解基本数学概念、数学结论的本质, 了解概念、结论等产生的背景和应用, 体会其中所蕴涵的数学思想方法[2] ”.事实上, 《标准》在各部分的“说明与建议”中都要求引导和帮助学生体会其中的数学思想方法, 这充分说明, 加强数学思想方法教学是新世纪数学课程的基本理念之一.能够将“数学探究、数学建摸、数学文化”作为选修课程, 那么将“数学思想方法”列为选修专题, 既是对数学基础知识和基本技能的巩固和深化, 也是对“数学探究、数学建摸、数学文化”在结构上的补充和内容上的完善, 同时也是新课程理念的更好体现.

3.2 从数学思想方法的学习过程分析

数学教学内容始终反映着数学基础知识和数学思想方法这两方面, 没有脱离数学知识的思想方法, 也没有不包含数学思想方法的数学知识.根据学习心理学的观点, 学生学习数学思想方法的过程就是一个数学知识不断转化、不断迁移、智力技能不断提高的过程.在数学课上, 由于能力、心理发展的限制, 学生往往只注意了数学知识的学习, 而忽视了蕴含其中的数学思想方法, 即使有所觉察, 也是处于“朦胧”状态.而在学生接触过较多的数学问题后, 学生对数学思想方法的认识逐渐明朗, 开始理解解题过程中所使用的探索方式和策略, 并能概括总结出来, 进而对数学思想方法有了比较深入的理解与应用.即学生能依据题意, 恰当运用某种思想方法进行探索, 以求得问题解决.学生在经过一定时间的学习后, 对数学思想方法的掌握不仅有量的变化而且有质的飞跃, 对数学问题的分析和解决已经不满足于一种方法和一种模式, 而是进行多元化地思考和探索, 并表现出强烈的创新意识, 事实上, 这正是学生数学创新能力提高的具体体现.

3.3 从数学思想方法教学的基本原则分析

渗透性、层次性、目标性、系统性和实践性构成了数学思想方法教学的最基本原则[6] .从上述原则的实施过程可以看出, 数学思想方法的教学, 应该在逐步渗透的基础上, 既要有明确的目标, 还要进行系统的实践活动.因此, 在反复渗透的过程中, 利用适当机会对某种数学思想方法进行概括、强化和提高, 对它的内容、名称、规律、使用方法适度明确化, 逐步达到掌握数学思想方法的目的.数学思想方法的教学要条理清晰、网络分明, 通过教学过程的有序进行, 有意启发和引导学生共同构建数学思想方法系统, 形成科学合理的网络体系.如果随心所欲, 缺乏系统性和科学性, 就不会达到应有的效果.因此, 数学思想方法教学要精心设计教学方案, 在实践活动中接受熏陶, 不断提炼思想方法、活化思想方法, 形成用思想方法指导创造性思维活动的良好习惯, 从而逐步构建起个体的“数学思想方法系统”.

3.4高考专题讲座、数学竞赛辅导有借鉴作用

无论是高考专题讲座, 还是数学竞赛辅导, 就其形式和内容而言, 都是按照数学思想方法教学的方式进行的.在实施过程中, 教师以数学思想方法为主线, 学生通过对解题思想和解题方法的领悟, 进一步深刻理解了数学思想方法.为提高数学素养、促进数学水平和增强创新能力, 打开了宽敞的通道、奠定了坚实的基础.由此可见, 高考专题讲座和数学竞赛辅导, 就其本质而论, 无疑是数学思想方法课程在教学中的实施.

4 中学数学思想方法课程开发与建设的基本理念

《中学数学思想方法》选修课程的开发和建设应遵循以下的基本理念.

首先, 淡化形式, 注重实质, 将数学知识的学术形态转化为教育形态.《中学数学思想方法》课程的开设, 要强调对数学本质的认识, 努力揭示数学知识和数学思想方法的发生发展过程.为此, 在教材内容的选取、编写与实施等方面要冲破形式化的束缚.应以新颖独特的方式来展现富有生命活力的数学思想方法全貌.通过典型例子的剖析和学生自主探究活动, 使学生认识数学本质, 关注数学知识的时代性、发展性、连续性、衔接性, 体会蕴含其中的思想方法, 并从中感受把数学知识的学术形态转化为易于接受的教育形态的过程.

其次, 学习数学史, 了解数学发展过程.数学发展的历史蕴含着丰富的数学思想发展史, 通过学习数学史, 了解数学思想方法的来龙去脉, 更深刻地体会数学思想方法在数学发展中的作用.数学发展的过程, 隐含着数学家发明创造的过程, 它为我们提供了数学创造的经验与教训, 了解和学习与数学教学内容相关的数学发展史和数学家传记是我们掌握数学思想方法的重要途径之一, 正如波利亚 (G.Polya) 所说的:“没有什么比看到数学发明的源泉 (与过程) 更重要了, 它比发明本身更重要.”

第三, 倡导合作学习, 突出数学文化.新课程标准把丰富学生的学习方式作为追求的基本理念, 倡导自主探索、独立思考、动手实践、合作交流、阅读自学等学习数学的重要方式, 这理所当然是《中学数学思想方法》课程设立所崇尚的.我们要给学生提供充分的从事数学活动的时间和空间, 使学生在自主探索、亲身实践、合作交流的氛围中解除困惑, 更清楚地明确自己的思想, 并有机会分享自己同学的想法和认识, 在亲身体验和探索中认识数学本质, 掌握思想方法, 解决数学问题.数学是人类文化的重要组成部分, 因此《中学数学思想方法》课程应当在文本中反映数学知识的历史地位、社会价值和发展趋势, 凸现数学对认识客观世界与自身发展规律的重要价值.同时要着力彰显数学科学的思想体系、数学的美学价值, 数学家的创新精神, 以全面体现数学的文化价值.

第四, 建立新型师生关系, 提倡信息技术与数学课程的整合.数学课程改革最为显著的特点就是学生学习方式的变革, 这种变革的实质就是师生关系的重新确立.教师要从以往知识的讲授者、拥有者、主导者转变为学生学习的促进者、引导者、帮助者, 与学生平等、自由、合作地进行数学知识的学习和数学思想方法的挖掘, 这种师生之间平等、合作、交流的关系使得教师的教学权与学生的学习权能在一个适宜的平台上达到和谐.在这样的情景下, 学生在求学的过程中能够不断质疑、反思、提问、操作、实验、互相探讨, 平等参与教学过程, 建构动态发展的知识体系, 能真正成为数学知识的建构者、发现者, 不断地增进自信心, 增强理解力、领悟力、洞察力.同时也能不断增进师生相互理解、尊重、信任, 建立起民主和谐的教学环境, 使课堂教学成为师生共同感受、体验数学知识和数学思想方法发生发展全过程的场所, 成为促成学生、教师、课程发展的重要园地.现代信息技术的广泛应用正在对数学课程的内容、数学教学方式、数学学习方式等方面产生深刻影响, 它为学生提供了丰富的学习环境和资源.因此《中学数学思想方法》课程应提倡实现信息技术与数学课程内容的整合.鼓励师生利用信息技术来呈现难以呈现的课程内容, 充分挖掘数学知识和数学思想方法的深刻内涵, 深刻认识当代数学发展的技术特点.

参考文献

[1]季素月.数学技能教与学的若干思考[J].数学教育学报, 2003, 12 (2) :27-30.

[2]中华人民共和国教育部.普通高中数学课程标准 (实验) [M].北京:人民教育出版社, 2003:1-11.

[3]数学课程标准研制组.数学课程标准解读[M].北京:北京师范大学出版社, 2002:333.

[4]张顺燕.数学与文化———在北大数学文化节上的报告[J].数学通报, 2001, (1) :1-3.

[5]傅敏, 等.数学教育研究新论[M].成都:电子科技大学出版社, 1995:240-243.

高中数学选修课程的开发体会 篇3

关键词:高中数学;选修课程;开发体会

一、防止“数学化”现象

就数学这门学科而言,新课改更注重的是能否学以致

用,为国家发展提供智力支持,以及能否满足个人发展的实际应用。由于我校的新课改刚刚起步,所以对教师最大的考验就是手头可参考借鉴的资料很少。为此,省教研室组织专家,编写了介于教材与课标之间的各学科教学指导意见,包括教学中的每个章节、每个模块;同时,编写了新课程的同步使用作业本。为了更好地执行新课改的要求,省教育厅还会对数学教师进行更加专业的培训。为了保证质量,还会邀请很多专家甚至是教材编写专家一起交流。另外,数学教研室还准备在报纸、杂志上开设“课改之窗”,在网络上建立“课改博客群”,与一线教师一起互动,共同探讨新课程该怎么教。

二、系统化地学习选修课程

新课改无论怎么修改标准,最基本的功能都不能缺少。所以笔者建议系统中应该具备最基本的三个功能,一个供学生自主选课,一个供教师进行查询,最后一个是管理员对系统进行管理。选课系统的参与者是参加选课的学生,选课系统的功能主要有修改密码、第一次选课(初选)、第二次选课(复选)、查询课程信息等。开设选修课的老师有权利查询学生的选修课程,所以他们参与系统的功能也必须具备修改密码、查询相关的课程信息,包括自己选修课程的学生名单等等。教务管理员则负责选课管理,主要管理功能包括:添加课程、修改密码、浏览选课情况、关闭选课人数不足15的课程。通过对这三大功能的系统分析,我们能看出每一个系统功能都有着自己突出的特色和优点,在达到用户基本需求的同时还考虑到了用户的体验感。综合统一而成的选修系统才更加完美,便于管理。

三、激发学生学习兴趣,培养学生创新能力

为了激发学生学习的积极性,还要对课程内容进行形象化,特别是对数学这样比较抽象和概念的学科。数学书上的内容著述方式多为描述,概念比较抽象,对学生的形象思维要求比较高。然而,工科某些选修课所涉及的领域日常生活当中少有接触,学生缺乏感性认识,因而很难理解某些现象及其机理。而课堂授课也只是对学生更好地理解教材起到辅助的作用。

创新是我们一直在提倡的思维,但是如何引导学生的创新思维是我们一直在思考的问题,具体到数学教学中就是把创新的思维贯穿到每一个教学环节和内容中去。将培养创新能力作为一种教学理念贯穿于教学的全过程中需要教师了解本学科的前沿和热点问题,活跃于科研活动中,将更多更新的内容传授给学生,带领他们进行更多的亲身参与的创新性实验,使他们永葆创新思

维,拥有创新能力。

归根结底,在课程中,学生是教学的主体,教师只是起着主导作用,这一基本指导思想教师不能忘记。教师的职责除了传授知识外,还要激励学生的创造性思维,引导课堂氛围。同时教师还要不断地加强教学评价艺术的修养,使自己不仅仅是知识的传播者,而且是模范,真正成为学生心目中“科学的法官”“思索的哲人”和“爱的化身”。

参考文献:

[1]郝玉梅,孙长春.浅谈新课程下学生问题意识的培养[J].白城师范学院学报,2008(3).

[2]曹立佐,李信梅.新教学计划与新教学大纲实施之观念种种[J].中等医学教育,1995(5).

高中数学选修21测试题 篇4

sin30cos60sin30cos60

202000

sin20cos50sin20cos50

3,sin15cos45sin15cos45

17、(10分)已知正数a,b,c成等差数列,且公差d0,求证:,不可能是等差数列。

abc18、(14分)已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。

15、猜想:sin2cos2(30)sincos(30)证明:4

1cos21cos(6002)sin(3002)sin300

sincos(30)sincos(30)

222

cos(6002)cos2112sin(3002)sin30011 00

1[sin(302)]1[sin(302)]

222222

3113 00

sin(302)sin(302)

高中数学选修21测试题 篇5

一、选择题(共10小题,每小题4分,共40分)

1、已知集合A{x|x0},B{x|1x2},则AB()

A、{x|x1}B、{x|x2}C、{x|0x2}D、{x|1x2}

2、欲证23A、27

267,只需证()

B、26

2

36



2

37

C、23

2D、2367

xy3、设x0,y0,A

1xy,B

x1x

y1y,则A、B的大小关系是(A、ABB、ABC、ABD、不能确定

4、若n0,则n

32n

2的最小值为()

A、2B、4C、6D、85、如果命题p(n)对nk成立,则它对nk2也成立,又命题p(n)对n2成立,则下列结论正确的是()

A、命题p(n)对所有正整数n成立B、命题p(n)对所有大于2的正整数n成立C、命题p(n)对所有奇正整数n成立D、命题p(n)对所有偶正整数n成立

6、已知0a,b1,用反证法证明a(1b),b(1a)不能都大于时,反设正确的是()

41A、a(1b),b(1a)都大于

4,B、a(1b),b(1a)都小于

414

C、a(1b),b(1a)都大于或等于D、a(1b),b(1a)都小于或等于

7、已知a,b都是实数,那么“a2b2”是“ab”的()A、充分而不必要条件B、必要而不充分条件

C、充分且必要条件D、既不充分也不必要条件

8、已知不等式xy则实数a的最大值为()a对任意正实数x,y恒成立,xyA、2B、4C、2D、16

9、已知a,bR,且ab

0

11,则()

A、abab

B、ab

ab

C、ab

ab

D、abab10、已知a0,b0满足ab2,则()A、ab

2B、ab

2C、a2b22D、a2b2

4二、填空题(共7小题,每小题3分,共21分)

11、若不等式|ax2|6的解集是(-∞,-1][2,),则a的值是___________.12、函数y2x2x1的最大值为:;

13、用数学归纳法证明nN*,11213

1n

n时,从“nk”到

“nk1”,左边需添加的代数式为:;

14、经计算发现下列不等式正确:22,4.5.52,3

2

22,„„,根据以上不等式的规律,请你写出一个类似的不

等式:;

15、有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5s,4s,3s,7s,每个人接完水后就离开,则他们总的等候时间最短为:;

16、若由不等式x

1x

2,x

4x

3,„„,可以推广到x

ax

n

n1aR

,则

实数a的值为:;

17、如果关于x的不等式|x-4|-|x+5|b的解集为空集,则参数b的取值范围为.三、解答题(本大题5小题,共39分)

四、18、(8分)已知m,nR,求证:m3n3m2nmn219、(8分)解不等式: |x1||x2|5|x1|5x|x2|5x20、(8分)①、已知:a,bR,ab4,证明②、已知:a,b,cR,abc9,证明

21、(8分)已知数列an的前n项和为Sn,Sn(1)求a1,a2,a3;

(2)猜想数列an的通项公式并证明你的结论。

3(an1)(nN).

1a1c

1b

1;

1a

1b

1;

并类比上面的结论,写出推广后的一般性结论(不需证明)。

22、(本题满分12分)(1)证明:538

(2)已知a,b,cR,且abc1,求证:(1)(1)(1)8

a

b

c

附加题、(本

题满

分122(n11)

11

12n(nN)

2n)

分)用放缩法证: 明

高二数学选修4-5《不等式选讲》结业测试参考答案

二、填空题(共7小题,每小题3分,共21分)

11、;12、13、14、52(答案不唯一);15、16、nn;

17、;

第Ⅱ卷(共5题,总分39分)

三、解答题(本大题5小题,共39分)

18、已知m,nR,求证:m3n3m2nmn

2方法一:作差比较:m3n3(m2nmn2)(mn)(mn)2 方法二:排序不等式:不妨设mn,m2n2

根据排序不等式:m3n3mm2nn2m2nmn219、解不等式: |x1||x2|5 解:方法一:零点分段讨论:{x|3x2}

方法二:数形结合法:{x|3x2}

20、①、已知:a,bR,ab4,证明②、已知:a,b,cR,abc9,证明

1a1a1b1b1; 1c1;

1k

1;

并类比上面的结论,写出推广后的一般性结论(不需证明)。

解:①、根据柯西不等式:

(ab)(1a1b)(a

1ab

1b)

4,ab4,

1a

1b

1②、根据柯西不等式:

(abc)(1a1b1c)(a

1ab

1bc

1c)

9,abc9,

1a

1b

1c

1可以推广:a1a2ann,则:

1a1

1a

2

1an

1;

21、已知数列an的前n项和为Sn,Sn

(an1)(nN).

(1)求a1,a2,a3;(2)猜想数列an的通项公式并证明你的结论。解:(1)由S1又S2

又S3

131313

(a11),得a1

(a11)∴a113

(a21),即a1a2(a21),得 a213

.18

(a31),即a1a2a3(a31),得 a31

.(2)猜想数列an的通项公式:an()n

证法一:数学归纳法:当n=k+1时,ak1Sk1Skak1

ak1

1313

(ak11)ak

(ak1)12

k

ak112)

ak

ak1

ak

(),ak1(

k1,命题成立。

证法二:当n>1时,anSnSn1得

anan1



12,所以an是首项为

(an1)

1312

高中数学选修1-2知识点 篇6

第一章 统计案例 1.线性回归方程

①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系

③线性回归方程:ybxa(最小二乘法)

n

xiyinxy

i

1bn

2注意:线性回归直线经过定点(x,y)。2xnxi

i1

aybx

n

(x

2.相关系数(判定两个变量线性相关性):r

i1n

i

x)(yiy)

n

i

(x

i1

i

x)

2(y

i1

y)

2注:⑴r>0时,变量x,y正相关;r <0时,变量x,y负相关;

⑵①|r| 越接近于1,两个变量的线性相关性越强;②|r| 接近于0时,两个变量之间几乎不存在线性相关关系。3.回归分析中回归效果的判定:

n

⑴总偏差平方和:

(y

i1

i

y)⑵残差:eiyiyi;⑶残差平方和:(yiyi);⑷回归平方和:

i1

n

n

n

n

i

(y

yi)yi)

i1

(yiy)-(yiyi);⑸相关指数R

i1

1

i1n。

i

(y

i1

注:①R得知越大,说明残差平方和越小,则模型拟合效果越好;

②R越接近于1,则回归效果越好。4.独立性检验(分类变量关系):

随机变量K越大,说明两个分类变量,关系越强,反之,越弱。

第二章 推理与证明 一.推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

二.证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。

⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

第三章 数系的扩充与复数的引入

1.概念:

(1)z=a+bi∈Rb=0(a,b∈R)z= z2≥0;

(2)z=a+bi是虚数b≠0(a,b∈R);

(3)z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+=0(z≠0)z2<0;

(4)a+bi=c+dia=c且c=d(a,b,c,d∈R);

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di(a,b,c,d∈R),则:

(1)z 1±z2 =(a + b)±(c + d)i;

(2)z1.z2 =(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;

(3)z1÷z2 =(abi)(cdi)

(cdi)(cdi) acbd

cd22bcadcd22i(z2≠0);

3.几个重要的结论:

(1)(1i)22i;⑷

(2)i性质:T=4;i4n1i1ii;1i1ii;4n21,i4n1i,i

z。1,i4n3i;i4ni4n1i42i4n30;(3)z1zz1

4.运算律:(1)zmzznmn;(2)(z)zmnmn;(3)(z1z2)z1z2(m,nN);mmm

5.共轭的性质:⑴(z1z2)z1z2 ;⑵z1z2z1z2 ;

⑶(z1

z2)z1z2 ;⑷ zz。

6.模的性质:⑴||z1||z2|||z1z2||z1||z2|;⑵|z1z2||z1||z2|; ⑶|

高中数学选修21测试题 篇7

例1 苏教版选修2-1第93页例2, 在正方体ABCD-A1B1C1D1中, F是BC的中点, 点E1在D1C1上, 且undefined试求直线E1F与平面D1AC所成的角的大小.

解 不妨设正方体的棱长为1, 以undefined为单位正交基底, 建立如图所示的空间直角坐标系D-xyz, 则各点的坐标为

undefined

设undefined与undefined所成的角为θ, 则

undefined,

从而可得θ≈83.85°.

因为undefined是直线E1F的方向向量, undefined是平面D1AC的法向量, 所以E1F与平面D1AC所成的角是θ的余角, 大小约为6.15°.

可以看出角θ不是一个特殊角, 这里需要使用反三角函数, 而反三角函数在新教材中只是在必修4第52页的链接中简单提了一下, 并且在考试时, 一般是不允许学生使用计算器的.那么此例题包括它前面的例1, 后面的例3、例4及其对应的练习是否可以改成求角的余弦值呢?或者在下一版修正稿中把数据改一下, 变成一些常见角, 比如60°或45°, 等等.

例2 苏教版选修2-1第58页第3题, 已知两个定点B (-1, 1) , C (1, -1) , 动点A满足条件tan∠ACB=2tan∠ABC, 求点A的轨迹方程.

解 设A (x, y) , 则

undefined

∴当A在BC的右上方时,

tan∠ACB=2tan∠ABC,

即undefined,

即undefined,

即x+y=0或3x-3y-2=0.

当x=±1时, 也满足上式.

同理, 当A点在BC的左下方时结论相同.

∴点A的轨迹方程为x+y=0 (x≠±1) 或3x-3y-2=0.

此解用到了到角公式, 而到角公式在新课标中始终没有提到, 已从旧教材中删掉了.此题也可以使用其他方法解, 但解决过程中会发现很复杂, 完全没什么意义, 那么此题目是否可以直接删掉呢?但是既然此题目出现在课本上, 就最好能把它处理好, 可以简单介绍一下到角公式来解决.如果一定要把这个题目作为例题出现的话, 就用求向量夹角的余弦值, 再转化到正切值.这样虽然过程很繁琐, 但毕竟在学生能掌握的知识之内.

参考文献

[1]中华人民共和国教育部制定.数学课程标准.北京:人民教育出版社, 2004.

[2]蔡立.数学 (选修2-1) .南京:江苏教育出版社, 2006.

高中数学选修2-2知识点总结 篇8

一.导数概念的引入

数学选修2-2知识点总结

1.导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是

limf(x0x)f(x0)x,x0我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx,即

0f(x0)=limf(x0x)f(x0)xx0

例1. 在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系

h(t)4.9t6.5t10

运动员在t=2s时的瞬时速度是多少?

解:根据定义

vh(2)limh(2x)h(2)xx013.1

即该运动员在t=2s是13.1m/s,符号说明方向向下

2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于P时,直线PT与曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0)xnx0,当点Pn趋近于P时,函数yf(x)在xx0处的导数就是切线PT的斜率k,即

klimf(xn)f(x0)xnx0f(x0)

x03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即

f(x)limf(xx)f(x)xx0

二.导数的计算

1.函数yf(x)c的导数 2.函数yf(x)x的导数 3.函数yf(x)x的导数 24.函数yf(x)1x的导数

基本初等函数的导数公式: 1若f(x)c(c为常数),则f(x)0; 2 若f(x)x,则f(x)x1;3 若f(x)sinx,则f(x)cosx 4 若f(x)cosx,则f(x)sinx;5 若f(x)ax,则f(x)axlna 6 若f(x)ex,则f(x)ex

x7 若f(x)loga,则f(x)1xlna1x 若f(x)lnx,则f(x)导数的运算法则

1.[f(x)g(x)]f(x)g(x)

2.[f(x)g(x)]f(x)g(x)f(x)g(x)

f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

复合函数求导

yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数 yf(g(x))g(x)

三.导数在研究函数中的应用 1.函数的单调性与导数:

一般的,函数的单调性与其导数的正负有如下关系:

在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增; 如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数

极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:(1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;4.函数的最大(小)值与导数

函数极大值与最大值之间的关系.求函数yf(x)在[a,b]上的最大值与最小值的步骤(1)求函数yf(x)在(a,b)内的极值;

(2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题

利用导数的知识,求函数的最大(小)值,从而解决实际问题

第二章 推理与证明

考点一 合情推理与类比推理

根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法

1.它是一个递推的数学论证方法.2.步骤:A.命题在n=1(或n0)时成立,这是递推的基础;

B.假设在n=k时命题成立

C.证明n=k+1时命题也成立, 完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。考点三 证明 1.反证法: 2.分析法: 3.综合法:

第一章 数系的扩充和复数的概念 考点一:复数的概念

(1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.(2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,叫做纯虚数.(3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.(4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5)复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴。

(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

考点二:复数的运算

1.复数的加,减,乘,除按以下法则进行 设z1abi,z2cdi(a,b,c,dR)则

z1z2(ac)(bd)i z1z2(acbd)(adbc)i

z1z2(acbd)(adbc)icd22(z20)

2,几个重要的结论

2222(1)|z1z2||z1z2|2(|z1||z2|)

(2)zz|z|2|z|2(3)若z为虚数,则|z|z 3.运算律

(1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)224.关于虚数单位i的一些固定结论:

(1)i1(2)ii

(3)i1

高中数学选修21测试题 篇9

例1 用数学归纳法证明等式

时所有自然数 都成立。

证明(1)当

(2)假设当

时,左式,右式

时等式成立,等式成立。

时,等式也成立。

均成立。

时等式成立时,注意分析

与的两

由(1)(2)可知,等式对

评述 在利用归纳假设论证

个等式的差别。

变到

时,等式左边增加两项,右边增加一项,而且右式的首项由

应与

合并,才能得到所证式。因而,因此在证明中,右式中的在论证之前,把

时等式的左右两边的结构先作一分析是有效的。

用心爱心专心 1

由例1可以看出,在数学归纳法证明过程中,要把握好两个关键之外:一是

系;二是

与的关系。

与 的关

例2 用数学归纳法证明

对任意自然数,证明(ⅰ)当

时,能被17整除,命题成立。

(ⅱ)设

时,由归纳假设,能被17整除,也能被17整除,所以

都能被17整除。

表示。上例中的能被17整除。

时,能被17整除。

都能被17整除。

由(ⅰ)(ⅱ)可知,对任意

评述 用数学归纳法证明整除问题,常常把

还可写成,易知它能被17整除。例3 用数学归纳法证明

用心爱心专心 2

证明(ⅰ)当

时,左式

右式

时,原不等式成立。

(ⅱ)假设

()时,不等式成立,即

时,左边

右边

要证左边 右边

只要证

只要证

只要证

而上式显然成立,所以原不等式成立。即

时,左式 右式

由(ⅰ)(ⅱ)可知,原不等式对大于1的自然数均成立。用心爱心专心 3

评述 用数学归纳法证明不等式时,应分析

与的两个不等式,找出证明的关键点(一般要利用不等式的传递性),然后再综合运用不等式的方法。如上题,关键是证明不等式

。除了分析法,还可以用比较法和放缩法来解决。

例4 在数列

中,若它的前 项和

()

1)计算,,;

2)猜想的表达式,并用数学归纳法证明你的结论。

解(1)由题意,即

(2)猜想

证明 ⅰ)

时,命题成立。

ⅱ)假设

时,命题成立,即

时,∴

用心爱心专心 4

因而

解得

时,命题也成立。

由ⅰ)ⅱ)可知,命题对

均成立。

高中数学选修21测试题 篇10

答案与提示 第一章常用逻辑用语 1、1命题及其关系 1、1、1命题 1、1、2四种命题

1.C2.C3.D4.若A不是B的子集,则A∪B≠B5.①6.逆 7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题 8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中,若两条直线相交,则这两条直线不平行.以上均为真命题

9.若ab≠0,则a,b都不为零.真命题

10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)

1.C2.D3.B4.0个、2个或4个

5、原命题和逆否命题 6.若a+b是奇数,则a,b至少有一个是偶数;真 7.逆命题:若a2=b2,则a=b.假命题.否命题:若a≠b,则a2≠b2.假命题.逆否命题:若a2≠b2,则a≠b.真命题

8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a2,b2,c2也都是奇数,又a2+b2=c2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数 9.否命题:若a2+b2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题 10.真

11.三个方程都没有实数根的情况为(4a)2-4(-4a+3)<0,(a-1)2-4a2<0, 4a2+8a<0-32

1.A2.B3.A4.(1)/(2)/(3)(4)/5.充分不必要

6.必要不充分7.“c≤d”是“e≤f”的充分条件8.充分条件,理由略 9.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件为a<0 10.m≥911.是 122充要条件

1.C2.B3.D4.假;真5.C和D6.λ+μ=17.略8.a=-3 9.a≤110.略11.q=-1,证明略 1.3简单的逻辑联结词 131且(and)132或(or)133非(not)1.A2.C3.C4.真5.①③6.必要不充分

7.(1)p:2<3或q:2=3;真(2)p:1是质数或q:1是合数;假(3)非p,p:0∈;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真

8.(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;:4≤6,真

9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-111.52,+∞

1.4全称量词与存在量词 141全称量词 142存在量词 1.D2.C3.(1)真(2)真4.③

5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和 6.若一个四边形为正方形,则这个四边形是矩形;全称;真 7.(1)x,x2≤0(2)对x,若6|x则3|x(3)正方形都是平行四边形 8.(1)全称;假(2)特称;假(3)全称;真(4)全称;假 9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假; p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真; p:所有实数的绝对值都不是正数,假 10.(1)存在,只需m>-4即可(2)(4,+∞)11.a≥-2 143含有一个量词的命题的否定 1.C2.A3.C4.存在一个正方形不是菱形5.假 6.所有的三角形内角和都不大于180度

7.(1)全称;p假(2)全称;p假(3)全称;p真

8.(1)p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假(2)p:所有的质数都是偶数;假(3)p:存在乘积为0的三个实数都不为0;假 9.(1)假(2)真(3)假(4)真10.a≥311.(-2,2)单元练习

1.B2.B3.B4.B5.B6.D7.B8.D9.C10.D 11.5既是17的约数,又是15的约数;假12.〔1,2)

13.在△ABC中,若∠C≠90度,则∠A,∠B不都是锐角14.充要;充要;必要15.b≥0 16.既不充分也不必要17.①③④18.a≥3 19.逆命题:两个三角形相似,则这两个三角形全等;假; 否命题:两个三角形不全等,则这两个三角形不相似;假; 逆否命题:两个三角形不相似,则这两个三角形不全等;真; 命题的否定:存在两个全等三角形不相似;假 20.充分不必要条件

21.令f(x)=x2+(2k-1)x+k2,方程有两个大于1的实数根 Δ=(2k-1)2-4k2≥0,-2k-12>1, f(1)>0,即k<-2,所以其充要条件为k<-2 22.(-3,2〕

第二章圆锥曲线与方程 21曲线与方程 211曲线与方程

1.C2.C3.B4.45.?56.y=|x|7.不是,理由略 8.证明略.M1(3,-4)在圆上,M2(-25,2)不在圆上

9.不能.提示:线段AB上任意一点的坐标满足方程x+y-3=0;但是,以方程x+y-3=0的解为坐标的点不一定在线段AB上,如P(-1,4),所以方程x+y-3=0不是线段AB的方程.线段AB的方程应该是x+y-3=0(0≤x≤3)10.作图略.面积为4 11.c=0.提示:①必要性:若方程y=ax2+bx+c的曲线经过原点,即(0,0)是方程y=ax2+bx+c的解,则c=0;②充分性:若c=0,即方程y=ax2+bx+c为y=ax2+bx,则曲线经过原点(0,0)212求曲线的方程

1.C2.B3.B4.y=5,或y=-55.x2-y2+6xy=0 6.y2=x+67.x2+y2=4(x≠?)8.x2+y2-8x-4y-38=0〔除去点(-3,5),(11,-1)〕

9.4x-3y-16=0或4x-3y+24=0.提示:设C(x,y),因为直线AB的方程为4x-3y+4=0,|AB|=5,且点C到直线AB的距离为|4x-3y+4|5,故12|4x-3y+4|=10 10.4x-4y-3=0.提示:抛物线的顶点坐标为-m-12,-m-54,设顶点为(x,y),则x=-m-12, y=-m-54.消去m得到顶点轨迹方程为4x-4y-3=0 11.x+2y-5=0 22椭圆

221椭圆及其标准方程

(一)1.C2.D3.A4.6546.?327.(1)x2+y26=1(2)x225+y216=1 8.x24+y23=19.m∈(2,3)10.x225+y29=1.提示:由△ABF2的周长为20,知4a=20,得a=5,又c=4,故b2=a2-c2=9 11.x225+y216=1(x≠?).提示:以BC所在直线为x轴,线段BC的垂直平分线为y轴,建立坐标系,由已知得|AB|+|AC|=10,即点A的轨迹是椭圆,且2a=10,2c=6,故a=5,c=3,从而得b2=a2-c2=16,又当A,B,C三点共线时不能构成三角形,故点A的轨迹方程是x225+y216=1(x≠?)221椭圆及其标准方程

(二)1.B2.A3.B4.x26+y210=15.5或36.x24+3y24=1(x≠?)7.x25+y24=1或x25+y26=1.提示:分焦点在x轴、y轴上求解 8.(1)9(2)当|PF1|=|PF2|=5时,|PF1||PF2|的最大值为25.提示:由|PF1||PF2|≤|PF1|+|PF2|2,得|PF1||PF2|≤|PF1|+|PF2|22=25,当且仅当|PF1|=|PF2|=5时取等号 9.x210+y215=1.10.54 11.x29+y24=1.提示:过点M作x轴、y轴的垂线,设点M(x,y),由相似三角形知识得,|x||OA|=35,|y||OB|=25,即有|OA|=5|x|3,|OB|=5|y|2,由|OA|2+|OB|2=|AB|2,得x29+y24=1 222椭圆的简单几何性质

(一)1.D2.C3.A4.165.146.4或1 7.长轴长2a=6,短轴长2b=4,焦点坐标为F1(0,-5),F2(0,5),顶点坐标为A1(-2,0),A2(2,0),B1(0,-3),B2(0,3),离心率e=ca=53 8.x24+y2=1或x24+y216=1 9.x216+y212=1.提示:由△AF1B的周长为16,可知4a=16,a=4;又ca=12,故c=2,从而b2=a2-c2=12,即得所求椭圆方程

10.(1)x24+y2=1(2)x-122+4y-142=1 11.e=22.提示:设椭圆方程x2a2+y2b2=1(a>b>0),则c2=a2-b2,F1(-c,0),P-c,b1-c2a2,即P-c,b2a.因为AB‖OP,所以kAB=kOP,即-ba=-b2ac,b=c,得e=22

222椭圆的简单几何性质

(二)1.D2.D3.A4.120度5.356.x212+y29=17.x24+y23=1 8.x277832+y277212=1.提示:以AB为x轴,AB的垂直平分线为y轴,建立直角坐标系,设椭圆的标准方程为x2a2+y2b2=1(a>b>0),则

a-c=|OA|-|OF2|=|F2A|=6371+439=6810,a+c=|OB|+|OF2|=|F2B|=6371+2384=8755,解得a=77825,c=9725,所以b=a2-c2=8755?810≈7721.因此,卫星的轨道方程是x277832+y277212=1 9.-3-22.提示:设原点为O,则tan∠FBO=cb,tan∠ABO=ab,又因为e=ca=22,所以a=2c,b=c,所以tan∠ABF=cb+ab1-cab2=1+21-2=-3-22 10.94.提示:设P(x,y),先由12(|PF1|+|PF2|+|F1F2|).12=12.|F1F2||y|可求得y值,再确定点P的坐标

11.6-3.提示:连结F1Q,设|PF1|=m,则|PQ|=m,|F1Q|=2m,由椭圆定义得|PF1|+|PF2|=|QF1|+|QF2|=2a.∴|PF1|+|PQ|+|F1Q|=4a,即(2+2)m=4a,∴m=(4-22)a.又|PF2|=2a-m=(22-2)a,在Rt△PF1F

2中,|PF1|2+|PF2|2=(2c)2,即(4-22)2a2+(22-2)2a2=4c2,∴c2a2=9-62=3(2-1)2,∴e=ca=6-3 222椭圆的简单几何性质

(三)1.B2.D3.C4.835.2556.-127.5 8.(1)-52≤m≤52(2)x-y+1=0,或x-y-1=09.y275+x225=1 10.3x+4y-7=0.提示:设A(x1,y1),B(x2,y2),则x214+y213=1①,x224+y223=1②,①-②得(x1-x2)(x1+x2)4+(y1-y2)(y1+y2)3=0,∴y1-y2x1-x2=-34.x1+x2y1+y2.又M为AB中点,∴x1+x2=2,y1+y2=2,∴直线l的斜率为-34,故直线l的方程为y-1=-34(x-1),即3x+4y-7=0 11.(1)所求轨迹为直线4x+y=0在椭圆内的一条线段(不含端点).提示:设l交C于点A(x1,y1),B(x2,y2),由y=x+m, 4x2+y2=1,得5x2+2mx+m2-1=0,由Δ>0,得4m2-4?(m2-1)>0,得-52

231双曲线及其标准方程 1.D2.C3.C4.(0,6),(0,-6)5176.28 7.(1)x216-y29=1(2)y220-x216=18.x23-y22=1 9.x29-y227=1(x<-3).提示:由正弦定理,结合sinB-sinC=12sinA,可得b-c=12a=12|BC|=6,故点A的轨迹是以B,C为焦点的双曲线的左支,且不含双曲线与x轴的交点.因为a双=3,c双=6,所以b2双=27,故所求动点的轨迹方程为x29-y227=1(x<-3)1036.提示:分别记PF1,PF2的长为m,n,则m2+n2=400①,|m-n|=16②.①-②2得到2mn=144,所以△F1PF2的面积S=12mn=36 11.巨响发生在接报中心的西偏北45度,距中心68010m处.提示:以接报中心为原点O,正东、正北方向为x轴、y轴正方向,建立直角坐标系.则A(-1020,0),B(1020,0),C(0,1020),设P(x,y)为巨响发生点,由A,C同时听到巨响声,得|PA|=|PC|,故点P在AC的垂直平分线PO上,PO的方程为y=-x,因为点B比点A晚4s听到爆炸声,故|PB|-|PA|=340?=1360,由双曲线定义知点P在以A,B为焦点的双曲线x2a2-y2b2=1上,依题意得a=680,c=1020,∴b2=c2-a2=10202-6802=5?402,故双曲线方程为x26802-y25?402=1,将y=-x代入上式,得x=?805,∵|PB|>|PA|,∴x=-6805,y=6805,即P(-6805,6805),故|PO|=68010 232双曲线的简单几何性质

(一)1.B2.A3.C4.x2-3y2=365.60度6.53或54 7.实轴长2a=4;虚轴长2b=23;焦点坐标(-7,0),(7,0);顶点坐标(-2,0),(2,0);离心率e=ca=72;渐近线方程为y=?2x 8.(1)x29-y216=1.提示:设双曲线方程为y+43xy-43x=λ

(2)∠F1PF2=90度.提示:设|PF1|=d1,|PF2|=d2,则d1.d2=32,又由双曲线的几何性质知|d1-d2|=2a=6,∴d21+d22-2d1d2=36,即有

d21+d22=36+2d1d2=100.又|F1F2|=2c=10,∴|F1F2|2=100=d21+d22=|PF1|2+|PF2|2.∴△PF1F2是直角三角形 9.x2-y22=1或y2-x22=110.y=?x 11.(1)e1=ca=a2+b2a,e2=cb=a2+b2b,∴1e21+1e22=a2a2+b2+b2a2+b2=1(2)22.提示:e1+e2=a2+b21a+1b≥2ab.21ab=22,当且仅当a=b时,(e1+e2)min=22

232双曲线的简单几何性质

(二)1.B2.C3.A4.465.466.(-12,0)

7.轨迹方程为y24-x23=1,点M的轨迹是以原点为中心,焦点在y轴上,且实轴、虚轴长分别4,23的双曲线 8.3x+4y-5=0 9.22.提示:设与直线l:x-y-3=0平行的双曲线的切线方程为y=x+m,根据直线与双曲线相切的充要条件可得m2=16,m=?,由题意得m=-4,将y=x-4代入双曲线方程,得x=254,从而y=x-4=94,故切点坐标为254,94,即是所求的点,dmin=22 10.-20,故0

241抛物线及其标准方程

1.C2.D3.B4.y2=-20x556.y2=-12x7.(9,6)或(9,-6)8.若以(-3,0)为焦点,则抛物线的标准方程是y2=-12x;若以(0,2)为焦点,则抛物线的标准方程是x2=8y 9.y2=?x 10.抛物线的方程为y2=-8x,m=26或m=-26.提示:设抛物线方程为y2=2px(p>0),则焦点F-p2,0,准线方程为x=p2,由抛物线定义得点M到准线的距离|MN|=3+p2=5,∴p=4,抛物线方程为y2=-8x;又M(-3,m)在抛物线上,∴m=26,或m=-26 11.y2=8x 242抛物线的简单几何性质

(一)1.A2.C3.B4.y2=?x526.727.y2=16x8.x2=8y(第9题)9.能安全通过.提示:建立如图所示的直角坐标系,设抛物线方程为x2=-2py(p>0).A(20,-6)在抛物线上,∴400=-2p.(-6),解得-2p=-2003.∴x2=-2003y.又∵B(2,y0)在抛物线上,∴4=-2003y0.∴y0=-350,∴|y0|<1,∴载有木箱的竹排可以安全通过此桥

10.灯泡应安装在距顶点约35mm处.提示:在车灯的轴截面上建立直角坐标系xOy.设抛物线方程为y2=2px(p>0),灯应安装在其焦点F处.在x轴上取一点C,使OC=69,过点C作x轴的垂线,交抛物线于A,B两点,AB就是灯口的直径,即AB=197,所以点A坐标为69,1972,将点A坐标代入方程y2=2px,解得p≈703,它的焦点坐标约为F(35,0),因此,灯泡应安装在距顶点约35mm处

11.设P(x0,y0)(x0≥0),则y20=2x0,∴d=(x0-a)2+y20=(x0-a)2+2x0=〔x0+(1-a)〕2+2a-1.∵a>0,∴x0≥0.①当00,此时有x0=0时,dmin=a ②当a≥1时,1-a≤0,此时有x0=a-1时,dmin=2a-1 242抛物线的简单几何性质

(二)1.D2.C3.B4.?586.x2=2y7.y2=43913x. 8.b=2.提示:联立方程组y=x+b, x2=2y,消去y,得x2-2x-2b=0.设A(x1,y1),B(x2,y2),由OA⊥OB可得x1x2+y1y2=0,即x1x2+(x1+b)(x2+b)=0,也即2x1x2+b(x1+x2)+b2=0.由韦达定理,得x1+x2=2,x1x2=-2b,代入解得b=2(舍去b=0)9.-34.提示:当直线AB的斜率存在时,设lAB:y=kx-12,代入y2=2x,得ky2-2y-k=0,∴y1y2=-1,x1x2=y21y224=14,所以OA.OB=x1x2+y1y2=-34;当直线AB的斜率不存在时,即lAB:x=12,也可得到OA.OB=-34 1032.提示:假设当过点P(4,0)的直线的斜率存在,设为k,则直线方程为y=k(x-4),代入y2=4x,得k2x2-(8k2+4)x+16k2=0,∴x1+x2=8k2+4k2,∴y21+y22=4(x1+x2)=4?k2+4k2=48+4k2>32.当过点P(4,0)的直线的斜率不存在时,直线方程为x=4,则x1=x2=4,y21+y22=4(x1+x2)=4?=32;故所求的最小值为32 11.设A(x1,y1),B(x2,y2),当AB的斜率存在时,设AB方程为y=kx-p2,代入y2=2px,得y2-2pyk-p2=0,∴y1y2=-p2,x1x2=y212p.y222p=p24,又|AF|=x1+p2=m,|BF|=x2+p2=n, ∴x1+x2=m+n-p.∵x1+p2x2+p2=x1x2+p2(x1+x2)+p24=mn,∴p24+p2(m+n-p)+p24=mn,∴p2(m+n)=mn,∴1m+1n=2p.当直线AB的斜率不存在时,m=n=p,上述结论也成立 242抛物线的简单几何性质

(三)1.A2.C3.C435.(2,3)6.4837.y=14x+1,y=1,x=08.略

9.(1)y2=x-2.提示:设直线OA:y=kx,则OB:y=-1kx,由y2=2x, y=kx,得A2k2,2k;由y2=2x, y=-1kx,得B(2k2,-2k),设AB的中点坐标为(x,y),则x=1k2+k2,y=1k-k,消去k得所求的轨迹方程为y2=x-2(2)由(1)知,直线AB的方程为y+2k=k1-k2(x-2k2),令y=0,得它与x轴的交点为(2,0).其坐标与k无关,故为定值 10.略

11.(1)y2=32x(2)∵yA=8,∴xA=2.∵F(8,0)为△ABC的重心,∴xA+xB+xC3=8,yA+yB+yC3=0,即有xB+xC=22, yB+yC=-8.又y2B=32xB, y2C=32xC,故(yB+yC)(yB-yC)=32(xB-xC),所以yB-yCxB-xC=-4,即直线BC的斜率为-4

单元练习

1.C2.C3.B4.C5.B6.C7.B8.A9.B10.B 11.212.8513.y=?3x14.23 15.点P的轨迹方程是x-y-2=0,点Q的轨迹方程是y=-2 16.(1)由a=3,c=2,得b=1,∴椭圆的标准方程为x23+y2=1(2)由y=x+m, x23+y2=1,解方程组并整理得4x2+6mx+3m2-3=0.由Δ>0,得-2<m<2 17.32或52.提示:由AB‖CD,设AB为y=x+b(b≠4),代入y2=x,得x2+(2b-1)x+b2=0,由Δ=1-4b>0,得b<14.设A(x1,y1),B(x2,y2),则|AB|=2|x1-x2|=2(1-4b).又AB与CD间距离为|b-4|2,|AB|=|CB|,∴2(1-4b)=|b-4|2,解得b=-2或-6.∴当b=-2时,正方形边长|AB|=32;当b=-6时,正方形边长|AB|=52 18.(1)不妨设点M在第一象限,由双曲线x2-y2=1,得a=1,b=1,c=2.∴|MF1|-|MF2|=2.∴(|MF1|+|MF2|)2=(|MF1|-|MF2|)2+4|MF1|.|MF2|=4+4?4=9.∴|MF1|+|MF2|=3>|F1F2|.故点M在以F1,F2为焦点的椭圆上,其中a′=32,c′=2,b′=12.∴点M在椭圆x294+y214=1,即在4x2+36y2=9上(2)由x2-y2=1, 4x2+36y2=9,解得M324,24.又点M在抛物线y2=2px上,代入方程,得18=2p.324,解得p=224,故所求的抛物线方程为y2=212x 19.由y=-12x+2,x2a2+y2b2=1,消去y整理得(a2+4b2)x2-8a2x+16a2-4a2b2=0.设A(x1,y1),B(x2,y2),由根与系数的关系得x1+x2=8a2a2+4b2,x1x2=16a2-4a2b2a2+4b2.设AB的中点为M(xM,yM),则xM=x1+x22=4a2a2+4b2,yM=-12xM+2=8b2a2+4b2.∵kOM=yMxM=12,∴2b2a2=12,即a2=4b2.从而x1+x2=8a2a2+4b2=4,x1x2=16a2-4a2b2a2+4b2=8-2b2.又|AB|=25,∴1+14(x1+x2)2-4x1x2=25,即5216-4(8-2b2)=25,解得b2=4.∴a2=4b2=16,故所求椭圆方程为x216+y24=1 20.(1)Q(5,-5).提示:解方程组y=12x, y=18x2-4,得x1=-4, y1=-2或x1=8, y1=4,即A(-4,-2),B(8,4),从而AB的中点为M(2,1).由kAB=12,得直线AB的垂直平分线方程y-1=-2(x-2).令y=-5,得x=5,∴Q(5,-5)(2)直线OQ的方程为

x+y=0,设

Px,18x2-4.∵点

P

到直线

OQ的距离d=x+18x2-42=182|x2+8x-32|,|OQ|=52,∴S△OPQ=12|OQ|d=516|x2+8x-32|.∵点P为抛物线上位于线段AB下方的点,且点P不在直线OQ上,∴-4≤x<43-4,或43-4

1.D2.C3.C4.BB′,CC′,DD′5.AD,CA6.①②③④ 7.(1)CA(2)AC(3)0(4)AB 8.作向量OA=a,AB=b,OC=c,则CB就是所作的向量 9.A1B=-a+b-c,AB1=-a+b+c 10.AB.提示:先分别用AB,AD,AA′表示AC′,D′B,再相加 11.(1)AC′.提示:利用MC′=BN(2)A′B′ 312空间向量的数乘运算

1.A2.A3.C4.①③5.256.①②③7.(1)AB1(2)NA1 8.MN=-12a-12b+14c9.AM=12a+12b+12c 10.EF=3a+3b-5c.提示:取BC的中点G,利用EF=EG+GF求解 11.提示:(1)由AC=AD+mAB,EG=EH+mEF直接得出

(2)EG=EH+mEF=OH-OE+m(OF-OE)=k(OD-OA)+mk(OB-OA)=kAD+mkAB=kAC 313空间向量的数量积运算

1.D2.C.提示:①②③正确3.D4.-175.①②③65 7.提示:AC.BD′=AC.(BD+DD′)=AC.BD+AC.DD′=0 812.利用PC=PA+AB+BC平方求解

9.14.提示:将a+b=-c两边平方,得a.b=32,再利用cos〈a,b〉=a.b|a||b|求解 10.120度.提示:利用公式cos〈a,b〉=a.b|a||b|求解

112或2.提示:利用BD=BA+AC+CD两边平方及〈BA,CD〉=60度或120度 314空间向量的正交分解及其坐标表示 1.D2.A3.C4.-3j5.(-2,3,-5)6.M1(3,-6,9),M2(-3,-6,9),M3(3,6,-9)7.2,-5,-88.AE=-12DA+12DC+DD′;AF=-12DA+DC+12DD′ 9.提示:证明AD=2AB+3AC 10.提示:假设{a+b,a-b,c}不构成空间的一个基底,则存在x,y∈R,使得c=x(a+b)+y(a-b)=(x+y)a+(x-y)b,知a,b,c共面,与题设矛盾 11.DM=12a+12b-c;AQ=13a+13b+13c 315空间向量运算的坐标表示

1.C2.C3.D4.(1,4,-1);2355.(2,4,-4)或(-2,-4,4)6.120度7.(1)(8,-1,1)(2)(5,0,-13)(3)-7(4)-15 8.(1)x=17(2)x=-52 9.〔1,5〕.提示:|AB|=(3cosα-2cosβ)2+(3sinα-2sinβ)2+(1-1)2=13-12cos(α-β)10.65.提示:cos〈a,b〉=a.b|a||b|=-27,得sin〈a,b〉=357,由S=|a|.|b|sin〈a,b〉可得结果 11.(1)证明BF.DE=0(2)1010.提示:分别以DA,DC,DD′为单位正交基底建立空间直角坐标系Oxyz,利用坐标运算计算得出 单元练习一

1.C2.A3.C4.B5.A6.37.1538.x<-49.213 10.-112AB-13AC+34AD11.13512.17+63 13.90度.提示:(a+b).(a-b)=a2-b2=0 14.提示:设AB=b,AC=c,AD=d,则b2=d2,(b-c)2=(d-c)2,∴b.c=d.c,而BD.AC=(d-b).c=d.c-b.c=0,∴BD⊥AC 15.156.提示:不妨设正方体的棱长为1,分别以DA,DC,DD′为单位正交基底建立空间直角坐标系Oxyz,利用坐标运算计算得出 32立体几何中的向量方法

(一)1.B2.C3.D4.相交(但不垂直)5.互余6.相等或互补

7.-27,37,67或27,-37,-67.提示:所求单位法向量为:盇B|AB| 8.-1或49.814.提示:由题意a‖u,解得x=34,y=9 10.12,-1,1.提示:设平面ABC的一个法向量为n=(x,y,1),则由n.AB=0且n.AC=0,解得x=12,y=-1 11.垂直.提示:证明n.AB=0且n.AC=0 32立体几何中的向量方法

(二)1.D2.B3.C4.3,25.2π3或π3 6.VOBCD.OA+VOCDA.OB+VODAB.OC+VOABC.OD=0 7.26.提示:利用CD=CA+AB+BD,平方及CA⊥AB,AB⊥BD,CA⊥BD求解 8.x=13+6cosθa.提示:利用AC′=AB+AD+AA′,再平方求解 9.60度.利用AC′=AB+AD+AA′,平方求解

10.a2+b2.提示:利用CD=CA+AB+BD,平方及〈CA,BD〉=120度求解

11.63.提示:连结AC,AC2=(AB+BC)2=3,∴AC=3,又AA′.AC=AA′.(AB+BC)=cos60度+cos60度=1.∴cos∠A′AC=AA′.AC|AA′||AC|=13∴所求距离=|AA′|sin∠A′AC=63 32立体几何中的向量方法

(三)1.B2.D3.B4相等或互补5.30度6.90度

72.提示:∵CD=CA+AB+BD,AC⊥l,BD⊥l,A,B∈l,∴CA.AB=0,AB.BD=0.又CA与BD成60度的角,对上式两边平方得出结论

8.45 9.60度.提示:令C(-2,0),D(3,0),利用AB=AC+CD+DB两边平方,及AC⊥CD,CD⊥DB,〈CA,DB〉=θ求解

10.155.提示:以D为原点,直线DA,DC,DD1分别为x轴、y轴、z轴建立空间直角坐标系.可求得平面BB1D的法向量为n=(1,-1,0),设θ是BE与平面BB1D所成的角,则sinθ=|cos〈BE,n〉|=|BE.n||BE||n|=105.∴cosθ=155 11.22.提示:以A为原点,直线AD,AB,AS分别为x轴、y轴、z轴建立空间直角坐标系,则依题意可知D12,0,0,C(1,1,0),S(0,0,1),可知AD=12,0,0=n1是面SAB的法向量.设平面SCD的法向量n2=(x,y,z).∵SD=12,0,-1,DC=12,1,0,n2.SD=0,n2.DC=0,可推出x2-z=0,x2+y=0,令x=2,则有y=-1,z=1,∴n2=(2,-1,1).设所求二面角的大小为θ,则cosθ=n1.n2|n1||n2|=12?+0?-1)+0?12222+12+12=63,∴tanθ=22 32立体几何中的向量方法

(四)1.C2.D3.B4.33a5.246.227.491717 8.33.提示:以B为原点建立空间直角坐标系,得下列坐标:B(0,0,0),C(1,0,0),D(1,1,0),B1(0,0,1),则BD=(1,1,0),B1C=(1,0,-1),BB1=(0,0,1),设与BD,B1C都垂直的向量为n=(x,y,z),则由BD.n=0和B1C.n=0,令x=1,得n=(1,-1,1),∴异面直线BD与B1C的距离d=|BB1.n||n|=33 9.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),M(0,0,a),E(a,0,a),F(0,a,a),Pa2,0,a2,Qa2,a2,0.设n=(x,y,z)是平面EFB的法向量,则n⊥平面EFB,∴n⊥EF,n⊥BE,又EF=(-a,a,0),EB=(0,a,-a),即有-ax+ay=0,ay-az=0x=y=z,取x=1,则n=(1,1,1),∵PE=a2,0,a2,∴设所求距离为d,则d=|PE.n||n|=33a 10.33a(第11题)11.(1)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3).设F(0,0,z).∵AEC1F为平行四边形,∴AF=EC1,即(-2,0,z)=(-2,0,2),∴z=2.∴F(0,0,2).∴BF=(-2,-4,2).于是|BF|=26,即BF的长为26(2)设n1为平面AEC1F的法向量,显然n1不垂直于平面ADF,故可设n1=(x,y,1).由n1.AE=0,n1.AF=0,得 x=1,y=-14.又CC1=(0,0,3),设CC1与n1的夹角为α,则cosα=CC1.n1|CC1|.|n1|=43333.∴点C到平面AEC1F的距离为d=|CC1|cosα=43311 32立体几何中的向量方法

(五)1.B2.D3.A4.-165.30度6.①②④

7.不变,恒为90度.提示:以A为原点,AB,AC,AA1分别为x轴、y轴、z轴建立空间直角坐标系,易证明PN.AM恒为0 8.2.提示:设平面ABC的法向量为n,直线PN与平面ABC所成的角为θ,利用sin〈PN,n〉=|PN.n||PN||n|求解

9.155.提示:以A为原点,AB,AD,AA1分别为x轴、y轴、z轴建立空间直角坐标系,由已知先得出AD=233.易知平面AA1B的一个法向量m=(0,1,0),设n=(x,y,z)是平面BDF的一个法向量,BD=-2,233,0,由n⊥BF, n⊥BDn.BF=0,n.BD=0-x+z=0, 2x-233y=0x=z, 3x=y.不妨设n=(1,3,1),所以cos〈m,n〉=m.n|m||n|=155 10.255.提示:点A到平面BDF的距离,即AB在平面BDF的法向量n上的投影的长度,所以距离=|AB.cos〈AB,n〉|=|AB.n||n|=255,所以点A到平面BDF的距离为255 11.(1)60度.提示:以A为原点,AB,AC,AA1分别为x轴、y轴、z轴建立空间直角坐标系Axyz,设AC=AB=A1A=2,则A(0,0,0),B(2,0,0),C(0,2,0),E(1,1,0),A1(0,0,2),G(0,2,1),∴AE=(1,1,0),A1C=(0,2,-2),∴cos〈AE,A1C〉=AE.A1C|AE||A1C|=12(2)66.提示:设平面AGE的法向量为n1=(x,y,z),则AG.n1=0,AE.n1=0,令x=1,得n1=(1,-1,2),又平面AGC的法向量为n2=(1,0,0),∴cos〈n1,n2〉=n1.n2|n1||n2|=66(3)66.提示:∵平面AGE的法向量为n1=(1,-1,2),AC=(0,2,0),∴sin〈AC,n1〉=|AC.n1||AC||n1|=66 单元练习二

1.D2.C3.C4.A5.D6.C7.D8.A9.B10.A 11.229,329,-42912.21513.54,7214.-4或x=1 15.π216.①③17.43,43,8318.337,-157,-319.不共面

20.以点C为坐标原点,以CA,CB分别为x轴和y轴,过点C作与平面ABC垂直的直线为z轴,建立空间直角坐标系Cxyz,设EA=a,则A(2a,0,0),B(0,2a,0),E(2a,0,a),D(0,2a,2a),M(a,a,0).(1)∵EM=(-a,a,-a),CM=(a,a,0),∴EM.CM=0,故EM⊥CM(2)设向量n=(1,y0,z0)与平面CDE垂直,则n⊥CE,n⊥CD,即n.CE=0,n.CD=0.∵CE=(2a,0,a),CD=(0,2a,2a),∴y0=2,z0=-2,即n=(1,2,-2),∴cos〈n,CM〉=CM.n|CM|.|n|=22,则所求的角是45度 21.(1)略(2)24(3)217(第22题)22.(1)如图,建立空间直角坐标系Dxyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),Ea,a2,0,F0,a2,b2,EF=-a,0,b2.取SD的中点G0,0,b2,则AG=-a,0,b2.∴EF=AG,EF‖AG,又AG平面SAD,EF平面SAD,∴EF‖平面SAD(2)33.提示:不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),E1,12,0,F0,12,1,EF的中点M12,12,12,MD=-12,-12,-12,EF=(-1,0,1),MD.EF=0,∴MD⊥EF.又EA=0,-12,0,EA.EF=0,∴EA⊥EF.所以向量MD和EA的夹角等于二面角AEFD的平面角.

上一篇:法院院长关于刑事审判工作情况的报告下一篇:望江中心小学庆祝建党90周年活动开展报告