方程教学课件(精选8篇)
方程教学课件 篇1
简易方程—实际问题与方程(2)教学内容:教材P4例2及练习十六第5、6、9题。教学目标:
知识与技能:学生能根据等式的基本性质解如ax ±b=c的方程,初步学会列方程解决一些简单的实际问题。
过程与方法:培养学生抽象概括的能力,发展学生思维的灵活性,进一步提高学生的分析能力。
情感、态度与价值观:帮助学生感受数学与现实生活的联系,培养学生的数学应用意识与规范书写和自觉检验的习惯。
教学重点:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。教学难点:找等量关系式列方程。
教学方法:创设情境;自主探索、合作交流。教学准备:多媒体。教学过程
一、忆旧引新 1.看图列方程。
2.先说说下面各题的数量关系,再列方程,不用求解。(1)公鸡x 只,母鸡30只,比公鸡只数少6只。(2)公鸡x 只,母鸡30只,是公鸡只数的2倍。
二、互动新授 1.出示足球。
师:同学们,你们喜欢足球吗?其实,足球里蕴藏着许多的数学知识。请观察老师手中的足球,你发现白皮和黑皮的形状有什么不同吗?
师:除了形状,白皮、黑皮的块数也不相同哦,有几位男生正在探究这个数学问题,让我们一起来瞧瞧。
2.出示教材第74页例2情境图。
观察图,并说说图中你知道了哪些信息?要解决什么问题?
学生回答:知道的信息:足球上黑色的皮都是五边形的,白色的皮都是六边形的。白色皮共有20块,比黑色皮的2倍少4块。解决的问题:共有多少块黑色皮?
追问:你能根据信息和问题列出题中的等量关系式吗? 交流汇报,并根据回答选择板书: 黑色皮的块数×2=白色皮的块数-4 黑色皮的块数×2-4=白色皮的块数 黑色皮的块数×2=白色皮的块数+4 引导学生观察第二个等量关系式,说一说这个等量关系式中的已知条件和未知条件分别是什么? 已知条件:白色皮共20块,比黑色皮的2倍少4块;未知条件:黑色皮有多少块?
3.引导学生利用例1的经验,自主列方程解答: 学生自主解答,教师指导。学生汇报,教师根据汇报板书: 解:设共有x 块黑色皮。2x-4=20 2x-4+4=20+4 2x =24 2x ÷2=24÷2 x =12 4.追问:在解方程时,先把什么看成一个整体?(把2x 看成一个整体。)5.检验。
6.小结:刚才我们通过列方程解决了一个稍复杂的问题,你能说说列方程解决问题主要有哪些步骤吗?其中哪一个步骤是最关键的?
学生汇报: 教师板书: ①弄清题意,设未知量为x。设
②分析题意,找等量关系。找▲(关键)③根据等量关系列出方程。列 ④解方程。解 ⑤检验答案是不是方程的解。验
三、巩固拓展
1.根据方程列出等量关系式。
粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据(),列方程:3x +12=72 根据(),列方程:72-3x =12 2.先说说下列各题的数量关系,再列方程解决问题。
故宫的面积是72万平方千米,比天安门广场面积的2倍少16万平方千米。天安门广场的面积是多少万平方千米?
四、课堂小结
1.这节课你学会了用什么方法来解决实际问题? 2.什么类型的题目适合用今天所学的方法来解答? 3.用这样的方法来解决实际问题时要注意什么? 作业:教材第75~76页第5、6、9题。
方程教学课件 篇2
教学目标
1.使学生在解决实际问题的过程中, 理解并掌握形如ax±b=c方程的解法, 会列上述方程解决两步计算的实际问题。
2.使学生在观察、分析、抽象、概括和交流的过程中, 经历将现实问题抽象为方程的过程, 进一步体会方程的思想方法及价值。
3.使学生在积极参与数学活动的过程中, 养成独立思考、主动与他人合作交流、自觉检验等习惯。
教学重点:理解并掌握形如ax±b=c方程的解法, 会列方程解决两步计算的实际问题。
教学难点:如何指导学生在观察、分析、抽象、概括和交流的过程中, 将现实问题抽象为方程。
教学过程
课前谈话导入:同学们, 经调查, 我们班大部分同学的年龄是12岁 (虚岁) , 也可以通过推理推算出来, 7岁入学, 在学校学了五年, 正好是12岁。老师今年是39岁, 师在黑板上板书39和12。下面请同学比较一下老师和你的年龄, 并用一句话把比较的结果说出来, 注意启发引导学生说出:“老师的年龄比我年龄的3倍还多3岁”, “老师的年龄比我年龄的4倍少9岁”。两种说法都可以。接着问, 明年呢?“老师的年龄比我年龄的3倍还多1岁”。
【设计意图】通过学生熟悉的年龄话题引入, 并训练学生对两数大小比较, 为新课分析数量关系作理解铺垫。把抽象的数量关系分析生活化, 利于学生进入学习情境。
一、在现实问题情境中分析数量关系, 列出方程, 探索解方程的方法——教学例1
(一) 在情境中分析数量关系, 提出问题
1.师谈话进入情境:孙悟空跟随师父历尽千辛万苦从西天取来大量经书, 藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。 (出示大雁塔和小雁塔的图片) 这节课, 我们先来研究一个与这两处建筑高度有关的数学问题。 (出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”, 暂不出示所求的问题)
2.师让生读出这段文字并提问:谁比谁少22米?让学生明白“大雁塔高度和小雁塔高度的2倍比, 少22米, 可以把小雁塔高度的2倍看做一个整体。”
师进一步启发:这句话清楚地说明了大雁塔和小雁塔高度之间的关系, 请同学们用数量关系式表示出大雁塔和小雁塔高度之间的相等关系。
出示学生可能想到的等量关系式: (1) 小雁塔的高度×2-22=大雁塔的高度; (2) 小雁塔的高度×2=大雁塔的高度+22; (3) 小雁塔的高度×2-大雁塔的高度=22。
3.引导学生观察第一个等量关系式。师:经测量小雁塔高度是43米, 你能利用这个关系式口答出大雁塔的高度吗?学生口答, 师板书:2×43-22=64 (米) 。
【设计意图】运用数量关系直接求出高度, 体会顺向思维。既感受数量关系的价值, 又为下面的逆向思维作出对比准备, 更重要的是让学生在下面列方程时也要像这样顺向思维进行思考。
4.师:如果知道大雁塔的高度是64米, 你能提出什么问题?
生:小雁塔的高度是多少米? (出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1补充完整。)
【设计意图】在清楚数量关系的基础上, 学生已经把问题迁移到需要用逆向思维考虑解决的问题上。让学生自己提出问题, 突出解决问题是学生自己的学习需求, 也为他们探索解答作出心理准备。
(二) 根据等量关系布列方程, 同时唤起有关方程的旧知
1.生观察第一个等量关系式, 师提问:在这个等量关系式中, 这时哪个数量是已知的?哪个数量是我们去求的?
追问:让你求小雁塔的高度怎么办呢?我们可以用什么方法来解决这个问题?
生:可以列方程解答。如果学生列出正确的算式进行解答, 师给予肯定, 再引导学生用方程的方法解决问题。
师明确方法, 并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。 (板书课题:列方程解决实际问题)
2.师谈话:我们在五年级已经学过列方程解决简单的实际问题, 结合今天我们学习的内容, 谁来说一说列方程解决实际问题一般要经过哪几个步骤?
生能大概说出“写设句、列方程、解方程和检验等即可。
3.让学生先自主尝试设未知数, 并根据第一个等量关系式列出方程。
解:设小雁塔高x米。
2x-22=64
【设计意图】经历由现实问题抽象为方程的过程。在建构数学模型的过程中, 先由情境抽象成数量关系式, 再根据数量关系式列出方程, 实现了学生在逐步抽象的过程中学习数学的方法, 体现了数学的简洁性和学习数学的必要性。
(三) 自主探索解方程的方法, 体会转化的思想
提问:这样的方程, 你以前解过没有?运用以前学过的知识, 你能解出这个方程吗?
交流中明确:首先要应用等式的性质将方程两边同时加上22, 使方程变形为2x=?, 即把用两步计算的方程转化为一步计算, 变新知为旧知, 再用以前学过的方法继续求解。
要求学生接着例题呈现的第一步继续解出这个方程。学生完成后, 组织交流解方程的完整过程, 核对求出的解, 并提示学生进行检验, 最后让学生写出答句。
【设计意图】让学生在自主探索方程解法的过程中, 体会运用转化策略, 把两步转化成一步、复杂转化成简单、新知转化成旧知。
(四) 思考其他方法, 感受解法的多样化
1.提问:还可以怎样列方程?
学生列出方程后, 要求他们在小组内交流各自列出的方程, 并说说列方程的根据, 以及可以怎样解列出的方程。如果学生不能列出其他方程, 师不能作硬性要求。
2.引导小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?
引导学生关注:⑴要根据题目中的信息寻找等量关系, 而且一般要找出最容易发现的等量关系;⑵分清等量关系中的已知量和未知量, 用字母表示未知量并列方程;⑶解出方程后要及时进行检验。 (师板书:找等量关系;用字母表示未知数并列方程;解方程, 检验。)
【设计意图】通过解法的多样化, 使学生明白可以根据自己学习实际和思维习惯分析数量关系, 列方程解决问题, 同时训练学生思维, 拓展学生解决问题的思路。
二、自主尝试列方程解决实际问题, 注意比较例题, 进一步形成解决问题模式——自主合作学习“练一练”
“杭州湾大桥是目前世界上最长的跨海大桥, 全长大约36千米, 比香港青马大桥的16倍还长0.8千米。香港青马大桥全长大约多少千米?”
谈话:我们已经初步掌握列方程解决稍复杂的实际问题的方法和步骤, 下面就请同学们试着解决一个实际问题。做“练一练”。
1.先让学生读题, 并设想解决这一问题的方法和步骤, 然后让学生独立完成。
2.小组合作交流。交流前要出示交流顺序提示:⑴说说找出了怎样的等量关系;⑵根据等量关系列出了怎样的方程;⑶是怎样解列出的方程的;⑷对求出的解有没有检验。
3.最后让学生核对自己的答案, 检查自己的解题过程。
针对学生不同的思路和方法 (包括用算术方法) , 教师在提出主导意见的基础上要予以肯定。
4.启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?提炼出列方程解决稍复杂的实际问题的基本思路和解形如ax±b=c方程的一般方法。
【设计意图】让学生在独自解决问题的过程中学会解决问题, 在探究中学会合作。
三、运用方程策略独立解决实际问题, 牢固形成解决问题模式 (建构牢固的数学模型) ——做“练习一”的第1~5题
谈话:在列方程解决问题的过程中, 有两个方面要引起我们重视, 一个是寻找等量关系, 能用含有字母的式子表示具体数量;另一个就是解方程。下面我们就对这两个方面进行进一步的学习和训练。
1.做“练习一”第1题
“解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”
先让学生说说解这些方程时, 第一步要怎样做, 依据是什么, 然后让学生独立完成。交流反馈时, 要在关注结果是否正确的同时, 了解学生是否进行了检验。 (三个同学到黑板上板演, 其他同学选做一题。)
2.做“练习一”第2题
“在括号里填上含有字母的式子。
(1) 张村果园有桃树x棵, 梨树比桃树的3倍多15棵。梨树有 () 棵。
(2) 王叔叔在鱼池里放养鲫鱼x尾, 放养的鳊鱼比鲫鱼的4倍少80尾。放养鳊鱼 () 尾。
学生独立完成后, 再要求学生说说写出的每个含有字母的式子分别表示哪个数量, 是怎样想到写这样的式子的? (把题目中的多、少改成少、多让学生再表示)
3.做“练习一”第3题
“猎豹是世界上跑得最快的动物, 时速能达到110千米, 比猫最快时速的2倍还多20千米。猫的最快时速是多少千米?”
谈话:同学们, 我们既能准确地找到等量关系, 又能正确解方程, 那么我们就具备了解决实际问题的能力了。就请同学们独立解决一个问题。
学生独立完成后, 指名说说自己的思考过程, 进一步突出要根据题中数量之间的相等关系列方程。
4.课堂作业:做“练习一”的第4题和第5题。
“北京故宫占地大约72公顷, 比天安门广场的2倍少8公顷。天安门广场大约占地多少公顷?”
“世界上最小的鸟是蜂鸟, 最大的鸟是鸵鸟。一个鸵鸟蛋长17.8厘米, 比一只蜂鸟体长的3倍还多1厘米。这只蜂鸟体长多少厘米?”
【设计意图】在巩固训练和应用策略阶段采用先部分后整体的练习步骤, 进一步深化认识, 并在体验中达到知识和技能的内化。
四、总结列方程解决问题的思路、方法, 体会方程的思想和价值——学生拓展设计
1.学生拓展设计
师:请同学们回到课前, 我们师生关于年龄的对话中, 看39岁和12岁, 你能设计一个用今天所学的策略和方法解答的实际问题吗?
师要多听学生的发言, 考虑学生所说数量之间的关系以及提出问题的贴切性并作出评价和概括。
2.今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?教师同时总结, 方程是我们解决问题很重要的一个策略, 正确地运用方程, 能帮助我们解决很多实际问题, 尤其是用算术方法不容易解决的一些问题。我相信同学们经过今天的学习, 对方程会有更深的认识, 并在以后的学习和运用中进一步学好和用好方程。
方程教学课件 篇3
【关键词】方程解法 方程应用 方程思想
方程是数学发展史上的一个重要里程碑.它可以包容和展示丰富的数量关系,使数学语言有了质的飞跃;用等式作为数学思维的工具,对不同结构形式的方程,人们逐步探索出一套分类处理解方程的方法.正是源于解决数学问题的需求意识发展,人类才创造出方程这一璀璨的数学明珠.今天,课改教材遵循知识的历史发展观:阐明形成方程知识的背景,强调数学思维发展依赖数学工具、语言的功能创新;重视等式变形意义:解方程所采用的数学法则、方法和程序,不仅是学生对方程类型辨识和结构分析,而且又是对数学本质和意义理解的感悟,更是数学化归思想、优化意识在解题对策中的思辨.教材编写意图,旨在让学生体验:方程建模是解决实际问题的有效手段,它是小学后数学新思维、新语言、新方法、新功能的发展.
一、重视方程解法的教学
(一)引导学生探究并理解方程的解法原理
要让学生把方程解法掌握得更好、更牢固,而不是空中楼阁,就必须让学生理解方程的解法原理。一元一次方程解法原理是等式基本性质;一元二次方程按其解法不同其解法原理有两个,直接开平方法、配方法,公式法的解法原理是平方根的定义即若则叫做的平方根,即;因式分解法的解法原理是若则;二元一次方程组解法原理是通过等量代换进行消元转化成一元一次方程来解
(二)进行适量的解方程(组)的训练,让学生形成较稳定的解方程(组)的能力
解一元一次方程,一元二次方程,二元一次方程组的能力是新课程标准规定的初中阶段的学生必须掌握的一项基本技能,要形成熟练的解方程(组)的能力,适当的训练是必须的,而且在训练时,选题应该典型有代表性,全面有覆盖性。
(三)适时归纳解方程(组)基本步骤和基本思路。在训练的基础上,适时对解方程(组)的基本步骤和基本思路进行归纳,可以使学生站在更高的层次上理解方程解法和思路,掌握得会更好、更牢固。例如解一元一次方程的基本步骤是①有分母去分母;②有括号去括号;③移项;④合并同类项;⑤系数化为1;处理方程或方程组的基本思路是:无理方程有理化,分式方程整式化,高次方程低次化,多元方程一元化,總而言之一句话,消元降次简单化。
二、重视方程应用题的教学
(一)用方程来解决问题是初中数学学习的重点、难点。《新课程标准》对方程提出了这样的要求“能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型”,因此对于方程的应用,也应当成为教学的一大重点,对绝大多数学生来说学习方程的一个重要原因就是能够应用它解决问题,包括数学的问题和非数学的问题。列方程(组)解应用题,是初中数学的一个难点,许多学生怕应用题,主要是他们理不清纷繁复杂的数量及其关系,或者难以将实际问题数学化,因而列不出正确的方程,教学中要把握这个重点,设法破解这个难点。
(二)重视教会学生审题和寻找相等关系的方法
分析一道应用题是解好这道题的关键,不会分析就不会解题。解应用题之前要进行认真读题审题,抓住关键语句分析。首先要分析题目类型,其次要分析已知量、未知量,以及已知量、未知量之间的关系,有的关系是明显的,题目中有关键语句明确交待的,有些关系是隐含的,需要仔细读题,认真思考才能得出的。必要时应教会学生辅助分析的方法,如线段图、示意图、列表法等,这些方法能帮助学生理解纷繁的数量关系,使其思路清晰。通常在设出未知数后,列出方程前,还要做一些准备工作,大多是根据数量关系列出一些含有未知数的代数式表示某些量,然后再列方程,自然就会水到渠成。
(三)优化习题教学,获得练习最优效果
应用题教学中,适当的题目训练是必要的,但要改变简单重复,面面俱到的题海战术,提倡一题多解、变式练习和题组练习的教学,重视解题后的回味与反思,使方法得以升华,学生只有真正掌握了分析问题解决问题的方法,养成了较强的解题能力,才能应对各种各样千变万化的应用题。
(四)归纳解题步骤,养成严谨的答题习惯
列方程解应用题的一般步骤有四步,简单记为“一设、二列、三解、四答”。一设,即设未知数,可分为直接设元和间接设元两种;二列即分析题目中的数量关系,列出方程或方程组;三解即解方程或方程组得出未知数的值;四答即检验并作答。对于一条列方程应用题,要教给学生完整的解题步骤,包括书写规范,养成严谨的答题习惯。
三、要重视方程思想的渗透和方程意识的培养
(一)方程教学的一个重要目的是方程思想和意识的渗透和培养
方程思想是一种重要的数学思想。所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当的设元建立起方程(组),然后通过解方程(组),使问题得到解决的思维方式。方程意识的指当我们在某些问题解决的过程中遇到某些未知量难以直接算出时,要有用方程来解决问题的意识。学以致用是对所有知识学习的要求,学习方程很重要的一个目的就是使学生具有用方程来解决问题的思想和意识。
(二)拓宽方程应用范围,培养方程思想和意识
方程教学设计 篇4
知识与技能:理解和掌握方程的意义,明确方程与等式两个概念的关系。
过程与方法:经历从生活情境到方程的模型的建构过程,使学生能够判断一个式子是不是方程,并能解决简单的实际问题。
情感、态度与价值观:让学生感受方程与生活的密切联系,培养学生的数学应用意识
。渗透转化的数学思想,发展其抽象思维能力和符号感。教学重点:理解和掌握方程的意义。
教学难点:判断一个式子是不是方程,用方程表示数量关系。教学方法:观察、分析、分类、抽象、概括和交流 教学准备:多媒体,天平。教学过程
一、情境导入
1.创设情境:观看视频《曹冲称象的故事》。
2.请学生简单地说一下曹冲是利用什么原理称出了大象的重量呢?(让大象和石头的重量相等,再称石头的重量。)
3.你们知道吗?在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。
二、讲授新知
1.出示天平: 让学生说一说对天平有哪些了解?
(学生自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。)老师做补充:天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。2.合作探究。
(1)观察课件,在天平的左端放一个空碗,在天平的右边放一个20克的砝码,天平平衡吗? 让学生自主思考,提出问题:在天平的左边再放1个50克的砝码,右边再放多少克砝码就可以保持平衡?
用算式表示:20+50=70。让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)
(2)把一个碗放在天平的左边,右边放50g的砝码,让学生观察天平说一说发现了什么。引导学生通过观察发现:现在天平不平衡,说明空碗的重量小于50g。,20<50,这样的式子你能给它取个名字吗?引导学生说出不等式。(板书:不等式)提问:如果碗里加上米粉,你能用式子表示碗和米粉的重量吗?
学生思考得出:一碗米粉的重量等于碗的重量加米粉的重量。
如果用未知数x 来表示米粉的重量,那么碗和米粉一共有多重,又该怎样表示呢?
学生汇报:2O+x(师板书)(3)再次让学生观察现在的天平(天平右边放50g砝码),发现了什么?(天平两边不平衡)
哪边重一些呢?你们能用数学算式来表示吗?
学生回答:2O+x >50。怎样让天平两边平衡呢?(加砝码)
教师在右边加一个50g的砝码让学生观察,并说一说天平的情况。引导学生用式子表示:2O+x <100。
引导学生说明这碗米粉的重量大于50g,小于100g。让学生继续思考,怎样才能使天平平衡呢?
引导学生把右边的砝码换成50克和20克的,使天平左右两边平衡。这说明了什么?(一碗米粉的重量等于70g)(4)同桌说一说自己喜欢的等式、不等式,并在等式、不等式下面记录下来。(5)让学生比较黑板上的等式和不等式,有什么不同?
学生思考,得出:有的等式没有未知数x,有的等式含有未知数x,有的含有未知数的是不等式,有的是等式。
教师小结:像2O+x =70这样的含有未知数的等式,称为方程。(板书:方程)(6)引导学生思考:是不是所有的等式都是方程?(不是。)那么,方程有哪些特点? 归纳小结:方程的特点:是一个等式,且含有未知数。
(7)出示一组含有未知数和不含未知数的等式,借助集合图比较等式与方程,总结出方程与等式的关系。(方程一定是等式,等式不一定是方程)
三、巩固拓展
1.达标练习,通过练习引导学生发现利用天平的平衡找出等量关系,再用方程表示数量关系。
2.没有天平,我们能找出题目中的等量关系并用方程表示吗? 观察情境图,按要求完成题目。
3.拓展练习。根据给出的方程编题。
四、分享收获。
师:这节课你学会了什么?有哪些收获? 引导总结:1.含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。3.方程一定是等式,等式不一定全都是方程。
板书设计: 方程的意义
石块的重量=大象的重量
不平衡平衡
不等式 等式 方程 20<50 20+50=70 20+x=70 20+x>50 20+x=70 20+x<100
含有未知数的等式叫做方程。
简易方程教学反思 篇5
简易方程教学反思1
亡羊补牢是一个成语故事。讲的是一个养羊人丢了羊,开始不在意,后来羊又丢了,最后补好羊圈不再丢羊的故事。它告诉我们:出了差错应该及时想办法补救,免得再受损失。本文故事性较强,课文内容较简单,对学生来说在把握内容上不会有什么困难。关键是要通过读懂寓言的内容来理解寓言中所含着的意思。
这节课我的教学环节简练清楚,根据这个寓言故事题眼“亡”、“牢”容易产生歧异,引导孩子读故事,探究字意,探究“亡”、“牢”字意,引导理解故事内容,感悟寓言的道理,并创设平台,多次引导学生把读懂故事内容与感悟故事蕴涵的道理交织深化,使目标的落实扎实到位。这种探究学习在此运用自然而高效地提高了教学效果。学生既学会了解了寓言故事,又读懂了寓言所蕴涵的道理,这既使寓言学习的目标得到有效落实,又让学生很好地掌握了寓言学习的方法,把学习的目标与方法一同清晰地教给了孩子
不足之处是这节课上我没有实现探究性学习,整堂课上提出的问题比较琐碎,没有去挖掘有价值的问题进行讨论,我想这和我自身有关系,因为怕在课堂上问题没有提到位,学生无法理解。今后教学中我要多开展探究性学习,多尝试自主学习,争取在以后的教学中越做越好。
简易方程教学反思2
记得我以前上学的时候,解最简单的方程的方式是这样的:比如x+5=8就是x=8—5,x=3。那时觉得很好懂,但是现在五年级课本上是这样的:x+5=8,x+5—5=8—5,x=3。看起来比较复杂。开始接触到这个课程时看到教材例题中的解法感觉很疑惑,百思不得其解。为什么新课程的“解方程”教学要“绕远路”?如果单单从简单的加减乘除的方程来看,第一种方法无疑是简单易懂而且步骤少,而第二种方法就相对复杂了。那教材这样改的目的是什么呢?深入研究教参后我体会很深,明白了新课程数学教学要“瞻前顾后”的道理。
新课程的改革,更加注重知识的迁移和联系,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和—另一个加数,减数=被减数—差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的。新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。所以虽然复杂,但是更容易掌握。
简易方程教学反思3
在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用加减乘除各部分之间的关系来求出方程中的未知数,而今的人教版教材的设计打破了传统的教学方法,而是借用天平使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样就能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
1、在学习中,我以天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉比较抽象,我引导学生在反复操作中理解加、减一个数的目的和依据。
我在天平的左侧放5克砝码,右侧也放5克砝码。(抛砖引玉)
2、学生亲自动手反复不断的进行操作。(学生动手操作)
在此基础上,我再做进一步的引导。
活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
3、教师:请同学们都想一想,如果天平两侧都减去相同的质量,天平会出现什么现象?你能列出几个这样的方程吗?(学生同桌之间通过充分地交流,反馈交流结果,学生得知,如果我们把天平作为一个等式(当天平平衡时)的话,等式的两边都减去同一个数,等式仍然成立。通过引导,学生能完全得出了等式的性质。最后我们通过学生自己的整理和总结,把以上发现的性质合二为一。得出:等式的两边都加上(或减去)同一个数,等式仍然成立。
二、利用等式性质解方程——初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,但我认为利用等式性质解方程的方法单一化,内容虽少问题很多。其表现在:
1、从教材的编排上,整体难度下降,有意避开了形如:66—2方程=30等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现方程在后面的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出方程在后面的方程吗?我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答方程在后面这类方程的解答方法,就是等号二边同时加上方程,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充方程在后面的方程的解法。要教他们列方程时怎么避免方程在后面这样方程的出现等等。因此,我干脆就又把原来的老方法交给同学们,以便备用或请他们根据具体情况选择适当的解题方法。
3、我个人认为:现行教材的某些地方还有待于进一步的改进与完善。
简易方程教学反思4
在通读教参时我初步感受到:简易方程太容易了,学生一学肯定能掌握好。本单元引入等式性质进行教学解方程的方法,简单的一句话,只要记住同加、同减、同乘、同除就行了,这有什么难的。
正如我所想的,聪明的学生一学就会,并且掌握的很好,但学生是参差不齐的,一小部分学生通过月考可以看出来,他们掌握的还是不好。怎么了?讲了一遍又一遍怎么还没掌握住?不行,我还的从类型与多加练习下手,就不相信他们学不会。接下来我就把方程总结成六种类型,每组每天出一道题,课前三分钟做完。刚开始肯定是做不完的,就利用上课的一点时间让学生做完。一天一天过去了,通过批改发现孩子们进步了、掌握了。我反省到:
看来数学不能只站在某一个点上做“井底之蛙”的狭隘的教学,教师不仅仅从本单元、本年级、本学段和小学范畴内分析把握教学内容,更应该从学生发展和为学生发展服务的意识上把握教学内容。
在课堂上学生多次通过观察就发现未知数的值是多少,但却还要把烦琐的过程写出来。
例如:
X+1.2=8,根据等式的性质,学生很容易发现两边同减1.2,得出X=6.8。写出过程是:
X+1.2=8,
解:X+1.2-1.2=8-1.2
X=6.8
在写过程时学生习惯根据加、减、乘、除运算之间的关系来写,面对如上的繁杂过程接受的缓慢,无奈。
本单元的教学使我对新教材和新课标又加深了认识,也许当完整的教学完本单元的知识时又会有新的理解和收获。
简易方程教学反思5
长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。
猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。
任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。
学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。
练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。
简易方程教学反思6
本文是我国著名的编剧、导演、作家吴祖光先生与著名评剧演员新凤霞的女儿──吴霜女士(即文中的“霜霜”)发表在《收获》杂志1991年第3期上的一篇回忆录。文章以“我”的口吻,娓娓叙述了“我”在“艺术和生活”舞台上成长的故事,读后令人倍感亲切,深受启发。
本课语言风趣而又充满童稚,描写细致而又生动,要体现的是艰辛,而笔下却处处流露着乐观。
在教学本课时,我感到需要学生课前收集关于评剧艺术方面的资料,为理解课文做准备。教学时教师要着眼于通过学生的自主阅读,引导学生感悟戏剧表演艺术给人的神奇魅力,要让学生通过充分朗读和画找语句来感知课文,并通过朗读或形象描述把自己的感悟表达出来。
简易方程教学反思7
今天早上在库沟小学听了张福华老师的《简易方程的整理和复习》这节复习课。这是我第一次听复习课,以往只是从教学策略上了解复习课的教学流程,当今天真真正正的倾听了一节复习课后,感受颇深,所学甚多,只奈何有言吐不出,下面就简单说一些听完这节课的体会。
首先,张老师的语言简练干脆,善于利用名言名句。
在课的开始,大屏幕上就展示出了俄国乌申斯基的一句话:“装着一些片段的,没有联系的知识的头脑,就像一个乱七八糟的仓库,主人从那里是什么也找不出来的。”这句话的展示,让学生一下子就了解了整理的重要性,也了解了这节课的目的所在。在回顾整理,构建网络这一环节,张老师在让学生自己看课本例题的知识点时又说了一句“不动笔墨不读书”,提醒了学生看例题时可以适时的进行批画,将遗忘的知识点突出显示出来。在课的最后又课件展示了韦达和爱因斯坦的名言警句。
其次,目录归纳知识点,清楚明了。
我想所有的老师都会头疼复习某一单元或某一册课本时知识点的归纳,只奈何没有更好的方法可以把所有知识点系统的展现给学生。本节课张老师的方法让我眼前一亮,目录展示法,让所有知识点的区别和联系清楚的摆了出来,方便了学生的回顾和整理。
最后,练习充实有趣,层次分明。
闯关形式的练习提高了学生的积极性,激发了学生的好胜心。在一,二,三的闯关中,依次将基础知识点,重难点进行了练习,稳固。学生在回答闯关的答案时,张老师经常会问一个为什么,引导学生对知识点进行再回顾。例如,在一名学生回答bX8等于8b时,问为什么不是b8?在学生回答aXa=a的平方时,问为什么不是2a?看似不经意的询问,却巩固了细微处的知识点。
当然,张老师的课还有许多值得我学习的地方。例如,创设了有效地复习情景,亲和力强,能及时唤起回忆,将零散的知识系统化等等。通过这节课,让我更清楚的了解了复习课的教学模式,对以后上好复习课有了更多的信心。
简易方程教学反思8
在本课教学中,我主要采用小组合作学习,讨论的方式,让学生探究新知识,效果较好。
出示例题2,小组合作学习,讨论:
①你是怎样理解图意的?
②你是如何列方程的?
③你是根据什么解方程的?
④怎样检验方程的解是否正确?然后班交流讨论,展示学生的练习。
指名回答,说说自己的分析。你对他的分析有什么要问的吗?
教师总结解题关键。
教学例3时,让学生观察、分析,这道题与前面的练习题比较有什么区别?这道题可以怎样解?(先小组交流后个人解答)学生找出解题关键,培养一题多解的习惯与能力。
最后让学生做全课总结:今天学习了什么知识?解方程的关键是什么?
充分练习,进行思维训练,设计有趣的习题“帮小兔找家”:
4x-12=20 3x=15 x+7=15 2x+3×2=
18-2x=2 15÷3+4x=
巩固知识,激发兴趣。
简易方程教学反思9
本节课例题的教学注意利用三个等量关系列出三个不同的方程,让学生自主讨论、列出,并利用学过的解方程知识尝试解方程。注意让学生比较选择,让学生明了顺着题意列方程更简洁。注意让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。
在列方程解决实际问题的教学过程中,教师教的重点和学生学的重点,不在于“解”,而在于“学解”。注重的是解决问题的过程。也就是说,要让学生经历寻找实际问题中数量之间的相等关系并列方程解答的全过程。
本节课的教学设计,注重让学生分析条件、问题,让学生首先理解题意,然后让学生通过分析、交流、讨论等活动,找出等量关系,充分展示他们的思维过程,发展思维能力。 应用题的教学难点就是:如何引导学生理解题意,列出需要的数量关系式或等量关系式。在这个过程中,重要的并不是展示学生的方法如何多,因为解决办法是可以举一反三的,重要的应该是引导学生如何通过分析,找出等量关系式的过程。同时,在分析过程中,让学生掌握多种办法来分析。如通过抓关键句、关键词、关键字列等量关系式。
本节课教学设计注意总结回顾方法,让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。
在小组合作方面,本节课主要在分析等量关系,根据等量关系列方程两个环节给孩子们小组合作探讨交流的时间。纵观本节课小组合作有利于学生理解掌握题中的数量关系,找出等量关系,根据等量关系列方程。我们学校本学期开展的是基于导学案学习基础上的小组合作学习,导学案有三分之二的学生能基本完成,三分之一的学生基本不做、做的很少、干脆不做。导学案的学习非常有利于学生的学习,能加快上课的节奏,加大练习量,但对于不预习、不做导学案的学生上课效果大打折扣。基于导学案学习出现的现象是“优者更优”,“弱者被动挨打”“积弱者更弱”。关键是怎样调动学生积极性,怎样让家长配合老师,让学生做好提前预习,让学生提前预习好导学案。这样才能目的效果兼收。
简易方程教学反思10
义务教育小学阶段五年级数学上册第五单元《简易方程》在解简易方程呈现五个例题。
其中例1以X+3=9为例,讨论了X加减某一数的方程解法。教学重点是运用等式的性质1解方程,并引入方程的解与解方程两个概念。如图所示:
为了便于给出解方程全过程的直观展示,例题中借助三幅天平演示图,展现了解方程的完整思考过程,这一点值得称道,对于学生来说,这样的图示剖析,有助于学生自我探究理解,学习解简易方程,从而学会解简易方程的方法。
但问题来了。在例1当中没有完整的解题过程示范,只有检验过程的示范。如上图所示。而完整的示范出现在例3,经历了例1运用等式性质1解方程,例2利用等式性质2解方程,递进至例3完成方程转化解方法(未知数位于减数、除数位置,属逆向解方程)才有一个完整的解方程的示范。如下图所示:
从学习心理学来讲,学生在接触新知识点的第一印象极为重要,第一次学习新知,是由不知到知,由不懂到懂而迈出的重要第一步。这一步的踏出对学生而言异常重要。第一次是新的,大脑对新知的接受是处于兴奋状态,此时的理解记忆刻痕是最深的,无论到的是直,是斜,一旦留下,再想更改那就难上加难。作为老师一定要重视学生的第一次接触新知,“课上损失课外补”更是事倍功半。
学材的编排着实让我有点挠头,明明能够一目了解,通过阅读自学就能搞定的解方程规范,这样一个基础性的知识点,非要放在例3才有完整呈现,在实际的课堂教学中有点不得劲儿,也有些不符合学生学习的认知规律。
简易方程教学反思11
在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑
1、从教材的编排上,整体难度下降,有意避开了,形如:45—X=23 24÷X =6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的`方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。
简易方程教学反思12
我在选课参赛的时候,决定选《赤壁赋》一文,是个艰难的决定。本文是经典中的经典,有过无数次的被解读;本文由景入情,由情悟理,思想深刻,背景广阔;本文以赋为体,主课问答,应突出诵读;本文又是以文言文为载体,应强化理解。一时间,千头万绪,不知从何入手,畏首畏尾,总怕设计漏洞百出,割裂了学生与文本,但又不愿调换内容。
我考虑到本文文体特征,先定下了诵读这条主线,为帮助学生诵读,我将课前自主学习的设计精细化,更有针对性的帮助学生逐层深入理解文本。在自主学习的基础上,展示小组交流成果,促进学生对文本的熟悉理解,也增强学生的信心。课堂主要以引导,帮助为主,让学生逐渐走进文本的景、情、事、理。课后延伸阅读是我的另一个设想,读懂本文是本课的目标之一,读苏轼是我设计的更高目标。作为文化经典,苏轼不可复制,如果在语文课堂上不能引起学生对苏轼的阅读兴趣,那我总觉得是一种遗憾。
我的这一节课,完全是一节生成课,学生不是我所带的学生,尽管彼此有些陌生,但他们一次又一次给了我惊喜。我对学生的表现是满意的,我自己对学生的评价和引导还有遗憾和不足之处,希望各位专家予以指导。
简易方程教学反思13
教学实录:
出示例题:6x-6.8×2=20
师:请你观察一下这道方程和我们原来所学的方程有什么不一样?
生:它比原来多了一个6.8×2。
生:它比我们原来所学的方程多了一步运算。
师:你回答的非常好,这个方程比刚才解答的方程要多一步计算,这就是今天要学习的解简易方程。(板书课题)
评析:
“一切真理都要让学生自己去获得,由他重新发明,而不是草率地传递给他。”为此,我在教学中通过让学生对新旧知识进行比较,让他们自己去获取新知。继而在教师的引导下尝试求6x-6.8×2=20的解。
我知道在前面已复习了ax土bx=c的方程,为推导求ax土b=c(b表示两数的积)的方程作铺垫;例题不但承接了上节课的内容,而且引出了本节课的新内容。这两道题,帮助学生找到新旧知识最近的连接点,为新知的学习做好铺路架桥的工作。
教学实录:
师:这道题是6x减去什么的差等于20,你觉得这道题开始要怎样解?
生:应先算6.8×2。
师:为什么要先算6.8×2?
生:因为前面是减法,后面是加法,我们应该按照四则混合运算的顺序先乘后减,所以要先算6.8×2。
生:先算6.8×2就可以使方程变为6x-13.6=20,又回到了我们原来所学的方程。
生:因为在这条方程中6.8×2可以先算出来,所以要先算。
师:这两位同学很会动脑筋也都观察的非常仔细。解这个方程时,按运算顺序能先算的一步就要先算出来,然后再求方程的解,其中又把6x暂时看做一个数。
师:现在就请一位同学上黑板来演示一遍,看这样算行不行?其他同学也请自己在下面试试看。
同学们踊跃地举起了手。
师:你们觉得他做的对吗?做的完整吗?
生:我觉得他做的是对的,我也做到这么多。
同学们都在那里点头称是。
师:再仔细看看!
同学们感到很疑惑,一个个皱紧了眉头。沉默片刻,突然有一只小手举了起来。
生:他的答案是正确的,但是我觉得他做的不完整。
学生被这个说法吸引了起来,顿时三三两两地举起了手。
生:因为他还没有检验。
师:你们同意吗?
生齐答:同意。
师:对了,在解方程时我们一定要养成自觉检验的习惯,以此来检查方程的解对不对。
让学生在自己的本子上边回忆边检验,然后同桌互相检查检验的过程。
评析:
第一层:操作尝试,理解概念
为了让学生更好地掌握怎样去解答ax土b=c(b表示两数的积)的方程,我让学生自己去探究。
第二层:潜移默化,推导方法
有了上一层的前提教学,在这一层,我就可以放手让学生尝试解答例题了。并提出问题你觉得这道题开始时要怎样去解?为什么?该怎样检验方程的解?
其实这些“想”的过程正是教师要教的过程,也是学生解题的的思考过程。这些自学提纲充当了学生自学的“领路人”,学生通过提示,再思考该填上的内容,新知识便顺利地掌握了。
简易方程教学反思14
长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反思。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接,教学反思《解简易方程教学反思》。通教材的老师也主张用等式的基本性质解方程。
在我的教学过程中却出现了这样的问题 ,利用等式的基本性质解形如x+a=b与x-a=b, ax=b与x÷a=b一类的方程,学生方法掌握起来比较简单。但写起来比较繁琐。然而遇到a-x=b、a÷x=b的方程时,由于小学生还没有学习正负数的四则运算,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦;但是在教学过程中我们不可避免地会遇到根据现实情境从顺向思考列出X当作减数、当作除数的方程,要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。于是,我又要求学生遇到X当作减数、当作除数的方程时,要求学生会用减法和除法各部分之间的关系来做。但是,我发现这让有些孩子无所适从。我现在感到很困惑,我们到底怎样做才是合理得呢?恳请各位老师指教。
简易方程教学反思15
北京是神圣的,是令人向往的,是孩子们熟悉的,也是遥远的、陌生的。北京深厚的历史文化底蕴和它国际化、现代化的气息,是缺少生活阅历,生活在小城市的学生所难以体会的。课文的第2段介绍的是北京的古迹——天安门,而3、4段则介绍北京的交通、绿化等比较现代化的东西,在教学过程中,我便把“朗读指导”与“美景展示”结合起来,让学生通过课件欣赏美丽的北京的同时,再读相关文字,做到“图文并茂”,使学生对北京的认识由抽象到直观,由表象到内化。这样就能更好的“读”,更深透的“悟”。
简易方程教学反思 篇6
小学教学简易方程,学习的目的在于应用,列方程解决实际问题,与学生在这之前所采用的列算术解决实际问题,它的共同点是以四则运算和常见数量关系为基础都需要分析数量关系。它们的区别主要是思考方法不同。列方程解决实际问题时未知数能以一个字母为代表和已知数一起参加列式运算所以解题材思路常更加直截了当,降低了思维难度。
学生第一次接触列方程解答问题,对将所求数量设为X,对未知数参与列式,都有感受到不习惯。这里我从文字题入手,学会列方程解,再过度到用方程解应用题,分散难点,同时我着重复习数量间的等量关系,便于学生列方程。
生活是数学的唯一源泉,所谓联系生活展现情境,就是把教材中所写的数学与学生的生活,通过创设情境沟通起来,打开学生的生活库藏,强化他们的体验,增进对数学的理解。古人读书“虚心涵泳,切己体察”就是这个意思。
俗话说:“百闻不如一见。”这是人们认识客观事物的一条规律。运用实物演示情境,正是从这一认识规律出发的。一般知识性数学涉及的物体,对学生来说不陌生的,实物一出示,儿童便豁然领悟。实物演示既可以由老师展示,也可以由学生自己展示。这样,不仅丰富了学生的生活体验,同时也锻炼了学生的口头表达能力。
数与画是相通的,因此,借助图画再现数学情境,可以把数学数字具体化、形象化,收到“一图穷千言”的效果。在图画面前,学生看得清楚,感受得真切,从画的颜色、明暗中不仅能迅速立体地感知数学内容,易于接受和理解,涵养美感,同时也能体会到作者把图画变成语言文字的高明以及依文绘图的创造性。在运用图画再现情境时,教师要加以指点和启发,以引导学生认也可以由学生自己展示。这样,不仅丰富了学生的生活体验,同时也锻炼了学生的口头表达能力。
数与画是相通识的方向性;同时还要由感情地讲述,便于学生充分感受形象,进入情境。生活是数学的唯一源泉,所谓联系生活展现情境,就是把教材中所写的数学与学生的生活,通过创设情境沟通起来,打开学生的生活库藏,强化他们的体验,增进对数学的理解。古人读书“虚心涵泳,切己体察”就是这个意思。
方程教学课件 篇7
在一次“变异理论”的学习和研究中, 一位教师设计了这样的教学情境。
教师:你能表示天平秤上的等量关系吗?
[教师的目的是引出“方程”这一崭新的知识点。]
学生:鸡蛋的质量是100-20=80 (克) 。
[结果学生直接用列算式的方法求出未知量, 没有列“方程”。]
这位教师设计的教学情境使我陷入思考:为什么一些学生没有列出“方程” (不愿用字母表示未知量) , 而是直接列算式求出未知量呢?原来, 在教师设计的教学情境中, 学生很容易根据已有的数量关系, 求出未知数量, 没有必要列“方程”。也就是说, 学生在解决问题的过程中, 没有产生对“方程”的需求, 没有体会到列“方程”的意义。基于此, 在教学“认识方程”这一内容之前, 我结合教学内容, 对学生的已有经验进行分析, 寻找解决问题的方法。
首先, 明确学生需要掌握的教学内容, 即“方程”的概念及其关键属性。
“方程”的概念:含有未知数的等式叫方程。
“方程”的关键属性:其一, 表示一种相等关系;其二, 等式中含有未知数;其三, 与等式中未知数的个数、表示方法及位置无关。
其次, 根据“变异理论”, 需要设计相关的非标准正例和反例 (见表1) , 以帮助学生更好地认识“方程”的关键属性。
为了使学生初步体会用字母表示未知量的简洁性和必要性, 从而产生对“方程”的需求, 体会列“方程”的意义, 并充分利用天平秤这一教学用具使“平衡表示相等关系”的“方程”思想贯穿到课堂教学中, 我设计了这样的教学情境。
[教师出示天平秤。左边托盘内为一颗樱桃、一颗杏子;右边托盘内是质量为45克的砝码。]
教师:现在, 天平秤平衡了, 为什么?请把你的想法写出来。
学生1:左边托盘内樱桃与杏子合在一起的质量等于右边托盘内砝码的质量 (45克) 。
[学生1以文字记录的方式表达。]
学生2:樱桃+杏子=45 (克) 。
[学生2以列算式的方法表达。]
学生3:a+b=45。
[学生3用字母表示未知量, 列出“方程”。]
教师:为什么用字母表示樱桃和杏子的质量?
学生3:因为我不知道樱桃和杏子的质量是多少, 恰好刚学过用字母表示数, 所以我用字母表示未知量。我觉得, 这样写比较简单。
浅谈初中数学方程教学 篇8
【关键词】初中数学;方程教学;方法研究
随着新课改的不断推进,初中方程教学目标以发生较大转变,由知识内容教学变为思维培养、知识应用教学,传统方程教学方式已不适应新时代发展需要。对教师而言,初中方程教学仅仅是启蒙教育,重在培养学生方程思维,初步建立基本方程概念,而真正学习方程是在高中乃至大学期间。而对学生而言,小学方程学习只算接触概念,初中方程学习是一种与传统数学解题思维相悖的数学思维学习,且需要高超解题技巧,学习难度较大。如何运用适当教学方式,将初中方程学习化繁为简,使得学生高效学习,提高教学质量,仍然是当前初中数学教师探索重点。
一、渗透方程思维
方程完全不同于以前所学数学解决问题方式,在以往,学生解决问题是由已知到未知,根据已有线索求得未知答案,而方程则不同,它是由未知到已知。如小明买了一个梨子和一个桃子,一共花了五块钱,其中桃子三块钱,求一个梨子的价格。传统解决方式是用总的价格减去桃子的价格,从而得到答案。而方程则是先假设梨子价格已知,为X元,再用桃子价格加上桃子价格等于总价格,最后求得答案。这其中包含了两种截然不同的数学思维。方程思维培养是初中方程教学的中心,教师在方程教学中尤其是解题过程中要尽量展现方程思维,时刻渗透方程思想,培养学生方程思维,以此提高学生学习质量。
二、合理制定学习目标
根据调查,学生在学习前熟知学习目标,学习效率要比未明确学习目标高出百分之二十,由此可见,在教学前明确学习目标,能让学生有目的、有方向地进行学习,有效提高学习效率。因此,我们在进行方程教学时,首先应明确教学目标,教学目标设计要强调两个原则:第一是层次性,每个班级都有学困生与优秀生,而这两个群体的学习能力与发展需要必定不一致,这就要求教师根据学生实际合理制定不同层次的学习目标,满足不同层次学生发展需要;第二是方向性,方向即发展方向、学习重点,初中方程学习重在方程思维培养,因此教师在制定学习目标时应强调学生方程思维培养。例如,在学习《消元—解二元一次方程组》一课时,教师可设定如下学习目标:1.掌握一种消元法的基本应用,会解简单二元一次方程组;2.掌握教材中两种消元法,能熟练运用消元法解二元一次方程组;3.了解整体消元法、常数消元法等多种一般消元法,能通过消元方式不同了解其具体消元思想。科学合理的教学目标设定不仅要求教师吃透教材、吃透教学大纲,更要求教师对学生学习能力及学习情感有一个整体把握,实现教学有效性。
三、由旧入新
初中方程学习主要包括《一元一次方程》、《二元一次方程组》及《一元二次方程》三个部分,随着年级的递增而学习难度增大,但这三个章节、章节内的课时却是环环相扣的,教师可以通过运用学生已经掌握的旧知识内容或体系,引申出新的知识内容,降低学习难度。例如,在《消元—解二元一次方程组》一课时学习中,我们在上学期已学过解一元一次方程,教师可将一元一次方程的解法引申到解二元一次方程组中,我们先用解一元一次方程的方式将二元一次方程组移项,把两个等式的一边化为一致,成为A=B,A=C的形式,这时引入消元的概念,无论是加减消元还是带入消元都适用。新知是建立在旧知的基础上发展而来的,教师在方程教学中可以采用以新代旧的教学方式,不仅降低学习难度,将繁杂的消元解题变为“简单地加减法”,更有助于学生方程思维的培养,活学活用,提高学生数学应用能力。
四、改进陈旧的教法
传统方程教学以灌输式教学为主,辅以题海战术,达到会解题、能拿高分的目的,这种教法弊端明显,学习情感体验不佳,极大地扼杀了学生学习兴趣,学生学习动力不足。但我们不能一昧地否定,它能在这片广袤的土地上开花结果,影响一代又一代人,必然有着它独特的优点。我们要去其糟粕取其精华,根据教学实际,结合他人优秀教学经验或教法,加以创新,运用到自身教学当中,提高教学质量,推动初中数学新课改发展。
五、适当的评价与交流
教学质量的提高离不开师生的充分交流。一方面,通过与学生的交流或反馈,教师能从学生角度发现教学方式中存在的弊端,在教学中有哪些知识内容未讲解到位、学生未掌握到位,便于教师优化教学方式、查漏补缺;另一方面,通过教师给予学生恰当评价,学生能发现自己的优点,正视自身在学习过程中的不足,并依据教师指导进行合理调整,提高学习质量。
六、结语
初中数学是连接高中数学的重要桥梁,是数学思维形成的重要阶段,具有承上启下的作用。本文从实际出发,提出了五点关于提高初中方程教学质量的建议。方程贯穿学生整个中学数学学习,既是初中数学教学重点,也是教学难点,教师要从学生出发,在教学过程中将学生思维、知识内容与课堂三者紧密联系起来,提高数学课堂教学质量,推动初中数学教学发展。
【参考文献】
[1] 徐访华. 浅谈如何在初中数学教学中做好方程教学[J]. 当代教育实践与教学研究:电子刊,2015(12)
[2]李新辉.浅论初中数学方程的多种教学方法[J].新课程导学:八年级中旬,2016(2):18-18
【方程教学课件】推荐阅读:
简易方程―实际问题与方程教学反思10-06
解方程教学反思优秀10-22
小学数学解方程教学07-28
《分式方程》教学设计06-18
《简易方程》教学设计09-03
可化为一元一次方程的分式方程教学设计06-10
小学数学方程教学论文07-07
《认识方程》数学教学反思05-29
高中数学《简易方程》教学反思06-09
解简易方程教学设计07-07