实际问题与一元二次方程(第1课时)教案

2024-12-07

实际问题与一元二次方程(第1课时)教案(共10篇)

实际问题与一元二次方程(第1课时)教案 篇1

21.3实际问题与一元二次方程(1)

课型:新课 课时:1 主备人:林玲 教学目标:

知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述

情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

教学重难点

教学重点:列一元二次方程解有关传播问题的应用题 教学难点:发现传播问题中的等量关系 教学方法:引导发现法 教学过程

一、复习引入

1、解一元二次方程都是有哪些方法?

2、列一元一次方程解应用题都是有哪些步骤?

①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答

说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.

二、合作探究 【探究1】

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

思考:(1)本题中有哪些数量关系?

(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?

设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感;

在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感.(4)根据等量关系列方程并求解

解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:

1+x+x(1+x)=121 解方程得

x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.

(5)为什么要舍去一解?

(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?

说明:使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验. 【探究2】

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

思考:(1)怎样理解下降额和下降率的关系?

(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了 元,此时成本为 元;两年后,甲种药品下降了 元,此时成本为 元。(3)对甲种药品而言根据等量关系列方程并求解、选择根?

解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.

依题意,得5000(1-x)2=3000 解得:x1≈0.225,x2≈1.775(不合题意,舍去)

(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。

设乙种药品成本的平均下降率为y.

则:6000(1-y)2=3600 整理,得:(1-y)2=0.6 解得:y≈0.225 答:两种药品成本的年平均下降率一样大

(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?

三、巩固练习

说明:通过练习加深学生列一元二次方程解应用题的基本思路

四、课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

2.用“传播问题”建立数学模型,并利用它解决一些具体问题.

3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1x)nb(常见n=2)

作业:练习册

板书设计: 实际问题与一元二次方程(1)

1.归纳

2.实际问题探究 3.小结 4.作业

教学反思:

实际问题与一元二次方程(第1课时)教案 篇2

【知识与技能】

能构建分式方程解决实际应用问题.【过程与方法】

经历“实际问题——构建分式方程模型——解决实际应用问题”的过程,进一步体会数学建模思想,培养学生的数学应用意识,发展学生分析问题、解决问题的能力.【情感态度】

在构建分式方程解决实际问题的过程中,体验数学的应用价值,提高数学学习兴趣.【教学重点】

构建分式方程解决实际应用问题.【教学难点】

依据实际问题构建分式方程模型.一、情境导入,初步认识

问题解分式方程的一般步骤是怎样的?为什么解分式方程过程中一定要检验?

【教学说明】让学生回顾分式方程的解法,为利用分式方程的实际应用问题作好准备.教师再解释分式方程必须检验的原因,加深印象.教师讲课前,先让学生完成“自主预习”.二、典例精析,掌握新知

例1两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?

1【分析】由题意可知甲队单独施工1个月完成工程量是,如果能知道乙队

3单独施工1个月所完成的工程量,就可以比较两边的施工速度.因此可以设出乙队单独施工1个月完成的工程量为

11111,进而列出方程为+(+)=1,解这个x323x方程,求出未知数值后,经检验,得到问题的答案.解:设乙队单独施工1个月能完成总工程的实际进度,得

111+ +=1.2x361.记总工程量为1,根据工程的x方程两边乘6x,得 2x+x+3=6x.解得 x=1.检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成1任务的,可知乙队的施工速度快.3【教学说明】解答过程可由学生自己完成,注意给出分式方程的检验过程.例2某次列车平均提速vkm/h.用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度为多少?

【分析】对于题目中出现的字母v和s,我们都应把它当作已知数据.根据问题的需要,可说提速前的速度为x千米/时,则提速后速度为(x+v)千米/时,再利用相同时间内,提速前行驶s千米,提速后可行驶(s+50)千米,建立关于x的分式方程为ss50,并予以求解及进行检验.在检验时可利用实际问题中xvxs>0,v>0来进行判断即可得出结论.解:设提速前这次列车的平均速度为xkm/h,则提速前它行驶skm所用时间为sxh,提速后它行驶(s+50)km所用时间为根据行驶时间的等量关系,得

s50h.vxss50.xvx方程两边乘x(x+v),得s(x+v)=x(s+50).解得x=sv.50sv时x(x+v)≠0.50检验:由v,s都是正数,得x=所以,原分式方程的解为x=

sv.50svkm/h.50答:提速前列车的平均速度为【教学说明】解答过程由学生自己完成,教师巡视,发现问题,及时沟通,让学生养成独立思考习惯,学会分析问题,解决问题.在评讲时教师应针对本节的实际背景下的s>0,v>0进行必要说明.三、运用新知,深化理解

1.八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.2.张明3h清点完一批图书的一半,李强加入清点加一半图书的工作,两人合作1.2h清点完另一半图书.如果李强单独清点这批图书需要几小时?

3.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个.【教学说明】

1、2题可由学生自主探究,获得结论,教师在巡视过程中,针对学生可能出现的问题及时点拨.而第3题教师应先予以分析,再引导学生依题意得到关于x的分式方程,从而得到问题的答案.四、师生互动,课堂小结

本节课学习了哪些知识?在知识的应用过程中需要注意什么?你有什么收获?

实际问题与一元二次方程(第1课时)教案 篇3

第一课时教学反思

蒲河九年制学校 唐志康

本节课是人教版上册第三章《一元一次方程》第四节《实际问题与一元一次方程》的内容,主要的教学目标是使学生学会对一元一次方程进行简单的应用,将实际问题抽象为数学问题,通过找相等关系列出方程解决问题。让学生通过探究性学习不仅使知识的构建与运用、技能的形成与巩固,而且让学生丰富了生活经验,学习策略得到完善。在本次教学中我能以学生为主体,以探究为主线,采取合作交流的探究式进行学习,课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、学习方法等得到提高也形成正确的价值观。

通过本节课的教学,我的成功之处是:

1、本节课设计成自主探究的形式,有利于体现学生的主体地位,让学生充分参与到教学过程中来。

2、本节课的题目设计有利于学生理解商品销售问题中的标价、售价、进价、利润、利润率这些概念的含义及它们之间的关系,并能利用它们之间的关系来解题。

3、我把教材中的探究问题分解成三道题目,有利于学生由浅入深地掌握本节课的重难点。

4、教学方法采用学生先练教师后讲的模式,激发探究热情,有利于培养学生的尝试意识。

5、通过学习,绝大多数学生学会对一元一次方程进行简单的应用;

6、通过学习,绝大多数学生学会将实际问题抽象为数学问题,通过找相等关系列出方程解决问题。

不足之处是:

1、对学生的学情把握不够好,简单问题强调、重复太多,耽误教学时间,没按预定的教学方案完成任务。

2、在从算术方法解决商品销售问题过渡到用方程方法解决销售问题时,设计不太好,学生不能自觉利用方程知识来解决问题。

3、思想理念放不开,对于探究问题可能有其他解法,实际上有学生也用了算术方法,但我没有给出评价,这样会挫伤学生学习的积极性。努力方向:

实际问题与一元一次方程教案 篇4

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率=.(3)打x折的售价=原售价×.二、新授

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.选用课时作业设计

第一课时作业设计

一、填空题.⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.二、选择题.⒊下面四个关系中,错误的是().A.商品利润率=;B.商品利润率= C.商品售价=商品进价×(1+利润率)D.商品利润=商品利润率×商品进价

⒋ 一件商品标价a元,打九折后售出为 a元,如果再打一次九折,•那么现在的售价是()元.A.(1+)a B.a

三、解答题.⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?

答案:

一、1.148.5 38.5 2.1248

二、⒊ B ⒋ B •

实际问题与一元二次方程(第1课时)教案 篇5

1一、课前回顾与预习

1.根据完全平方公式填空:

⑴ x²+6x+9=﹙﹚²⑵ x²-8x+16=﹙﹚²

⑶ x²+10x+﹙ ﹚²=﹙﹚² ⑷ x²-3x +﹙ ﹚²=﹙﹚²

(5)x2+12x+____=(x+6)2;(6)x2+4x+____=(x+_____)2;

(7)x+8x+____=(x+______).

2.解下列方程:(1)((x3)2=25;(2)12(x2)2-9=0.

二、合作交流

例1.你会解方程 x+6x-16=0吗?你会将它变成(x+m)=n(n为非负数)的形式吗?

用配方法解一元二次方程的步骤:

(1)将一元二次方程整理成二次项系为1的一般形式。

(2)在二次项和一次项之后加上一次项系数的一半的平方,再减去这个数。

(3)把原方程配方成(xa)b0的形式;

(4)运用直接开平方法求解。22 22

2例

2、解下列方程:

(1)x+10x+9=0;(2)x-3x-4=0.

(3)x-2x-2=0;(4)x+

3=;

3、应用配方法把关于x的二次三项式x2-4x+6变形,然后证明:无论x取任何实数值,此二次三项式的值都是正数,再求出当x取何值时,这个代数式的值最小,最小值是多少? 222

2(三)当堂检测:

1.x2px_______=(x-_______)2.

2、将一元二次方程x2-6x-1=0配方后,原方程可化为()

A、(x-3)2=10B、(x-6)2=35C、(x-3)2=8D、(x-6)2=373、二次三项式x2-4x+3配方的结果是()

A、(x-2)2+7B、(x-2)2-1C、(x+2)2+7D、(x+2)2-

14、用配方法解方程x2+x-1=0,配方后所得方程是()

1313A.(x2B.(x+)2= 242

41515C.(x2D.(x2= 24245、配方法解方程:

(1).x2-2x-1=0(2)x22x30

26、若a、b、c是△ABC的三条边,且abc506a8b10c,判断这个三角形的形状。

四、课后练习

一、选择题:

1.用配方法解方程x2x50时,原方程应变形为()

A.(x1)6 B.(x2)9 222222C.(x1)62D.(x2)9

22.把x2-4x配成完全平方式需加上().

(A)4(B)16(C)8(D)

13.若x2+px+16是一个完全平方式,则p的值为().

(A)±2(B)±4(C)±8(D)±16

二、用配方法解一元二次方程

(1). x222x20.(2)、x4x20

(3)、x+12x-15=0(4)3x(x-3)=2(x-1)(x+1).. 2

实际问题与一元二次方程(第1课时)教案 篇6

教学内容:义务教育课程标准实验教科书第12册92--93页 “练习与实践”3-9

教学目标: 1、使学生进一步掌握列方程解应用题的步骤,明确其中的关键是找出数量之间的相等关系,能根据题意正确地列出方程解答两、三步计算的应用题.

2、使学生能根据应用题的特点选择恰当的方法来解答。

3、进一步培养学生分析数量关系的能力,发展学生的思维。

教学难点: 根据题目的具体情况选择合理的解题方法

设计理念: 通过不同题型的训练使学生进一步掌握列方程解决问题的基本方法,而且能使学生进一步体会到方程是描述数量关系的一种常用和有效的数学模型,列方程解决问题具有独特的方法价值。激发学生探索数学规律的兴趣,有利于学生进一步感受到用字母表示数以及列方程解决问题的优越性。

教学步骤 教师活动 学生活动

一、揭示课题

1、引入课题。

我们已经会根据几个数之间的等量关系列出方程。今天这节课,我们着重复习根据应用题数量之间的相等关系,列方程解答,(板书课题)通过复习,要能根据题意正确地列方程来解答应用题。同时还要能根据数量关系的特点,灵活地选择算术方法或用方程来解答应用题。

2、复习解题步骤。

提问:我们过去列方程解应用题的步骤是怎样的?

板书: (1) 审题,用x表示未知数;

(2) 找等量关系,列方程;

(3) 解方程;

(4) 检验,写答案。

你认为其中最关键的是哪一步?为什么?

指出:列方程解应用题要按照解题步骤进行,其中最关键的一步是找等量关系列方程。(板书:关键:找等量关系)因为方程是根据等量关系列出来的,只有等量关系找正确,对照等量关系列出的方程才正确。

学生个别口答后再整理

二、整理与反思 1、电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

2、京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

3、长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

4、完成93页第6题

(1)理解鞋的码数与厘米数的换算关系

(2)进行码数与厘米数的换算

强调:根据题目的情况,合理选择方法,列算式或列方程

5、完成93页的第7题

理解“一种药品降价10%”的含义

6、完成93页的第8题

强调:(1)两种衬衫的原价相同,由于打的折扣不同,所以现价不同。(2)108原是这两中衬衫现价的和。

7、完成93页的第9题 学生独立解答,交流说说1-3每道题中数量之间的相等关系,以及怎样列方程,每个方程各是怎样解的

学生独立完成,指名说说思考过程

指名板演,集体交流,说说解题思路

两人一组,分组开展活动,适时互换角色。

三、全课总结

通过这节课的复习,你有了哪些新的认识?还有哪些疑问?

学生互说体会

四、拓展延伸

实际问题与一元二次方程(第1课时)教案 篇7

教学目标:

1、知识目标:

(1)建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.

(2)根据问题的实际背景进行检验,利用方程进行简单推理判断.

能力目标:

在具体的情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析和解决问题的能力.

3、情感态度与价值观:培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值.

教学重点、难点:

重点:建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.

难点:正确地建立方程.

教学过程:

一、创设情景

男生都喜欢看NBA,激烈的对抗中比分交替上升,最终由积分显示牌上的各队积分进行排位.下面我们来看一个2000赛季国内篮球甲A联赛常规赛的最终积分榜„„

二、提出并解决问题:

想一想

用式子表示总积分与胜、负场数之间的数量关系;

如果一个队胜m场,则负(22—m)场,胜场积分为 2m,负场积分为22—m,总积分为

2m+(22—m)=m+22

议一议

某队的胜场总积分能等于它的负场总积分吗?

设一个队胜了x场,则负了(22—x)场,如果这个队的胜场总积分等于负场总积分,则有方程

2x=(22—x)

计算得

x=22/3

问题:x表示什么量?它可以是分数吗?

x表示某队获胜的场数,它应该是自然数,不能是分数22/3.所以x=22/3不符合实际.

问题:由此你得出什么结论?

可以判定没有哪个队的胜场总积分等于负场总积分.

问题:“观察积分表,你能选择出其中一行说明负一场积几分吗?”

设胜一场积x分的话,从表中其他任何一行可以列方程,求出x的值

从第一行得出方程:

18x+1×4=40

由此得出

x=2

用表中其他行可以验证,得出结论:负一场积1分,胜一场积2分.

教师应关注培养学生的数学建模思想.给学生一定的思考时间,让学生自己解、设、列,体会建模过程.

三、例题

①引导学生大体估算盈亏情况;

②教师提出问题,学生自主讨论解决;

(1)商品销售中的盈亏如何计算?

(2)两件衣服的进价、售价分别是多少?

③得出结论后,将结论与学生先前的估算进行比较;

④教师归纳解决问题的大致过程.解:设盈利是25%的衣服成本为x元,则它的商品利润是0.25x元,列出方程

x+0.25x = 60,解得x = 48

类似地,设亏损25%的衣服成本为y元,则它的商品利润是−0.25%y,列出方程

y−0.25y = 60,解得y = 80

两件衣服的进价为x+y = 48+80 = 128(元),而两件衣服的售价是60+60 = 120(元),进价高于售价,因此,卖这两件衣服总的是亏损.

四、小结:

通过以下问题引导学生小结:

①由学生谈谈本节课学到了哪些知识?学后有何感受?

实际问题与一元二次方程(第1课时)教案 篇8

(二)》

教案设计 设计说明

1.引导学生把握解决问题的关键,提高学习效率。

数学教学中先引导学生把握解决问题的关键,再去探究解题方法,能有效提高学生的学习效率。在教学例4时,引导学生发现解题关键:一是根据情境图找出题中的数量关系,列出方程;二是在解形如3x+4=40这类方程的过程中,把3x看成一个整体,也就是把稍复杂的方程转化成简单的方程去解答。这样的设计使学生能够发现问题的本质,加深对知识的理解,提高了应用能力。

2.自主合作,探究新知。

学生学习方式的转变是新课程改革的主要特征,自主、合作、探究的新型学习方式,把基础知识与技能的学习和掌握与终身学习联系起来,是在传统学习方式基础上的进步和发展。本教学设计在新授知识的学习中充分发挥学生的主体作用,引导学生通过观察、分析、讨论等一系列的数学活动,让学生全面参与新知的发现过程。在此过程中,教师抓住“把什么看成一个整体”这个关键问题,层层深入进行引导,注重知识间的迁移,引导学生根据运算定律,把形如a(x±b)=c的方程转化成简单的方程并求解。

课前准备

教师准备 PPT课件 学情检测卡 课堂活动卡 学生准备 练习卡片

教学过程

⊙回顾旧知,引出课题 1.解方程。(口答)4x=52 x÷1.2=5 x+3.7=10 x-56=44 2.引出课题。

师:今天我们继续学习解方程的内容。[板书课题:解方程(二)] 设计意图:由于解形如ax±b=c、a(x±b)=c的方程的方法与解形如x±a=b、ax=b的方程的方法类似,因此在教学新知前,组织学生复习、回忆解形如x±a=b、ax=b的方程的方法,目的是为自主探究本节课的新知作铺垫。

⊙探究新知 1.教学例4。/ 4(1)课件出示教材69页例4情境图及相关内容。

(学生先独立观察图意,思考如何列方程,再在小组内交流)(2)学生根据图意列方程。(板书:3x+4=40)(3)组织学生讨论解法。

师:这个方程应该怎样解?说明理由。

预设 生1:我是这样想的,先在方程的两边同时减去4,得出3x=36,再在方程的两边同时除以3,就能得出x=12。

生2:可以先把3x看成一个整体,在方程的两边同时减去4,得出3x=36,然后在方程的两边同时除以3,得出x=12。

„„

(4)明确解法。(师边讲解边板书)3x+4=40 解:3x+4-4=40-4 3x=36 3x÷3=36÷3 x=12(5)指导检验。

将x=12代入原方程,看方程左边是否等于方程右边。

检验:方程左边=3x+4=3×12+4=40=方程右边,所以x=12是这个方程的解。2.教学例5。

(1)课件出示教材69页例5,解方程2(x-16)=8。(2)组织学生讨论解法。

师:这个方程应该怎样解?说明理由。

预设 生1:先把x-16看成一个整体,在方程两边同时除以2,得出x-16=4,再在方程两边同时加上16,最后得出x=20。

生2:也可以这样想:根据乘法分配律,2(x-16)=8也就是2x-32=8,把2x看成一个整体,在方程两边同时加上32,得出2x=40,再在方程两边同时除以2,最后得出x=20。

„„

(3)明确解法,自主完成解题过程。/ 4 2(x-16)=8 解:2(x-16)÷2=8÷2 x-16=4 x-16+16=4+16 x=20 也可以这样解:

2(x-16)=8 解:2x-32=8 2x-32+32=8+32 2x=40 x=20(4)学生口述检验过程。

检验:把x=20代入原方程,方程左边=2×(20-16)=2×4=8=方程右边,所以x=20是这个方程的解。

设计意图:引导学生在解方程时可以把含有x的算式看成一个整体或运用运算定律来解,从而让学生学会知识迁移,通过合作探究的学习方式,教师适时点拨,引导学生把稍复杂的方程转化成简单的方程去求解,体现了迁移的数学思想。

⊙巩固练习

1.给下面的方程选出正确的解。(在正确的解的下面划线)(1)6x+9=15(x=1,x=3)(2)8x-4×6=16(x=8,x=5)

2.下面的方程解得对吗?把不对的改正过来。(1)4x-4=4×6 解:3x=24

改正:

x=8(2)5x+0.5×3=8.5 解:5x+1.5=8.5 5x=8.5+1.5

改正:

5x=10 x=2 / 4 3.教材69页“做一做”

1、2题。⊙全课总结

这节课你有哪些收获? ⊙布置作业

教材71页9、10题。

板书设计 解方程(二)例4 3x+4=40 解:3x+4-4=40-4

3x=36 x=12

例5 2(x-16)解:2(x-16)÷2=8 2(x-16)÷2=8÷2

x-16=4

x-16+16=4+16

x=20 2(x-16)=8 解:2x-32=8 2x-32+32=8+32

2x=40

实际问题与一元二次方程(第1课时)教案 篇9

濯港中学

冯登银

【教学目标】

知识与技能

1.我国地势的主要特征;

2.分析我国地势对气候、水利和交通等方面的影响。过程与方法

使用读图和资料分析的方法,去发现地理知识。情感态度与价值观 西高东低,呈阶梯状分布的地势是一种资源,能为人类提供便利,培养综合分析资源的整体意识。【重点与难点】

1.地势的主要特征;

2.读图分析能力、综合分析能力的培养。【教学过程】

一、情景导入

有一首词这样写到:大江东去,浪淘尽,千古风流人物。怎样从地理的地势角度来理解“大江东去”?有的同学会回答可能是因为地势西高东低。这种说法对吗?这节课我们就共同来探讨一下我国的地势。

二、新课学习

(一)中国的地势特征

1.地势的概念:地表高低起伏的总趋势称为地势。2.地势的特征

读图,自西向东,海拔高度如何变化?(越来越低)

地图中表示不同海拔高度的颜色是否有明显的地域变化?(有)深色集中在哪里?浅色又集中在哪里?(深色在西部,浅色在东部)根据颜色明显的区域变化,可以把中国地势大致分为几部分?(三部分)

每部分的海拔大约是多少?(第一部分:4000米以上;第二部分:1000米~2000米;第三部分:500米以下。)

这种高低地势,就像阶梯一样分布着。因此,我们可以得出我国地势的特征是:西高东低,呈阶梯状分布。

阅读小卡片:(多媒体展示)

拓展延伸:我国陆地海拔最高和最低的地方(多媒体展示)3.三级阶梯的名称、位置、地形 活动:读图

参照图册在图中绘出地势三级阶梯的大致界线。(如图)在图中相应位置标出三级阶梯的名称。(海拔最高的为第一级阶梯,其次为第二级阶梯,最低的为第三级阶梯)(如图)

从我国地势的第三级阶梯继续向东,自然延伸到海洋中的部分,是大陆架。

每一级阶梯的地形以什么为主?(第一级阶梯:高原、山地;第二级阶梯:高原、盆地;第三级阶梯:平原、丘陵。)

想一想:图A和图B,哪一幅图所显示的是我国地势的特点?(见多媒体)我的解释:我国地势不但西高东低,而且呈阶梯状分布。4.地势对气候、水利和交通的影响(1)地势对气候的影响

西高东低有利于暖湿的海洋风向内陆推进,形成降水;东高西低则会阻碍暖湿的海洋风向内陆推进。

(2)地势对水利的影响

读图,说说我国大型水电站的分布特点。(阶梯交界处)

这些地方为什么能建大型水电站?阶梯交界处落差大,水流湍急,蕴藏着丰富的水能资源。拓展延伸:(多媒体展示)(3)地势对交通的影响 向东流的大河流沟通了我国东西交通,方便了沿海和内陆的经济联系。拓展延伸:黄金水道——长江(多媒体展示)(4)地势对经济的影响

东部地势低平、人口稠密、农业条件好、交通便利,这些为经济发展提供了有利条件。活动:探索

这条河为什么叫倒淌河? 视频:倒淌河成因

三、课堂练习

1.下图中,能准确反映我国地势特征的是(B)

2.读中国地势三级阶梯示意图,回答下列问题:

(1)A阶梯的主要地形是高原和山地,B阶梯的主要地形是高原和盆地。

(2)我国地势的总特征是西高东低,呈阶梯状分布,这种分布对气候的影响是有利于海洋上暖湿的气流深入内陆,形成降水。

四、课堂小结

我们学了什么?(我国地势特征及其对气候、水利和交通的影响)

五、作业布置

1.教材65页复习题1。

2.我国地势的主要特征是什么?

3.我国地势对气候、水利和交通有什么影响? 【板书设计】

中国的地势与地形(第1课时)

(一)中国的地势特征 地势的概念 地势的特征

实际问题和方程例1教学设计 篇10

教学目标:

1. 能根据具体问题找出数量关系,列出方程,并正确解方程; 2.感受数学与生活的联系,能根据实际情况灵活选择算法; 3.让学生体会用方程来解决实际问题的优点。教学重点、难点:

让学生体会用方程来解决实际问题的优点。教学过程:

一、复习铺垫,引入新课

1.根据题意,你能找到哪些数量关系?(1)杏树比桃树的棵树少130棵。(2)足球的个数是篮球的4倍。(3)美术小组比体育小组多5人。2.导入新课。

数量关系是解决问题的关键,找准数量关系可以帮助我们解决生活中很多实际问题,今天我 们共同探究一种新的解题方法。(板书课题:实际问题与方程)

二、自主探究,列方程解决问题 学习例1

1.课件出示例1 情境图,寻找等量关系。学校原跳远纪录是多少米?(1)思考:你能找出题中的数量关系吗?(2)组织学生汇报。

①原纪录+超出部分=小明的成绩 ②小明的成绩-超出部分=原纪录 ③小明的成绩-原纪录=超出部分 2.解决问题

根据上面的数量关系,你能列出算式吗?

想一想:如果要列方程解答,题中的未知量应该怎样处理?

3.提问:根据上面的数量关系,可以怎样列方程呢?(引导学生说出自己的理由)x+0.06=4.21

4.21-x=0.06

师强调:在列方程的过程中,通常不会让方程的一边只有一个x 4.组织学生对所列方程进行解答,规范书写格式。

强调:列方程解决实际问题结果不带单位名称。并让学生说说原因。5.提问:

怎样知道解答的是否正确呢?你准备怎样检验?组织学生小组内说一说检验的方法。6.用你喜欢的方法解决下面问题:

小明今年身高153cm,今年比去年长高了8cm。小明去年身高多少厘米?

统计学生的方法和正确率,用方程来做的说说用方程来做的理由,用算术来做的说说

用算术来做的理由。

三、强化认知,巩固提高。练习“做一做”

1.用你喜欢的方法解决下面问题,出示第(1)题。

上一篇:加拿大留学生移民条件下一篇:观看315直播晚会心得