加法结合律课后练习题

2024-08-17

加法结合律课后练习题(通用11篇)

加法结合律课后练习题 篇1

四年级下册加法结合律课后练习题

1.你能在 里填上合适的数或字母吗?

28+37=37+ A+45=45+

45+85+67= +(85+ )

A+(27+B)=( + )+B

2.下面的等式各用了加法的`什么运算律?

65+18=18+65运用了

37+54+46=37+(54+46)运用了

28+(72+65)=(28+72)+65运用了

73+84+27=(73+27)+84运用了和

3.计算下面各题,并用加法交换律进行验算。

347+168 638+74

4.先算一算,再比一比,那道算式的计算比较简便?

(37+98)+63 98+(37+63)

5.你能很快找出那两个方框上的数的和是100吗?连一连。

智力冲浪:

小华出了一道题考小明:计算98+998+9998+23,聪明的小明想了想,马上说出了正确答案。你知道小明是怎么算的吗?

只要大家脚踏实地的复习、一定能够提高数学应用能力!希望提供的加法结合律课后作业,能帮助大家迅速提高数学成绩!

加法结合律课后练习题 篇2

【课堂教学回放】

师 (出示情境图) :你们从图中看懂了什么?

生:图中短袖衫每件32元, 裤子每条35元, 夹克每件65元。各买一件一共要付多少元。

师:请大家为这位顾客算一下, 一共要付多少元?

生1:顾客一共要付132元, 算式是:

生2:我也算出一共要付132元, 但算式是:

师:两位同学计算的结果都正确。但算式不同, 请你们分别说一说, 在列式计算中是怎么思考的。

生1:我是先算买短袖衫和裤子要付67元, 再加上买夹克的65元, 一共要付132元。

生2:我是先算买夹克和裤子要付100元, 再加上买短袖衫的32元, 一共要付132元。

师:两位同学选购服装的先后不同, 计算顺序也不同, 但结果都正确。你你们们能能把把这这两两个个算式写成等式吗?

师:请同学们算一算, 下面两道题的○里能填上等号吗?

学生计算结果相等, 并在○里填上“=”。老师进一步启发:以上三个加法算式中, 每个算式等号的左边和右边有什么相同和不同的地方?

生1:每个等式等号的左边和右边的三个加数相同, 而且位置也相同。

生2:每个等式等号两边的和相同。

生3:每个等式小括号的位置不同, 运算顺序也不同。等号左边先加前两个加数, 再与第三个加数相加;等号右边先算后两个加数, 再与第一个加数相加。

师:你们能根据这三个等式的运算顺序和计算结果说出它们的计算规律吗? (先独立思考, 后小组讨论, 再全班交流。)

生3:在加法中, 三个数相加, 先把前两个数相加, 再同第三个数相加:或者先把后两个数相加, 再与第一个数相加, 它们的和不变。

师:这个计算规律在加法中叫“加法结合律” (板书) 。这样的计算规律, 你们能用自己喜欢的方式表示出来吗?

生1: (甲数+乙数) +丙数=甲数+ (乙数+丙数)

生2: (△+○) +☆=△+ (○+☆)

生3: (鸡+鸭) +鹅=鸡+ (鸭+鹅)

生4: (a+b) +c=a+ (b+c)

师:同学们表示的方式都很好, 通常用“生4”的方式, 也就是用字母表示。请同学们思考一下, 加法结合律在计算中有什么作用?

生1:三个数相加, 先加其中的两个数, 可以凑成整十、整百……使计算简便。

生2:运用加法结合律, 能使计算既简便又正确。例如, 顾客购衣服, 先算买裤子和夹克一共100元, 再与购短袖衫的32元相加, 很快得出一共付132元。

师:对!你们在以后的计算中要灵活运用, 怎样算简便就怎样算。

【思考】

数学活动是让学生经历数学化过程的活动, 是让学生从数学现实出发, 经过自己的思考, 得出数学结论的过程。因此, 本节课的教学从学生已有的知识和生活经验出发, 让学生经历从数学事实得出结论的推理过程, 进而提高学生数学思维的水平。为此, 在教学中主要突出了两个“性”。

1.注重情境创设的匹配性。

有价值的数学情境, 是学生经历数学化过程的重要载体。本节课创设顾客购衣情境, 让学生列式计算一共应付多少元, 既注重了学生的生活现实, 又具体而形象地为学生提供了与“加法结合律”相匹配的数学模型。让学生在具体的计算中感受到由于选购三件衣服的先后顺序不同, 付款方式不同, 形成了算式不同, 计算顺序不同, 但付钱的总数相同, 从而在具体的数学事实中感知“加法结合律”的特点及其在生活中的价值。

2.注重学生思维发展的过程性。

小学生思维特点是从具体到抽象的过程。为此, 在加法结合律的教学中, 应尽量让学生从大量的同类事物的不同例证中发现它的本质属性。一是在购衣情境和等式演算中丰富了表象储备。二是在分析比较等式左右的异同中强化表象联系, 建立比较清晰的表象, 为抽象概括打下了坚实基础。三是在寻找规律的过程中, 让学生通过独立思考、小组讨论、全班交流, 从加法结合律的组成要素 (三个数相加、计算顺序不同、结果相同) 中排除非本质属性, 找出共同的本质特征, 既掌握了计算规律, 又培养了学生抽象概括的能力及语言表达能力。四是注重实际生活与数学知识的相互转化与提升, 让学生从购物的算式到计算规律和用喜欢的方式表达中, 经历从生活实际到“形式化”的过程;倒过来又让学生用得出的规律去体验它的应用价值, 增强了应用规律的自觉性。

加法结合律课后练习题 篇3

教学目标:

1.使学生经历观察、猜想、验证、总结的探究过程,理解并掌握加法运算律,并初步感知运算律的价值。

2.使学生在学习用符号、字母表示运算律的过程中,发展符号感,培养归纳、推理的能力。

3.让学生在数学学习中获得探究的乐趣、成功的喜悦,初步形成独立思考、合作交流的意识和习惯。

教学过程:

一、观察主题图,谈话导入

这是我校同学在进行阳光课间活动(出示情境图),你能获得哪些信息?能提出哪些数学问题?

师:今天我们主要研究用加法计算的问题。

二、探索加法交换律

1.研究第一个问题:跳绳的有多少人?

(1)板书:28+17=45 17+28=45

(2)这两道算式,它们都解决了什么问题?结果相同吗?

(3)这两道算式求的都是跳绳的人数,并且得数相等,可以用“=”把它们连起来。

(4)板书:28+17=17+28。

2.引导观察。

(1)等号两边的算式,有什么相同的地方,有什么不同的地方?板书:观察。

(2)你有什么发现?

3.分析猜想。

(1)我们发现两个数相加,交换位置,和不变,是否任意两个加数,交换位置,和都不变呢?

(2)小结:经过一个算式得到的结论,只能是一个猜想,要验证这个猜想,就要举更多的例子。板书:猜想。

[设计意图:让学生举例验证,帮助学生积累感性材料,丰富学生的表象。]

4.验证猜想。

(1)生交流、汇报,师板书。

(2)这样的算式能写得完吗?(加省略号)

(3)从这些等式中我们发现了什么?

[设计意图:不完全归纳建立在多个而不是一个等式的基础上,更具有说服力。归纳、抽象的过程层次清楚,学生易于发现和理解规律。]

5.总结规律,字母表示。

能用自己喜歡的方法把这个规律简明地表示出来吗?

在数学上,我们通常用字母a、b来表示两个加数,这个规律可以写作a+b=b+a。

[设计意图:当学生感觉到用言语表述规律显得力不从心时,及时让学生用自己喜欢的形式把规律简明地表示出来,使学生体会到符号的简洁性和概括性。]

板书:加法交换律。

6.温故知新。

加法交换律的名字我们是第一次听到,其实并不陌生,想一想,我们在哪里运用过加法交换律?(加法验算:)

7.考考大家。

(1)填空

312+( ) =347+312 45+( )=265+( ) x+( )=y+( ) c+678=( )+c

(2)下面的等式是否符合加法交换律,为什么?

64+49=64+4980+20=13+87

[设计意图:及时练习,且练习题的安排体现出一定的层次,有助于学生巩固和运用新知。]

8.总结学法:刚才我们是通过几步来探索规律的?(观察→猜想→验证→总结)

这是一个很好的研究方法,下面我们就用这样的方法继续研究加法的另一个规律。

[设计意图:反思是数学学习中非常重要的环节。通过对学习过程中方法的指导,让学生掌握探索规律的一种策略,为下面探索加法结合律做了很好的铺垫。]

三、学法迁移,探索加法结合律

1.出示第二个问题:“参加活动的一共有多少人?”

2.交流想法,得出算式。

板书分析(略)

3.观察比较,你有什么猜想?

4.我们的猜想是否正确,其他的三个数相加是否也存在这样的情况呢?出示探索步骤,组织学生探索加法结合律。

(1)举一些类似的例子验证一下。

(2)你发现了什么规律,用简单的语言概述一下。

(3)用含有字母的式子来表示这个规律。

5.师生交流反馈,板书:(a+b)+c=a+(b+c)。

师:这个规律就是加法结合律,我们学过的加法的某些口算方法,就应用了加法结合律。

[设计意图:这一环节的教学,设计了许多讨论、交流、汇报的过程,真正做到把课堂还给学生。教学时抓住加法交换律和结合律的内在联系,利用学生已有的知识经验,让学生有意识地运用探索加法交换律时积累的策略,意在培养学生迁移学法的能力。]

6.填空

(45+36)+64=45+(□+□)

81+(24+□)=(81+□)+32

[设计意图:及时巩固,设计有层次的练习,符合学生的认知规律。]

四、巩固练习

1.下面的等式各运用了什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

2.计算上题中右边两题的结果,看谁算得又对又快。

算得这么快?是算了左边算式还是右边算式?为什么?

小结:运算律可以使计算变得简便。

3.填合适的数,使计算简便。

47+89+( )

4.“朝三暮四”这个成语故事听说过吗?(让学生感悟祖国文化的魅力。)

[设计意图:设计练习时,充分利用教材上的习题资源,使学生感悟到加法运算律的优越性,并渗透了简算方法的指导,为后续的简便运算学习打下坚实的基础。]

五、课堂小结,拓展延伸

如果你和同桌交换手中的钢笔,那么你们每人还有一支钢笔。如果你们交换一种好的学习思想或方法,那么每人将有两个好的思想或方法。在生活中,交换会给我们带来意想不到的收获哦!

加法交换律和加法结合律教学反思 篇4

最近我对“加法的交换律和结合律”进行了教学实践与反思,对如何使学生经历探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,如何发展学生的应用意识,有了进一步的感悟。

一、学生经历有效地探索过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。

二、注意数学学习方法的渗透。加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

三、教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。

加法交换律结合律教学反思 篇5

2、培养了学生探究精神。教学成功的重要前提之一就是要激活学生参与热情,打开思维的闸门,在“多向互动”和“动态生成”的教学过程中凸显知识的活性。

3、精心设计练习。教学中学生有一定的练习量,除了完成课本上的相关练习,我还补充设计了“填空题”,在教学加法交换律结合律之后,都安排了一组练习题强化概念。

加法交换律和结合律教案 篇6

陈军

教学内容:苏教版四年级上册第56~58页。教学目标:

1、让学生通过对熟悉的实际问题的解决,进行比较和分析,找到实际问题的不同解法之间的共同特点,初步感受运算规律,理解并掌握加法交换律和加法结合律。

2、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心;在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

3、使学生在经历探索加法交换律和结合律的过程中,学会观察思考—举例验证—得出结论这一科学的研究方法,初步形成独立思考和探究问题的意识、习惯。教学重点:使学生理解并掌握加法交换律和加法结合律。

教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。教学准备:多媒体课件

教学过程:

一、亲历过程,探索规律

1、探索加法交换律,渗透学习方法。

出示:1+2+3+……+9=?这道题,你能很快算出得数吗? 这位同学算得可真快!他的算法中到底藏着什么秘密武器呢?今天这节课,我们就一起来探索加法中的运算规律。

同学们,你们喜欢体育活动吗?出示课件 这是同学们在上活动课的场景。

(师出示同学们在操场上进行跳绳、踢毽子等体育活动的课件。)师:瞧他们多开心呀,你从中获得了哪些信息?

(正在跳绳的男生有28人,女生有17人。还有23个女生在踢毽子。)师:根据这些信息,你能提出用加法计算的问题吗? 1:跳绳的一共有多少人?

2:参加活动的女生一共有多少人?

3:跳绳的男生和踢毽子的女生共多少人? 4:参加活动的一共有多少人? 师:同学们真棒,提出了这么多用加法计算的问题。如果要求跳绳的有多少人?该怎样列式?(出示问题:跳绳的有多少人?)

生:28+17(师将算式板书在黑板上。)师:还有不同的列式方法吗?

生:还可以用17+28。(师也板书算式。)师:口算一下,28+17等于多少? 生:等于45。

师:17+28又等于多少? 生:还是45。

师:这两个算式结果怎样? 生:结果相等。

师:可以用什么符号把这两个式子连接起来? 生:结果相等可以用等于号连接。

师:对,用等于号,表示两边的结果相等。(板书:=)(师在黑板上贴出探索规律的第一个步骤:观察思考)

师:请同学们先仔细观察这两个算式,想一想,你有什么发现?(学生稍作思考,随即纷纷举起了小手。)师:能不能把你的发现跟同桌交流一下?(学生交流。)

师:交流得很好,肯定有了重要的发现!能把你的发现告诉大家吗?

生1:我发现28+17与17+28这两个算式中,加数的位置相反,可是结果是相等的。生2:我也发现了,加数的位置交换了,但和没有改变。

师:同们学发现“交换加数的位置和不变”,可刚才你们只是通过对一个例子的观察得出这样的猜想,这个猜想正确吗? 生:正确。(都非常肯定。)

师:可不能过早地下结论,我们必须通过一些例子来验证才知道。(师在黑板上贴出探索规律的第二个步骤:举例验证)师:你们能再举出几个这样的例子来吗? 生:能!(纷纷拿起笔跃跃欲试)

师:听清楚老师的要求,每写两个算式,先算一算它们的得数,相等的话就用“=”连接起来。老师给你们一分钟的时间,看谁举出的例子多?行吗? 众生:行!

师:准备好笔和纸,开始。

(积极性再一次被调动起来,很快,孩子们有的举了六个、有的举了七个例子,最快的孩子则举出了十个例子。)

师(随意问一学生):你举了几个例子? 生1:六个

师(再问一学生):你呢? 生2:八个

师:还有更多的吗?

生3:老师,我举了十个例子!

师:同学们的速度可真快!说说看,你们都举了些什么例子? 生1:40+50=50+40,算式两边的结果都是90。

生2:我举的例子是:137+2=2+137,交换加数的位置后,和都是139。

生3(刚才举例最多的孩子):老师,我的速度最快,0+2=2+0,0+4=4+0„„我算过了,两边结果相等。

师:从这位同学举的例子中,我们还发现:0与一个数相加时,也存在这样的规律。生:老师,我还有不同的例子!

“我也还有!”„„(情绪激动,争着要说)(师将学生的举例一一板书。)师:同学们举出的例子可真多呀,这样的式子能写多少个? 生:无数个。(齐声)(师在学生的举例后画上省略号。)(师指着黑板上的举例。)

师:观察我们刚才所举的例子,每组的两个算式有什么不同的地方呢? 生1:加数的位置不同。

生2:也可以说是交换了加数的位置。师:又有什么共同的地方呢? 生1:两个加数都相同。生2:还有!和也相同!

师:通过这么多例子的验证,证实了我们的猜想怎么样? 生:正确!(声音自信而有力!)

师:(故作疑惑,拖长声音)那——会不会出现两个数相加时,交换加数的位置,和发生变化的情况呢?(学生也随老师的疑惑进入思索,有些不敢肯定了。)

师:你们能举出这样的例子来吗?(稍作思考后纷纷摇头。)

师:不能举出这样的例子来,是吗?其实不光是你们举不出来,罗老师为了想这样的例子,可是冥思苦想了三天三夜,举不出来;我又发动全校的数学老师去想,结果是,仍然举不出来。

(学生惊叹)

师:这样,从正和反两个方面,更加证明了我们的猜想是正确的。(验证了自己的猜想,学生显得有些兴奋。)

师:现在我们可以得出什么结论了?(贴出探索规律的第三个步骤:得出结论)生1:两个数相加时,加数的位置变了,但和不变。

生2:在一个加法算式中,如果把两个加数的顺序变换,和还同原来一样。生3:两个数的和不会因为加数位置的改变而发生任何变化。„„

师:同学们的发现的可是加法运算中的一个非常重要的规律:交换加数的位置,和不变。根据这个规律的特点,你想给它取个什么名字?叫什么律?(学生的创造性思维又纷纷涌动了。)

生1:我想给这个规律取名为:加数换位律。

生2:因为这个规律中,左右两个算式的和是相等的,所以我取的名字是:加法等和律。生3:我觉得可以把这个规律的两个特点结合一下,叫加法换位等和律,意思概括得更清楚!„„

师(向大家投去赞许的眼光):这些名字取得真贴切,而且别具一格。数学家们给这个规律取名为“加法交换律”。(板书:加法交换律)

师:刚才大家用自己的语言说出了规律,其实,还可以用更特别的形式来表示,同学们可以用自己喜欢的方法来写一写。

(学生写好后,师将学生的表示方法在投影仪中展示。学生的表示方法极富个性,有用图形表示的,如:◇+☆=☆+◇;有用字母表示的,如:X+Y=Y+X;更有意思的是,还有用词语或汉字表示的,如:电视+冰箱=冰箱+电视,我+你=你+我„„)

师:你们的表示形式可真丰富,也非常有创意,而数学家们也用了和你们类似的表示方法,他们用字母a和b分别表示两个加数,这样的话,这个规律如何表示呢? 生: a+b=b+a(齐声)师:其实我们在以前的学习中就已经应用过了加法交换律。(还没来得及出示,一生就——)生:我知道,在加法验算的时候!(一个学生脱口而出)(课件出示加法竖式及验算)师:(微笑着)你们看,是吗?

生:对,加法交换律可以用来验算加法。(学生像见到老朋友似的微笑着,点头。)

师:刚才我们在探究加法交换律时,先通过一个例子对算式进行观察思考,初步得出自己的猜想,然后又举出大量的例子来验证它,最后才得出结论,这是一种科学的研究方法。下面我们要用这种方法来研究加法的另一个运算规律。

2、探索加法结合律,亲历研究过程。(课件出示学生活动的情境图和问题。)

师:现在要解决的是同学们提出的另一个问题:参加活动的一共有多少人?可以先求出什么?

生:可以先求跳绳的人数。

(课件演示:将跳绳的男生和女生画上集合圈)师:怎样列综合算式?

生:28+17+23(师将这个综合算式写在黑板上。)师:也就是先算什么? 生:先算跳绳的人数。师:为了强调前两个数先加,我们可以给28+17加上小括号。(师在原综合算式中,为28+17加上小括号。)

师:还可以先求出什么?

生:还可以先求出女生的人数。

(课件演示:将跳绳的女生和踢毽子的女生画上集合圈。)师:怎样列综合算式? 生:17+23+28 师:这下子,男生有意见了,他们说:“列式时还得把我们放在前面。”那怎么办? 生:可以把刚才的那个综合算式作个小小的改动,写成28+(17+23),就满足男同学的要求了。(师将这个综合算式也板书在黑板上。)

师:口算一下,这个算式(手指第一个)结果是多少? 生:68。

师:这个呢?(手指第二个)

生:肯定也是68。(许多声音冒出来)生:我算过了,就是68!师:两个算式的结果怎么样? 生1:相等!

生2:既然结果相等,也可以用“=”连接!(师在两个算式之间写上:=)(多媒体课件出示学生探究成果的记录表,课前已经为每个小组准备了一份。)

师:接下来,就请同学们通过对算式(28+17)+23=28+(17+23)的观察思考,找出左右两个算式的相同点和不同点,并且再举出一些例子来验证,最后得出结论。看你们这些小小数学家能研究出什么新的运算规律,好吗?把你们的研究成果记录在表格上。四人为一小组,研究开始。

(学生分组展开研究,在学习小组长的组织下,每个同学都争着发表自己的看法,讨论很激烈。)(五分钟后)

师:老师看到很多小组都已经有了精彩的发现,现在谁愿意把你精彩的发现向大家汇报一下?先说说左右两个算式有什么相同点?

生1:三个加数都相同,分别是28、17和23。生2:结果也相等,都等于68。

生3:我还有补充,我发现左右两个算式中的三个加数,28都排在第一位,17都排在第二位,23都排在第三位。

生4:我们小组把它归纳为:加数的位置相同。

(师通过课件同步演示学生说到的两个算式的相同之处。)师:同学们发现了这么多的相同点,那不同点呢? 生1:先加的算式不一样。

生2:那是因为小括号的位置不同。生3:也就是运算顺序不同。„„

师:能说说左右两边的运算顺序分别是怎样的吗? 生1:左边是先算28+17,右边是先算17+23。

生2:左边的算式是先把第一个加数和第二个加数加起来,而右边的算式是先把第二个加数和第三个加数加起来。

(课件中演示:两个算式先算的部分)师:同学们举出了什么例子来验证它呢? 生1:我们小组举了四个例子:(12+30)+5=12+(30+5)、(2+56)+70=2+(56+70)、(100+300)+500=100+(300+500)„„ 生2:我们举的例子是„„

(师板书学生举出的部分例子。)师:这样的例子能举得完吗?

生:举不完,有无数个!(学生不约而同地说。)(师在学生的举例后画上省略号。)

师:在这么多例子的验证下,同学们得出的结论是什么? 生1:相加时,改变小括号的位置,和不变。

生2: 三个数相加,按顺序相加,或者先把后面的两个数相加,和相等。生3:三个数相加时,不管括号加在什么地方,和都不会改变。

生4:其实我想,不管是几个数相加,也不管运算顺序怎么改变,和都应当始终不变,我要把这个想法验证一下。„„

师:概括得非常棒!改变小括号的位置,实际上就是改变了运算顺序,和仍然相等。能把这个规律跟同桌互相说一说吗?

(同桌之间互相说说刚才发现的规律。)

师:如果我也想用字母a、b、c来表示三个加数,这个规律该如何用字母表示呢? 生:(a+b)+c=a+(b+c)(齐声)

师:这个规律就是我们今天学习的第二个运算律——加法结合律。老师真高兴,你们用这种研究方法自己探索出了新的运算规律,圆满地完成了研究任务。(学生小声地欢呼,禁不住为自己响起了掌声。)

师:这肯定也难不倒大家,会填吗?

(课件出示加法交换律及加法结合律的填空综合练习,学生完成得很顺利。)

师:其实,在四则运算中存在很多运算规律,这些运算规律我们把它叫做运算律,今天我们学习的加法交换律和加法结合律就是加法运算律。(教师出示课题:加法运算律)

三、巩固规律,快乐应用

1、师:老师今天还带来了一些算式,里面就藏着我们今天学习的运算律,下面就看看哪些同学判断得最准确?

(课件出示判断练习:应用了什么运算律?)出示(75+48)+25=48+(75+25)时,师:这道题,它应用了什么运算律? 生1:应用了加法交换律。

生2:应该是应用了加法结合律。(师微笑不语)

生3:不!应该是同时应用了加法交换律和加法结合律!师:观察得很仔细!这样有什么好处呢? 生1:75与25相加得到100,更好算些。

生2:我知道了,原来应用运算律还能使计算变得更简便!(众生恍然大悟)

师(肯定地点点头):是啊,它应用了加法交换律和加法结合律,把能凑成整十数的两个加数先相加,使计算更简便了。

生:真没想到,运算律的作用这么大!

师:回到我们刚上课时见过的这道题,它应用了什么运算律? 出示:1+2+3+4+5+6+7+8+9 =(1+9)+(2+8)+(3+7)+(4+6)+5 =10+10+10+10+5 =45 众生:加法交换律和加法结合律!(学生忍不住都喊了出来)生:原来老师刚才说的秘密武器,就是运算律呀!

师:好了,现在我们就来放松一下,做个小游戏怎么样?(热情高涨)(师出示上升到空中的一串气球,气球上写有一道加法式题:8+60+40)师:这串气球上三个数的和是多少? 生:108(齐声,都算得很快。)师:你是怎么算的?

生1:我用了加法结合律,先算60+40,等于100,再加8,得到108。师:哎呀,这种算法真简便。你已经能学以致用了,真不错!如果五彩缤纷的气球缓缓升空,在气球躲进云层之前,你能用最快的办法算出气球上三个数的和吗? 生:能!(学生已是摩拳擦掌)

师:瞧瞧谁是火眼金睛,观察最仔细,算得最快!准备好了吗?开始!

(一串串写有三个数相加的式题的气球缓缓升空,继而躲进云层,如果运用运算律来计算,能使这些式题的计算更简便。伴随着紧张的游戏音乐,学生已是全身心地投入到了练习中,个个反应灵敏,争先恐后,如一个个神兵小将!)

四、畅享收获,体验成功

师:同学们,通过今天的学习,你们有什么收获吗?

生1:我认识了加法运算中的两种运算规律:加法交换律和加法结合律。

生2:我还知道了运用运算律能使计算更简便,它是加法运算中的秘密武器!师:同学们,那你们除了获得了知识,还收获了什么学习方法呢?

生1:我学会了用观察思考——举例验证——得出结论的方法来研究数学规律。生2:我知道了在数学学习中一定要善于观察,勒于思考。„„

师:看来,同学们的收获还真不小!

《加法结合律》说课稿 篇7

【文本分析】

加法结合律是《运算律》单元第一课时的第二个例题,这节课的教学内容包括加法交换律和加法结合律。这节课是在学生经历了一系列关于四则运算的学习后,对于运算律有了一定的感性认识的基础上,进一步通过一些实例来引导学生进行概括。而加法结合律则是在学习了加法交换律的基础上展开的。本课的教学重点在于让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。但概括运算律则是本课的教学难点。

教学重点:使学生理解并掌握加法结合律,能用字母来表示加法结合律。

教学难点:使学生经历探索加法结合律的过程,发现并概括出运算定律。

【学习目标】

1、让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。

2、通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法结合律的过程,进行比较和分析,发现并概括出运算律。

3、让学生用符号和字母表示出发现的规律,抽象、概括出运算律,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

4、通过学生积极参与规律的`探索、发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

【导学过程】

教学加法结合律。

1、初步感知

课的开始出示例题图,通过解决“参加活动的一共有多少人?”得出一个等式,让学生有一个初步的感知,为接下来进一步进行加法结合律的研究做好铺垫。

(28+17)+23=28+(17+23)

接下来,再出示两组算式,请学生算一算每组两道算式的结果是多少?○里应该填什么符号?积累感性认识的素材。

(45+25)+13○45+(25+13);(36+18)+22○36+(18+22)

2、观察、思考、交流

陶行知先生提出了“六大解放”的主张: 解放小孩子的头脑、解放小孩子的双手、解放小孩子的嘴、解放小孩子的空间、解放小孩子的时间及把小孩子的双手、嘴、空间和时间都解放出来。“让学生能够自己去探索、自已去辨析、自己去历练,从而获得正确的认识和熟练的能力。”

“发生认识论”的创立者皮亚杰认为知识、智力的个体发生离不开认识主体的自主活动。只有当学生的能动性充分发挥时,他的聪明才智才能充分表现出来,教学质量才有真正提高的可能。

这个“学生十分钟”的环节我们设计让同学们在学案的指导下自主进行观察、思考和交流。这样设计基于两点原因:一是学生前面已经有了一系列关于四则运算学习的基础,积累了大量的感性认识,具备了探究的知识基础;二是在加法交换律的学习中,学生已经有了一定学习运算律的经验,掌握了一些探究运算律的方法,具备了探究的能力基础。

基于以上两点,我们把加法结合律的探究放手给学生,让学生在学案的指导下独立开展探究活动。

学案中我们设计了以下几个环节:

(1)观察

每组的两道算式有什么相同的地方?有什么不同的地方?

这三组算式有什么共同的特点?

(2)仿写

照样子再写出一组这样的式子,填在上面的横线上。

(3)发现规律

从这些例子中发现了什么规律?再用自己喜欢的方式表示在下面的横线上。

加法交换律和结合律评课稿 篇8

今天听了张老师的加法运算律一课,受益非浅。下面就我对这节课的一些体会。

1、这节课结构清晰,安排合理。

张老师分三大块安排本节课的教学,加法交换律、加法结合律、及两者之间的比较练习。在教学加法交换律和结合律时,老师都按“情境导入—提出问题—解决问题—对比、抽象概括—实践应用”步骤教学,思路清晰、层次分明,教学重难点突出,并有助于学生掌握学习的方法。

2、练习层次分明,做到循序渐进。

在整节课中,张老师把练习分成了两大块:一是学习完新知后,安排了针对性的练习,这有助于学生更好地掌握本节课的重难点,使学生学得更加扎实有效;二是在比较两个加法运算定律后,安排了综合性的练习,这有助于帮助学生梳理本节课的知识、横向比较知识点,加深对知识的理解,进一步提升所学知识。

3、注重数学思想的培养。

教学中张老师注重了举例、观察和讨论,让学生通过举例,经历分析、综合、抽象的过程来验证自己的想法,从中能够自己概括出加法运算律。这一学习过程,学生实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。

总的来说,张老师的整节课,教学目标落实到位,教学过程如行云流水,学生学得扎实有效;通过整节课的`教学中,同时引发我以下思考:

1、情境引入,是否有效。张老师用两个不同情境引入加法交换律和加法结合律。其实以学生原有基础,对加法交换律掌握地比较好,并且能在实际学习中运用定律,教学中教师应该帮助学生概括加法交换律的意义,认识加法交换律的本质,可设计如下练习:

(88+19)+27=27+(88+19)运用加法的什么定律;

2、整堂课的教学环节有两大块是类似的,这样有助于学生掌握学习的方法,但是加法结合律是本节课的重点和难点,是不是可以适当调整教学环节,把本节课的重点更加突出,如先教学加法结合律,加法交换律的教学,可以让学生根据前面的学习方法,自己研究,总结概念。

当然,以上知识本人的一些粗浅的看法,是不是科学还有待老师们指正,批评。

四年级上册数学加法运算律练习题 篇9

1.快乐小法官。(对的打“√”.错的打“×)

(1)44+b=b+44

(2)a+c=c+a运用了加法结合律。()

(3)(a+m)+n=a+(m+n)符合加法结合律。()

(4)62+36=36+62运用了加法交换律。()

(5)a+c=c+b运用了加法交换律。()

2.脱式计算。

(1)72+41+128

(2)56+24+301

3.某工厂一车间共有145人,二车间共有271人,三车间共有355人。这个工厂三个车间共有多少人?

加法结合律课后练习题 篇10

教科书第27、28、29页的例题1和例题2。

教学目标:

知识与技能

1、通过学习,使学生理解和掌握加法交换律和结合律。

2、让学生学会用符号或字母表示加法交换律和结合律。

过程与方法

通过观察比较、归纳的方法,来进行教学。

情感态度与价值观

培养学生抽象概括的能力,引导学生由感性认识上升到一定的理性认识。

教学重点、难点:理解和掌握加法交换律和结合律,学会用符号或字母表示加法交换律和结合律。

教学用具:主题图、课件。

教学过程:

一、创设情境、生成问题

课件出示主题图:看图,你发现了哪些数学信息?

二、探索交流、解决问题

(1)学习例题1:李叔叔今天上午骑了40千米,下午骑了56千米。李叔叔今天一共骑了多少千米?

教师:这个问题该怎样解决呢?如何列算式。

40+56=96(千米)

或56+40=96(千米)

观察,这两道算式有什么联系?

(结果相同,所以可以写成40+56=56+40)

(2)你还能举出这样的例子吗?(学生举例)

如:37+45=45+37

88+32=32+88

53+29=29+53&&&&

(3)观察每组算式的结果,你发现了什么?(结果都相同)用自己的话说一说。

学生发言,交流并归纳板书:两个加数相加,交换两个加数的位置,和不变。也就是加法的交换律。

(4)如果用符号来表示,该怎样写呢?

甲数+乙数=乙数+甲数

☆ +△=△+☆

a+b=b+a

(5)学习教科书第28页的例题2。

出示主题图,通过看图你找到了哪些有用的信息?

李叔叔第一天行了88千米,第二天行了104千米,第三天行了96千米,这三天李叔叔一共行了多少千米?

学生独立思考,列出算式:88+104+96

=192+96

=288(千米)

或88+(104+96)

=88+200

=288(千米)

答:李叔叔三天一共行了288千米。

比较这两题的结果怎么样啊?(相同)

因此可以写成:(88+104)+96=88+(104+96)

用自己的话说说,三个数相加,可以先把前两个数先加,再加上后一个数,也可以先把后两个数先加,再加上前一个数,和不变。这就是加法的结合律。

(6)谁还能举出这样的例子来。

学生举例:(69+172)+28=69+(172+28)

155+(145+207)=(155+145)+207&&&&&

加法结合律又该怎样用字母表示呢?

(a+b)+c=a+(b+c)

三、巩固应用、内化提高

1、完成教科书第28页的做一做。

2、完成教科书第31页练习五的第1题。

学生独立填写表格,找找表格中数的特点。

3、完成教科书第31页练习五的第2、3题。

加法的验算是根据什么运算定律进行的?

四、回顾整理、反思提升

乘法结合律教案、练习、活动单 篇11

乘法结合律教案、练习、活动单

乘法结合律 教学内容:   教材第34页例2及“做一做” 教学目标: 1.使学生理解和掌握乘法结合律。 2.能够应用乘法交换律和乘法结合律进行简便运算。 3.培养学生的逻辑思维能力。 教学重点: 1.理解并掌握乘法结合律。 2.运用乘法结合律进行简便运算。 教学难点:   乘法结合律的推导。 教具学具准备:   题卡(或小黑板) 教学过程: 一、创设情境,生成问题   1.口算练习2×5= 4×25=  8×125= 20×50= 40×25= 80×125=   2.填空练习17×13=(  )×13  29×36=36×(  ) 25×(  )=23×25  4×13×25=4×(  )×13   3.抢答: 12+36+64= 25+50+75= 25+36+75= 88+36+12= 44+56+23= 18+96+4=   4.师:前面我们共同探索与发现了加法交换律、加法结合律、乘法交换律。这些运算定律能使我们的计算变得快捷、简便。今天,老师将带领大家再次走进探索与发现的旅程,本节课我们要探索的新的运算定律是:乘法结合律(板书课题) 二、探索交流,解决问题   1.自主探究 (出示主题图及例2) 师:要求一共要浇多少桶水需要哪些数学信息? 生:一共25个小组;每组要种5棵树;每棵树要浇2桶水。 师:请同学们试着用不同的方法解答这个问题。 (学生独立思考,尝试解答,教师巡视,了解学生的学习情况,并及时指导。)   2.互动交流 师:同学们解答的怎么样了,请把你的解答方法在小组内交流一下。   (学生互动交流,在小组内展示自己的描述方法,小组内互相补充,初步形成小组意见) (教师巡视,参与学生讨论)   3.组织全班交流 (1)教师组织各小组推举代表汇报各组的表述方法,重点自己的解题思路,先算什么,再算什么,结果怎样。教师相机板书。 方法一:先求一共种多少棵树,再求一共浇多少桶水。   (25×5)×2  = 125×2 = 250(桶) 方法二:先求一个小组浇多少桶水,再求25个小组共浇多少桶水。 25×(5×2) = 25×10 = 250(桶) (2)比较上面两个算式,想一想这两个算式有什么相同点和不同点。 由两种算法的结果相同,可以看出两个算式有什么关系? 这种关系可以怎样表示?(指名回答,教师板书如下:) (25×5)×2=25×(5×2) (3)谁能用自己的话说说这两个算式的关系?   (可多指出几名学生回答,初步感知乘法结合律。) 4.共同优化,形成结论 师:从上面两个算式我们可以看出,三个数相乘,总是先算前面的两个,所得的积再与第三个数相乘,现在我们先算后两个数相乘,所得积再与第一个数相乘,而它们的计算结果是一样的,我们发现的这个问题是不是乘法中的一个规律呢?咱们来共同验证一下好吗?看一看这个规律对其他的算式是不是也适用呢?请同学们列举一些这样的算式,看看它们的结果是不是相等。 ① 学生独立列式验证。 ② 指几名学生展示自己的验证结果。(相机板书三个算式) ③ 小结:从刚才大家列举的.算式来看,每一组的计算结果都是相同的。两个算式结果相同,我们可以用等号把它们连接在一起。观察黑板上的这些算式,谁来说一说我们发现的到底是一个什么样的规律呢? (三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,再乘第一个,他们的积不变。)(板书或卡片出示,齐读) 5.抽象概括  师:如果用字母a、b、c分别表示3个数,怎样用字母表示乘法结合律呢? (多指几名学生回答,形成结论 )  (a×b)×c= a×(b×c) 三、巩固应用,内化提高   师:我们现在发现了乘法结合律,也知道了它非常有用。那我们能不能用它来为我们的学习服务呢?我们共同到实践练习中去体会吧。 1.你能说一说,如何运用乘法结合律使下面的计算简便吗? 42×125×8 38×25×4  25×38×4  125×42×8 (看看后两个算式与前两个算式有什么不同的地方。在应用运算定律方面有什么不同? 前两个算式没有调换因数的位置,直接使用乘法结合律,后两个算式先运用了乘法交换律,将因数调换了位置,然后再用乘法结合律使计算简便。) 2.说一说,下面算式分别运用了什么运算定律。 72+48=48+72 ( ) A×B=B×A  ( )  a+(20+9)=(a+20)+9 ( ) (△×○)×b=△×(○×b)  ( ) 3.用合适的方法计算下面各题。 25×17×4 13×17×19 * 25×12 (小黑板或题卡出示,学生在练习本上计算)(第一题先交换因数的位置再用乘法结合律,第二题不能简算,第三题要经过变化后才能进行简便运算)   4.教材第35页“做一做”第2题。 5、写出几个使用乘法交换律的乘法算式。   5.写出几个使用乘法结合律的乘法算式。 四、回顾整理,反思提升 师:通过这节课的学习你有哪些新的收获?(完善板书) 五、课堂作业: 六、板书设计: 乘法结合律    (25×5)×2  25×(5×2)     (展示学生验证算式)   = 125×2 = 25×10     = 250(桶)  = 250(桶) (a × b)×c  =  a ×(b×c) 三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,再乘第一个,他们的积不变。                 乘法运算定律练习1.口算。 (1)25×8   (2)4×9×25 (3)26×102   (4)55×8+45×8 (5)125×88   (6)72×160×0 2.根据运算定律,在□里填上适当的数。 (1)64×75×32=(□×□)×32 (2)(70×25)×□=70×(□×8) (3)(52+35)×8=52×□+□×8 (4)(17+□)×10=□×10+13×□ (5)76×8+24×8=(□+□)×8 3.判断题,对的画“√”,错的画“×”。 (1)14×9+9×16=(14+16)×9   ( ) (2)(37+1)×20=37×20+20 ( ) (3)45×99+45=45×100+1  ( ) (4)(43+45)×2=43×(45×2)  ( ) (5)(14×25)×4×3=14×4+25×3  ( ) 4.用简便方法计算下面各题。 (1)104×25  (2)125×16 (3)48×99+48     (4)78×125×8 (5)50×25×2×4  (6)125×(80+8) 5.应用题。 (1)一箱苹果重35千克,一箱桔子重30千克,商店购进苹果、桔子各10箱,购进苹果、桔子共多少千克?(用两种方法计算) (2)一个养鸡厂共有5排鸡舍,每排鸡舍有80个鸡笼,平均每个鸡笼养鸡50只,这个养鸡厂一共养鸡多少只? (3)张师傅每小时做零件23个,小王每小时做零件31个,3小时后张师傅比小王少做多少个零件? 6.想一想问□里该填什么数? (1)a×99+a=□×(99+□) (2)下面算式里的□表示同一个数。 3×□+2×□=□   乘法交换律和结合律活动单 姓名______ 活动一:运用乘法的交换律或结合律,在下面的横线上填上恰当的数。 78×85×17=78×(_____×______) 81×(43×32)=(_____ ×______)×32 不计算在□里填上 “〉”、“〈”或“=” 1.73×54□54×73   2.(75×76)×74□75×(76×74) 3.87×53□87×52 4.80×90□8×(10×90) 活动二:用简便方法计算下面各题 973×5×2  125×897×8   2×125×8×5 195×25×4   50×5×2×2  90×125×8×4   活动三解决问题 1.一个盒子能装12支钢笔,每支钢笔3元钱.买这样的钢笔5盒共用多少元?(用两种方法解答)         2.一台缝纫机6小时可加工服装48件,要用5台同样的缝纫机加工400件服装,需要几小时?    

上一篇:企业技术人员辞职信怎么写下一篇:高考改革方向