一元一次方程组(精选8篇)
一元一次方程组 篇1
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x0时,3x=18,x=6
当x0时,-3=18,x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+30,b-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的.性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
21x=63
x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)∵103100
每张门票按4元收费的总票额为1034=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数乙班人数
甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,这种情况不存在.
故甲班为58人,乙班为45人.
24.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.121281=153.72154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
(注:一元一次方程练习题及答案,仅供练习和参考,要想熟练掌握一元一次方程的做题方法,还需同学们勤加练习和思考!祝同学们学习成绩越来越棒,加油!)
初一数学一元一次方程相关链接《
一元一次方程教案
一元一次方程的解法
一元一次方程应用题一元一次方程练习题一元一次方程应用题归类
一元一次方程组 篇2
分析此题若先移项, 再两边平方, 然后分母有理化的话, 则计算量较大且走的是一条弯路, 但观察原方程的结构特征后巧妙地运用合分比定理来做, 可达到事半功倍的效果.
解运用合分比定理, 得
注意1.有些无理方程不需要解出, 而通过观察就可以知道它无解, 例如:
2.因为把无理方程有理化的过程中有可能破坏方程的同解性而产生增根, 所以解无理方程时必须检验.
一元一次方程组 篇3
面对这样一个框架,我们可能要思考,这个框架中各个具体环节的学习有什么样的侧重点、难点?有哪些学习的方法可以借鉴?
什么是不等式(组)
“这简单,就是反映不等关系的式子呗!”差不离吧.不等式反映着两个量之间的不等关系.比如,两个数的大小比较,小明的年龄比你大,某个图形的面积比另一个图形的面积大等,都可以用不等式表示.
“那我明白了,几个不等式合在一起就组成了不等式组,就像方程组一样.”是的!当然,未知数必须同时满足组内的所有不等式.
如何列不等式(组)
接着的问题当然是列不等式(组)了.告诉你一个小秘密,只要一道题目中有“至少”、“至多”、“不少于”、“在什么范围内时”这些字眼,实际上就暗示着要用到不等式了.那么如何列不等式(组)呢?我们还是看一个例子吧.
例1 某电信公司有两种手机话费计费方式.A:基本月租费50元,每通话1分钟收费0.40元;B:没有基本月租费,每通话1分钟收费0.60元.问:通话时间在什么范围时,选择A方案合算?
要求“通话时间在什么范围时,选择A方案合算”,可以设通话时间为x min,然后设法求出x的范围,这就需要列一个关于x的不等式.如何列不等式呢?我们还是看题意,看题中哪句话对x提出了要求.分别写出两种方案下所付费用与通话时间x之间的关系,不难得到不等式:50+0.4x<0.6x.
“哦,不过如此!这和列方程不是一回事吗?只是这里变成了不等号而已.”是的.如果将这道题变为:
例2 某电信公司有两种手机话费计费方式.A:基本月租费50元,每通话1分钟收费0.40元;B:没有基本月租费,每通话1分钟收费0.60元.问:通话多长时间时,两种方案所付话费相同?
你得到的就是一个等式即方程了.
当然,如果具体问题中对未知数提出了两个以上的要求,就得列不等式组了.
例3 某工人制造机器零件.如果每天比预定计划多做1件,那么8天所做零件超过100件;如果每天比预定计划少做1件,那么8天所做零件不到90件.问:这个工人预定每天做几个零件?
如果设这个工人预定每天做x个零件,上面哪几句话对x提出了要求?找出这几句话,很容易得到不等式组:8(x+1)>100,
8(x-1)<90.
解不等式(组)
不等式的解法,也类似于方程.只是这里要注意,若不等号两边同乘以或同除以一个负数,不等号的方向要改变.求出几个不等式解集的公共部分,就得到不等式组的解集了.
方程、函数与不等式的关系
也许你会想,不等式问题是否可以用方程来解呢?实际上也是可以的.
例如,对于例1,可以先研究例2,得到方程50+0.4x=0.6x,解得x=250.即通话250 min时,两种方案付费相同.然后,根据题意知道,通话时间超过250 min时,超出的部分如按方案A付费每分钟仅付0.4元,而按方案B付费每分钟得付0.6元.因此,通话时间超过250 min时,选择A方案合算.
本题还可借助函数图形,更为直观地求解.分别作出函数y1=50+0.4x,y2=0.6x的图象l1,l2,要求“通话时间在什么范围时,选择A方案合算”,即x在什么范围内时,y1小于y2,也就是说图象上l1低于l2,不难看出此时x>250.这种利用图象的方法对所有的不等式倒都是适用的,只是可能麻烦了点.
“不等式问题,竟然可以借助方程或函数来解决,奇怪!”这并不奇怪,数学学习中,很多知识之间都存在这样或那样的联系.以后学习一个新的知识时,别忘了和原来所学的知识进行对比,建立联系.在这些知识的联系中,我们才可能更好地掌握新的知识,同时可将新旧知识联系起来形成一个整体.要习惯于进行这样的思考哟,这可是一个十分有效的学习方法!就算编者大朋友对你的提醒吧.
怎么样,理解了吗?再来一题!
<\192.168.0.129本地磁盘 (d)王玲霞数据八年级数学北师大08年1-2期版式+图jjgg.TIF>[练习]
某果品公司想租汽车运送果品.甲汽车公司的出租条件是,每千米收3元;乙汽车公司的出租条件是,付司机工资1 000元,另外每千米收2.5元.问:该果品公司租哪家公司的汽车合算?
参考答案
运输里程少于2 000 km时,选择甲公司合算;超过2 000 km后,选择乙公司合算;等于2 000 km时,选择任意一家公司即可.
本刊快讯
2007年12月5日,在中国少年儿童报刊工作者协会第六届理事大会上,本刊荣获第三届中国优秀少儿报刊金奖.这是继本刊蝉联中共中央宣传部、国家科委、新闻出版总署颁发的“全国优秀科技期刊”,荣获新闻出版总署颁发的国家期刊奖“双百”期刊之后,本刊获得的又一殊荣.
本刊编辑部
9.3 一元一次不等式组教案 篇4
文星中学唐波
一、教学目标
(一)知识与技能目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。
(二)过程与方法目标
通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。
(三)情感态度与价值观
通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。
二、教学重难点
(一)重点:建立用不等式组解决实际问题的数学模型。
(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。
三、学法引导
(一)教师教法:直观演示、引导探究相结合。
(二)学生学法:观察发现、交流探究、练习巩固相结合。
四、教具准备:多媒体演示
五、教学过程
(一)、设问激趣,引入新课
猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)
(二)、观察发现,竞赛闯关
1、比一比:填表找规律
(学生抢答,教师补充。)2利用发现的规律解不等式组 (学生解答,抽生演板。)你可以得到它的整数解吗?
(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶
数,则 c=__________。
(学生回答,教师补充更正。)
(三)、欣赏图片,探究新知
1、欣赏“五岳看山”。
2、利用欣赏引出例题(教科书P139例2仿编)
例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?
生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:
(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?
(2)解决这个问题,你打算怎样设未知数?
(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)
7x98
7(x3)98
解答完成后,学生自学课本例2。
3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:
(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .
(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)
(四)、闯关练习,巩固新知
1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。
教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。
比较列二元一次方程组和列一元一次不等式组解应用题的区别:
(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?
学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)
(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:
1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。
2、具有多种不等关系的问题,可通过不等式组解决。
3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;
(4)、检验,根据题意写出答案。
(六)、课后演练,终极挑战
必做题:教材习题9.3第4、5、6题;
选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?
六、板书设计
9.3一元一次不等式组(2)
解:设每个同学原计划每天拍x张,得
① 310x500
310(x1)500②
1、分析题意,设未知数;
解得x <16 3
3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。
2
2、找不等关系,列不等式组;
3、解不等式组; 步骤
一元一次不等式组教后反思 篇5
赵双艳
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。
一元一次不等式组复习课教学设计 篇6
一、知识回顾
• •
1、一元一次不等式组:
一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.在理解时要注意以下两点:
1)不等式组里不等式的个数并未规定;
2)在同一不等式组里的未知数必须是同一个.2、一元一次不等式组的解集:
一元一次不等式组中,各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.• •
注意:
1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的.公共部分是指数轴上被两条不等式解集的区域都覆盖的部分.2)一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设abx
二、尝试反馈,巩固知识
例`1
3x12x1,2x 8.解不等式①,得
x >2
解不等式②,得 x >4 在数轴上表示不等式①、②的解集,如图 可知所求不等式组的解集是
x>4 ,2x1-1例2 解不等式组:
3x1.
师:请同学们在课堂练习本上做这道题,如觉得自己会做的请举手到黑板上写出过程。
解: 解不等式①,得 x<-1
解不等式②,得 x≥2 在数轴上表示不等式①、②的解集,如图
5x23x17x3x17 例3 解不等式组 2
2三、变式训练,培养能力
2x115例4 解不等式 3
2x113①2x1解法:这个不等式可改写成不等式组: ② 53解不等式①,得x1
解不等式②,得
在数轴上表示不等式组①②的解集:
所以这个不等式组的解集为 x81x8
解法二:2x1153
不等式各项都乘以3,得
32x115 各项都加上1,得
即
312x1115122x16
各项都除以2,得 1x8
xm1x2m1例
5、若不等式组无解,则m的取值范围是什么?
分析:要使不等式组无解,故必须m1m2
作业:《成长资源》p69 智能提升
一元一次不等式组应用题选析 篇7
一、敬老院的老人有多少
例1 (2012山东日照) 某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶, 那么剩下28盒牛奶;如果分给每位老人5盒牛奶, 那么最后一位老人分得的牛奶不足4盒, 但至少1盒.则这个敬老院的老人最少有 () 。
A.29人B.30人C.31人D.32人
解析:设有x位老人, 则牛奶有 (4x+28) 盒, 故1≤ (4x+28) -5 (x-1) <4, 得29
点评:本题主要考查一元一次不等式组的应用, 难点是设未知数列不等式组, 易错点是求解错误。
二、知识竞赛答对了几道题
例2 (2012福州) 某次知识竞赛共有20道题, 每一题答对得5分, 答错或不答都扣3分。
(1) 小明考了68分, 那么小明答对了多少道题?
(2) 小亮获得二等奖 (70分~90分) , 请你算算小亮答对了几道题?
解析:对于 (1) , 设小明答对了x道题, 则可列出一元一次方程进行求解;对于 (2) , 由于小亮得分在70分~90分之间, 如果设其答对了y道题, 那么他最少得70分, 最多得90分, 因此可列出不等式组进行求解。
答案:解: (1) 设小明答对了x道题, 依题意得
5x-3 (20-x) =68, 解得x=16
答:小明答对了16道题。
(2) 解:设小亮答对了y道题, 依题意得
答:小亮答对了17道题或18道题。
点评:本题通过两个问题, 考查学生列方程 (组) 、不等式组解决实际问题的能力, 体现数学问题源自现实生活, 而又为更好地解决现实问题的辩证规律。
三、有几种运输方案
例7 (2012年浙江省温州市中考) 温州享有“中国笔都”之称, 其产品畅销全球, 某制笔企业欲将n件产品运往A, B, C三地销售, 要求运往C地的件数是运往A地件数的2倍, 各地的运费如图所示。设安排x件产品运往A地。
(1) 当n时, (1) 根据信息填表:
(2) 若运往B地的件数不多于运往C地的件数, 总运费不超过4000元, 则有哪几种运输方案?
(2) 若总运费为5800元, 求n的最小值。
分析:数量关系: (1) 运往C地的件数是运往A地件数的2倍;件数和为200; (2) 运往B地的件数不多于运往C地的件数; (3) 总运费不超过4000元
解: (1) (1) 根据信息填表:
∵x为整数, ∴x=40或41或42,
∴有三种方案, 分别为:
(i) A地40件, B地80件, C地80件;
(ii) A地41件, B地77件, C地82件;
(iii) A地42件, B地74件, C地84件.
(2) 由题意得30x+8 (n-3x) +50x=5800, 整理得n=725-7x。
∵n-3x≥0∴x≤72.5。
又∵x≥0, ∴0≤x≤72.5且x为整数。
∵n随x的增大而减少, ∴当x=72时, n有最小值为221。
点评:列不等式组解实际问题与列方程组解实际问题的方法、步骤类似, 关键是要认真审题, 仔细分析数量之间的关系, 运用数学思维方式抓住表示不等的关键词句, 如:“超过”、“多于”、“不足”、“至少”、“大于”、“不超过”、“不小于”等列出不等式组.
四、用电量属于第几档
例4 (2012江苏省淮安市) 某省公布的居民用电阶梯电价听证方案如下:
例若某户月用电量400度, 则需缴电费为
210×0.52+ (350-210) × (0.52+0.05) + (400-350) × (0.52+0.30) =230 (元)
(1) 如果按此方案计算, 小华家5月份的电费为138.84元, 请你求出小华家5月份的用电量;
(2) 依此方案请你回答:若小华家某月的电费为a元, 则小华家该月用电量属于第几档?
分析: (1) 计算出第二档最低用电量的费用进行比较即可; (2) 分别计算出第一档最低用电费和第二档最低电费对a值进行讨论。
解: (1) 因为属于第二档最低用电量的费用为:210×0.52+ (350-210) × (0.52+0.05) =189 (元) >138.84元, 所以小华家5月份的用电量属于第二档。
设小华家5月份的用电量为x度, 由题意, 得210×0.52+ (x-210) × (0.52+0.05) =138.84.解得x=262。
答:小华家5月份的用电量262度。
(2) 对于a的取值, 应分三类讨论:
(3) 当a>189时, 小华家用电量属于第三档。
点评:本题考查了一元一次方程的应用, 解题关键是要读懂题目的意思, 根据题目给出的条件, 找出合适的等量关系列出方程, 再求解。
五、哪家宾馆更实惠
例5 (2012黔东南州) 我州某教育行政部门计划今年暑假组织部分教师到外地进行学习, 预订宾馆住宿时, 有住宿条件一样的甲、乙两家宾馆供选择, 其收费标准均为每人每天120元, 并且各自推出不同的优惠方案。甲家是35人 (含35人) 以内的按标准收费, 超过35人的, 超出部分按九折收费;乙家是45人 (含45人) 以内的按标准收费, 超过45人的, 超出部分按八折收费。如果你是这个部门的负责人, 你应选哪家宾馆更实惠些?
解析:设教师人数为x。
(1) 当0
(2) 当35
(3) 时x>45, 35×120+120 (x-35) ×90%<45×120+120 (x-45) ×80%, 即45
(4) 当x>45时, 35×120+120 (x-35) ×90%=45×120+120 (x-45) ×80%, 即x=55 (人) 时, 两家宾馆一样优惠;
(5) 当x>55时, 35×120+120 (x-35) ×90%>45×120+120 (x-45) ×80%, 即x>55, 乙宾馆更优惠;
答:总之, 当x≤35或x=55时, 选择两个宾馆是一样的;当35
“一元一次不等式组”教法探索 篇8
我尝试这种方法的教学过程如下:开始向同学们抛出一个生活中的问题:现有两根木条a和b,a长10cm,b长为3cm. 如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
同学们经过互相讨论,根据“三角形中两边之和大于第三边,两边之差小于第三边”得出了结果:假设木条c为xcm,可知x必须同时满足不等式x<10+3和x>10-3
把这两个不等式合起来,组成一个一元一次不等式组,记作:
x<10+3
x>10-3
利用数轴体会:x可取值的范围,是两个不等式解集的公共部分
■
即7< x <13
可知x在数轴上没有公共部分,即不等式组无解。
讲完了这几组不等式组,看到有些同学对于这些不等式组解集的公共部分还不是很清楚,于是可以再用口诀的方法帮助同学们更好地理解本节课的内容。
针对学情,于是我又向全班学生抛出了个探讨性的问题:“同学们,你们知道解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同的情况吗?”
同学们有的说3种,有的说4种,甚至还有的同学说只有两种。这时候笔者没有马上为他们给出正确答案,而是让他们说出当a<b时,由x与a、b的大小不同关系可以组成几种不同的不等式组。
于是根据几位同学的发言列出了下面几组不等式组:
(1) x>a (2) x<a (3) x>a (4) x<a
x>b x<b x<b x>b
于是由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同的情况的疑问也就迎刃而解。
这时看到同学们已经懂了七八成,笔者也灵感一现,用手势语结合口诀来帮助同学们更加形象理解不是更好吗?于是便把桌子当成数轴,而将桌子的右边视为正方向,同学们的左右两肘表示数轴的两个取值,两手掌的方向就表示两个取值的方向。下面就说一下笔者为同学们创造的手势语(略)。
看到教师为同学们创造的手势语,大家都觉得很有意思,就是连平时基础很差的学生都非常乐意地用起手势语来,教师只要一说口诀,同学们就会比划,刚开始有少数几个同学比划错了,通过同学们的多次比划,后来没有一个同学出错,笔者为同学们高兴,也为自己想到这么好的方法感到高兴,毕竟他们每个同学都掌握其中的要领了,并且掌握得很轻松。
课后小结的时候让同学们谈学到了什么,有什么体会,同学们都谈到了这节课的手势语令大家很难忘,对于后来的作业,学生都表示出了极高的兴趣,结果也证明了这一点,这次课后的作业的正确率达到了95%。
通过这节课的教学,笔者深刻地体会到通过手势语结合口诀来理解一元一次不等式组的解集是本节课的一大亮点。以前通过画数轴让学生理解一元一次不等式组的解集,学生只是停留在观看的层面上,学习的积极性不高,有些学生并没有掌握本次课的内容,教师也不能立即发现。而教师通过手势语结合口诀的方法,让每位学生都能参与其中,充分调动了学生的积极性,从而更好地掌握了本节课的教学内容。即使有个别学生没有掌握,教师也可通过他比画的手势语对不对就能马上发觉。总之,这节课学生的学习积极性很高,课堂气氛很活跃,就连一些平时基础很差的学生都能投入其中,并轻松掌握了本次课的内容。◆(作者单位:江西省铅山县教研室)
【一元一次方程组】推荐阅读:
一元一次方程组测试题07-22
一元一次不等式组05-25
初一数学一元一次不等式组检测题06-05
一元回归方程09-06
一元一次方程课件06-06
一元二次方程06-16
一元线性回归方程07-09
一元一次方程说课06-18
一元一次方程经典题07-14
初一一元一次方程课件10-06