高中数学竞赛标准讲义

2024-09-20

高中数学竞赛标准讲义(共7篇)

高中数学竞赛标准讲义 篇1

数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://

抽屉原理

在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。

“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。

(一)抽屉原理的基本形式

定理

1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。

在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。

同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。

例题讲解

1. 已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于

2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。

4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。

5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。

6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。

7. 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

例题答案:

1.分析:5个点的分布是任意的。如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于。

以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。

如图2,设BC是△ABC的最大边,P,M是△ABC内(包括边界)任意两点,连接PM,过P分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么

∠PQN=∠C,∠QNP=∠A

因为BC≥AB,所以∠A≥∠C,则∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相邻的内角),所以 PQ≥PM。显然BC≥PQ,故BC≥PM。

由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。

说明:

(1)这里是用等分三角形的方法来构造“抽屉”。类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。例如“任取n+1个正数ai,满足0<ai≤1(i=1,2,„,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。

(2)例1中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于“,请读者试证之,并比较证明的差别。

(3)用同样的方法可证明以下结论:

2i)在边长为1的等边三角形中有n+1个点,这n+1个点中一定有距离不大于的两点。

ii)在边长为1的等边三角形内有n+1个点,这n+1个点中一定有距离小于的两点。

(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的换成,命 题仍然成立。

(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长 为1的正三角形内(包括边界)有两点其距离不超过”。

2.分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若

nm∈N+,K∈N+,n∈N,则m=(2k-1)·2,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,„„

证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):

23456

(1){1,1×2,1×2,1×2,1×2,1×2,1×2};

234

5(2){3,3×2,3×2,3×2,3×2,3×2};

4(3){5,5×2,5×2,5×2,5×2};

3(4){7,7×2,7×2,7×2};

(5){9,9×2,9×2,9×2};

(6){11,11×2,11×2,11×2};

数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://

„„

(25){49,49×2};

(26){51};

„„

(50){99}。

这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。

说明:

(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3,„,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”

(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么?

①从2,3,4,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?

②从1,2,3,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?

你能举出反例,证明上述两个问题的结论都是否定的吗?

(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗? 3.证明:把前25个自然数分成下面6组:

1;

2,3;

4,5,6;

7,8,9,10;

11,12,13,14,15,16;

17,18,19,20,21,22,23,⑥

因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。

说明:

(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。

显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。这样,我们可以用如上一种特殊的分类法:递推分类法:

从1开始,显然1只能单独作为1个集合{1};否则不满足限制条件。

能与2同属于一个集合的数只有3,于是{2,3}为一集合。

数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://

如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。

(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为

{26,27,28,29,30,31,32,33,34,35,36,37,38,39};

第8个抽屉为:{40,41,42,„,60};

第9个抽屉为:{61,62,63,„,90,91};

„„

那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;(2)从前39个自然数中任取8个自然数;(3)从前60个自然数中任取9个自然数;(4)从前91个自然数中任取10个自然数;„

]内。

都可以得到同一个结论:其中存在2个数,它们相互的比值在上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。如果我们改变区间[](p>q)端点的值,则又可以构造出一系列的新题目来。

4.分析与解答:一个有着10个元素的集合,它共有多少个可能的子集呢?由于在组成一个子集的时候,每一个元素都有被取过来或者不被取过来两种可能,因此,10个元素的集合10就有2=1024个不同的构造子集的方法,也就是,它一共有1024个不同的子集,包括空集和全集在内。空集与全集显然不是考虑的对象,所以剩下1024-2=1022个非空真子集。

再来看各个真子集中一切数字之和。用N来记这个和数,很明显:

10≤N≤91+92+93+94+95+96+97+98+99=855

这表明N至多只有855-9=846种不同的情况。由于非空真子集的个数是1022,1022>846,所以一定存在两个子集A与B,使得A中各数之和=B中各数之和。

若A∩B=φ,则命题得证,若A∩B=C≠φ,即A与B有公共元素,这时只要剔除A与B中的一切公有元素,得出两个不相交的子集A1与B1,很显然

A1中各元素之和=B1中各元素之和,因此A1与B1就是符合题目要求的子集。

说明:本例能否推广为如下命题:

已给一个由m个互不相等的n位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。

请读者自己来研究这个问题。5.分析与解答:由中点坐标公式知,坐标平面两点(x1,y1)、(x2,y2)的中点坐标是。欲使都是整数,必须而且只须x1与x2,y1与y2的奇偶性相同。坐标平面上的任意整点按照横纵两个坐标的奇偶性考虑有且只有如下四种:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数)以此构造四个“抽屉”,则在坐标平面上任取五个整点,那么至少有两个整点,属于同一个“抽屉”因此它们连线的中点就必是整点。

说明:我们可以把整点的概念推广:如果(x1,x2,„xn)是n维(元)有序数组,且x1,x2,„xn中的每一个数都是整数,则称(x1,x2,„xn)是一个n维整点(整点又称格点)。如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此

n3共可分为2×2ׄ×2=2个类。这是对n维整点的一种分类方法。当n=3时,2=8,此时可数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。这就是1971年的美国普特南数学竞赛题。在n=2的情形,也可以构造如下的命题:“平面上任意给定5个整点”,对“它们连线段中点为整点”的4个命题中,为真命题的是:

(A)最少可为0个,最多只能是5个(B)最少可为0个,最多可取10个

(C)最少为1个,最多为5个(D)最少为1个,最多为10个

(正确答案(D))6.分析:本题也似乎是茫无头绪,无从下手,其关键何在?仔细审题,它们的“和”能“被100整除”应是做文章的地方。如果把这100个数排成一个数列,用Sm记其前m项的和,则其可构造S1,S2,„S100共100个”和"数。讨论这些“和数”被100除所得的余数。注意到S1,S2,„S100共有100个数,一个数被100除所得的余数有0,1,2,„99共100种可能性。“苹果”数与“抽屉”数一样多,如何排除“故障”?

证明:设已知的整数为a1,a2,„a100考察数列a1,a2,„a100的前n项和构成的数列S1,S2,„S100。

如果S1,S2,„S100中有某个数可被100整除,则命题得证。否则,即S1,S2,„S100均不能被100整除,这样,它们被100除后余数必是{1,2,„,99}中的元素。由抽屉原理I知,S1,S2,„S100中必有两个数,它们被100除后具有相同的余数。不妨设这两个数为Si,Sj(i<j),则100∣(Sj-Si),即100∣。命题得证。

说明:有时候直接对所给对象作某种划分,是很难构造出恰当的抽屉的。这时候,我们需要对所给对象先作一些变换,然后对变换得到的对象进行分类,就可以构造出恰当的抽屉。本题直接对{an}进行分类是很难奏效的。但由{an}构造出{Sn}后,再对{Sn}进行分类就容易得多。

另外,对{Sn}按模100的剩余类划分时,只能分成100个集合,而{Sn}只有100项,似乎不能应用抽屉原则。但注意到余数为0的类恰使结论成立,于是通过分别情况讨论后,就可去掉余数为0的类,从而转化为100个数分配在剩下的99个类中。这种处理问题的方法应当学会,它会助你从“山穷水尽疑无路”时,走入“柳暗花明又一村”中。

最后,本例的结论及证明可以推广到一般情形(而且有加强的环节):

在任意给定的n个整数中,都可以找出若干个数来(可以是一个数),它们的和可被n整除,而且,在任意给定的排定顺序的n个整数中,都可以找出若干个连续的项(可以是一项),它们的和可被n整除。

将以上一般结论中的n赋以相应的年份的值如1999,2000,2001„,就可以编出相应年份的试题来。如果再赋以特殊背景,则可以编出非常有趣的数学智力题来,如下题:

有100只猴子在吃花生,每只猴子至少吃了1粒花生,多者不限。请你证明:一定有若干只猴子(可以是一只),它们所吃的花生的粒数总和恰好是100的倍数。

7.证明:视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线。三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形。

考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,„,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色。

考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4。这时若B2,B3,B4之数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2,B3,B4,必为蓝色三角形,命题仍然成立。

说明:(1)本题源于一个古典问题--世界上任意6个人中必有3人互相认识,或互相不认识。(美国普特南数学竞赛题)。

(2)将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色。求证:存在三点,它们所成的三角形三边同色。

(3)问题(2)可以往两个方向推广:其一是颜色的种数,其二是点数。

本例便是方向一的进展,其证明已知上述。如果继续沿此方向前进,可有下题:

在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目。证明至少有三个科学家,他们互相之间讨论同一个题目。

(4)回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题。反过来,我们可以继续推广。从以上(3,1)→(6,2)→(17,3)的过程,易发现

6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958„记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,„

我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4„这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形。

数学教育网http://

高中数学竞赛标准讲义 篇2

中学数学中的方差公式在数学解题中有着极其广阔的应用价值, 然而由于统计初步列入中学数学时间不长, 因而有关方差公式在数学解题中的应用资料甚少. 为延伸教材内容、紧跟素质教育和新课程改革的步伐, 下面我们将方差公式在解高中数学竞赛题中的应用举例介绍如下, 供师生参考.

1 方差公式引理

如果x¯为一组数据x1, x2, …, xn的平均数, S2为这组数据的方差, 则有

S2=1n[ (x1-x¯) 2+ (x2-x¯) 2++ (xn-x¯) 2]=1n[ (x12+x22++xn2) -nx¯2]=1n[i=1nxi2-nx¯2].

2 典型例题解析

本文以竞赛试题为例, 谈谈如何利用方差公式解高中竞赛题.

2.1 求最大值

例1 (1993年全国高中数学联赛题) 实数x, y满足4x2-5xy+4y2=5, 设S=x2+y2, 则1Smax=__.

解 设x2+y2=t, 则视x, y为一组数据, 由方差公式, 得

S2=12[ (x2+y2) -2 (x+y2) 2]=12[ (x2+y2) -x2+2xy+y22]= (x2+y2) -2xy4=t-2xy4. (1)

因为4x2-5xy+4y2=5, 所以

xy=45 (x2+y2) -1=45t-1.

代入 (1) 中, 得

S2=t-85t+24=-3t+10200,

所以3t-100, t103.

Smax=103, 1Smax=310.

2.2 求最小值

例2 (1989年全国高中数学联赛题) 当st取遍全体实数时, 求| (s+5-3|cos t|) 2+ (s-2|sin t|) 2所能达到的最小值.

解 视s+5-3|cos t|, 2|sin t|-|s|为一组数据, 由方差公式得

S2=12[ (s+5-3|cost|) 2+ (s-2|sint|) 2-12 (s+5-3|cost|) +2|sint|-s) 2]0,

(s+5-3|cost|) 2+ (s-2|sint|) 212 (s+5-3|cost|+2|sint|) -s) 2=12 (5-3|cost|) +2|sint|) 2=12 (5+2sinθ-3cosθ) 2=12[5+13sin (θ-φ) ]2,

其中θ[0, π2], sinθ=|sint|, cosθ=|cost|, sinφ=31313, cosφ=21313.显然当θ=0 (此时t=kπ, k∈Z, s可取任意实数) 时, 原式可达到最小值2.

2.3 解方程

例3 (南昌市高中数学竞赛题) 解方程4 (x+y-1+z-2=x+y+z+9.

解 设x=a, y-1=b, z-2=c, 则x=a2, y=b2+1, z=c2+2.原方程化为

4 (a+b+c) =a2+b2+c2+12,

a2+b2+c2=4 (a+b+c) -12.

a, b, c为一组数据, 由方差公式得

S2=13[ (a2+b2+c2) -13 (a+b+c) 2]=13[4 (a+b+c) -12-13 (a+b+c) 2]=-19 (a+b+c-6) 2.

因为S2≥0, 所以

-19 (a+b+c-6) 20,

从而 (a+b+c-6) 2=0,

a+b+c=6.

故有S2=0, 从而a=b=c=2.

x=4, y=5, z=6.经检验是方程的解.

2.4 解方程组

例4 (法国高中数学竞赛题) 解方程组

{x+y+z=1, x2+y2+z2=13.

解 视x, y, z为一组数据, 则由方差公式, 得

S2=13[ (x2+y2+z2) -3 (x+y+z3) 2]=13[13-3 (13) 2]=13×0=0.

而由方差公式的推导可知:若 (x1-x¯) 2+ (x2-x¯) 2++ (xn-x¯) 2=nS2=0, 则有x1=x2==xn=x¯.本题中, x1=x, x2=y, x3=z, n=3, S=0, x¯=x+y+z3=13, 故有

(x-13) 2+ (y-13) 2+ (z-13) 2=0,

x=y=z=13.

2.5 求最值范围

例5 (美国第七届IMO试题) 设实数a, b, c, d, e适合a+b+c+d+e=8, a2+b2+c2+d2+e2=16, 试确定e的取值范围.

解 由已知得

a, b, c, d为一组数据, 则由方差公式,

所以0e165.

2.6 证明不等式

例6 (1988年四川省高中数学联赛题) 已知:实数xi (i=1, 2, …, n) 满足i=1nxi=a (a>0) , i=1nxi2=a2n-1, n2, nΝ.求证0xi2an (i=1, 2, , n) .

证明 由题意知

x2++xn=a-x1, x22++xn2=a2n-1-x12.

则由方差公式, 得

S2≥0得

-nx12+2ax1 (n-1) 20,

解得0x12an.

同理可证0xi2an (i=1, 2, , n) .

如果在这道竞赛题中, 令a=8, n=5, 则成为美国第七届IMO试题, 见例5.

2.7 求整式值

例7 (2008年合肥市高中数学竞赛题) 已经△ABC的三边a, b, c满足 (1) a>b>c; (2) 2b=a+c; (3) b是正整数; (4) a2+b2+c2=84.求b的值.

解 因为2b=a+c, 所以a+b+c=3b.视a, b, c为一组数据, 则由方差公式, 得

因为S2≥0, 所以28-b2≥0, 得b2≤28.

又由2b=a+c, 有

4b2=a2+c2+2ac=84-b2+2ac.

a>0, c>0, 所以4b2>84-b2, 得

1645<b228.

因为b是正整数, 所以b=5.

2.8 求根式值

例8 (2008年庆阳市高中数学竞赛题) 已知实数a, b, c, d满足a+b+c+d=4, a2+b2+c2+d2=4, 求abcd的值.

x¯=14 (a+b+c+d) =14×4=1,

a, b, c, d为一组数据, 由方差公式得

S2=14[ (a2+b2+c2+d2) -4 (x¯) 2]=14 (4-4×1) =0, (a-1) 2+ (b-1) 2+ (c-1) 2+ (d-1) 2=4S2=0,

故由非负数性质得

a=b=c=d=1,

所以abcd=1.

2.9 求对数值

例9 (2007年南京市高中数学竞赛题) 已知x, y, z均为实数, 且满足x+y+z=2, x2+y2+z2=4, 求log38 (zmax-zmin) =__.

解 视x, y为一组数据, 则由方差公式, 得

S2=12 (x2+y2) -2 (x+y2) 2

=12 (4-z2) - (2-z2) 2

=8-2z2-4+4z-z24=4-3z2+4z40,

所以 3z2-4z-4≤0,

解之得

-23z2zmax=2, zmin=-23, log38 (zmax-zmin) =log3883=-1.

2.10 证明几何题

例10 (2008年昆明市高中数学竞赛题) 设△ABC的三边a, b, c满足:b+c=8, bc=a2-12a+52.求证:△ABC是等腰三角形.

证明 由已知, 得

b2+c2=64-2bc=-2a2+24a-40.

b, c为一组数据, 由方差公式得

S2=12[ (b2+c2) -12 (b+c) 2]=12[ (-2a2+24a-40) -12×82]=- (a-6) 20.

因为S2≥0, 所以

- (a-6) 2≥0, (a-6) 2=0, a=6.

所以S2=0, b=c=4.故△ABC是以a为底, b, c为腰的等腰三角形.

综上所述可知:应用方差公式解高中数学竞赛题, 其关键在于根据题设, 寻找出一组数据, 再运用方差公式写出S2=1n[ (x12+x22++xn2) -nx¯2]=1ni=1nxi2-nx¯2的等式, 然后通过化简运算解不等式, 去求解.

此法富有新意, 具有规律, 解题明晰, 易于理解, 值得重视.

总之, 加强方差公式的研究, 符合新课程改革关于“以课程标准为指导, 以教材为基础, 合理使用课本, 加强教学科研”的理念要求, 有利于培养学生的探索精神和创新意识, 有利于指导学生启迪思维、开拓视野, 有利于学生数学思维能力和综合运用知识的解题能力的提高, 有利于培养学生感悟数学、掌握基础知识和基本技能及方法, 提高综合解题水平, 有利于培养学生的思维品质, 有利于调动学生学习的积极性, 有利于提高学生的专题总结水平.故笔者认为:在今后的教学过程中, 适当引导学生进行这样的专题研究是很有必要的.

3 练习题

1. (上海市高中数学竞赛题) 已知实数x, y, z满足试求x2y+z的值.

提示:视x, 3y为一组数据.答案:9

2. (前苏联奥尔德荣尼基市中学竞赛题) 已知x+y+z=1, 求证:x2+y2+z213.

提示:视x, y, z为一组数据, 结合S2≥0得证.

3. (2005年贵州省安顺市高中数学竞赛题) 已知实数x, y, z, 且x2+y2+z2=1, x+y+z=32, 则y+y=__.

提示:视x, z为一组数据, 由方差公式得12y2-12y+1≤0, 解得

12-66y12+66, y+y= (12+66) + (12-66) =1.

4. (吉林省高中数学竞赛题) 设实数a, b, c满足

{a2-bc-8a+7=0, (1) b2+c2+bc-6a+6=0. (2)

a的取值范围是__.

提示: (1) + (2) , 得

b2+c2=-a2+14a-13.

(2) - (1) , 得

(b+c) 2= (a-1) 2.

由方差公式, 得实数b, c的方差为

S2=12[ (b2+c2) -12 (b+c) 2]=-34 (a2-10a+9) .

S2≥0, 所以a2-10a+9≤0, 即1≤a≤9.

5. (第二届美国数学奥林匹克试题) 解方程组

{x+y+z=3, x2+y2+z2=3, x3+y3+z3=3.

提示:视x, y, z为一组数据, 由方差公式得

S2=13[ (x2+y2+z2) -13 (x+y+z) 2]=13 (3-13×32) =0.

故原方程组有唯一实数解x=1, y=1, z=1.

参考文献

[1]于志洪.用方差公式求值[J].数学学习, 2001, (4) :6-7.

[2]于志洪, 樊增华.利用方差公式求最大值[J].中学数学, 2004, (9) :20-21.

高中数学竞赛标准讲义 篇3

关键词 高中数学竞赛;基础教育;影响

数学竞赛是当今中国教育界的热点之一,自上个世纪首先在匈牙利兴起,很快就风靡了全世界,各种层次竞赛吸引了众多的学生参加,成为数学教育中一件非常重要的事情。在教学方法和教学成果开展上进行研究讨论具有较高的学术价值。

1 高中数学竞赛的定位

数学竞赛又称为数学奥林匹克,中学数学竞赛是发现和培养优秀学生的一个非常有益的课外活动。随着数学奥林匹克活动在我国的开展,数学竞赛已经成为中小学数学课外一个不可缺少的活动,也成为我国数学教育实践活动中非常重要的一个组成部分。作为数学课堂教学的补充,数学竞赛能够激发学生学习数学的兴趣,在健康的竞赛机制中,青少年参加数学竞赛的学习活动,能够激发他们的上进心和荣誉感,能培养学生的创新能力,提高学生的数学素养和综合素质。

应该说,高中数学竞赛在本质上也是一种基础教育,但更强调素质的培养和能力的发展。有人认为“高中数学竞赛只是培养少数尖子”,这种看法其实与事实不符,从高中数学竞赛中得益的决不是少数人。我们可以以奥运会为参照,具备夺金实力的只是寥寥数人,但参加体育活动却使众多的人体质增强,整个民族对体育的兴趣大增。高中数学竞赛也是如此,通过竞赛,可以影响众多的学生,使他们对学科的兴趣大增,从而使整个基础教育的渗透面更广。

2 高中数学竞赛的内容和试题特点

高中数学竞赛的内容不同层次的数学竞赛对竞赛内容也有着不同层次的要求。一般来说,在高中数学竞赛内容的选取上有两个方面的要求:一个只是完全参照学生所在学段的教学大纲的基本教学要求和内容,试题的命制范围不超出参赛学生所学内容,只是在解题的方法和技巧上有所提高;另一个就是提高方面的内容,有些是课外讲授的知识,此类试题对学生的解题思维能力和数学知识面都有一定的要求。目前我国高中数学竞赛内容已日趋规范化和正规化,纵观各地高中数学竞赛内容,基本考查的都是几何、代数、数论和组合知识这四个方面的内容。近年来,课程改革的实践在一定程度上改变了我国中学数学课程的体系、内容和要求。同时,随着国内外数学竞赛活动的发展,对数学竞赛试题所涉及的知识、思想和方法等方面也有了一些新的要求。

高中数学竞赛试题的特点:高中数学竞赛所涉及的内容并不是简单的中学数学教材所包含的知识范围,因为有一些内容在中学数学教材中并不讲授,例如数论和组合知识就是大学数学的一部分。虽然这些题目都是以初等的语言来表述,并且对这些题目的解答在中学生解题的知识和能力范围之内,但是这样的题目包含了大学数学的思想和方法,有着大学数学的背景。并且相对于条件明确、结论唯一、解法固定的传统问题而言的。开放性的数学试题近年来在我国教育界受到了广泛的关注和普遍的重视,在解决开放性问题的过程中能促进学生的数学思维,学生在思维中主动地构建知识,问题的多种解决方式能有效地培养学生的创新意识、发散性思维能力和创造能力。从题目结构形式上看,开放性试题主要具有以下特征:

层次性。开放性题解答的多样性,决定了它能够满足各种层次水平的学生的需求,使他们都能在自己的能力范围内解决问题,从而体现出层次性。

不确定性。开放性题的不确定性是指问题中的条件、解题策略和结论均需解题者在情景中去设定和寻找。

非完备性。在开放性题中,要么条件不充足,要么结论被隐去,要么解题方法和依据不明确,因而其组成要素是不完备的。

探究性。开放性题的解答没有固定的、现成的模式可循,解答者不能用常规方法去套用,必须经过主动地思索自行设计解题方案。因而,开放性题的解决需要具有大胆的探索精神和一定的探索能力。

发散性。解答开放性题时,必须打破原有的思维模式,展开联想和想象的翅膀,从多角度、多方位寻找答案,因而思维方向和模式呈发散性。

3 高中数学竞赛对基础教育的影响

3.1高中数学竞赛是基础教育科学文化的生动普及:高中数学竞赛活动不仅推动了各国科学教育的交流,促进了科学教育水平的提高,增进了各国青少年学生的相互了解,而且激发了广大中学生对基础教育科学知识的兴趣,有助于发现和培养青年人才。因为高中数学竞赛这项活动为世界各国表现本民族的聪明才智提供了竞争和交流的舞台,因而受到越来越多的国家的重视,并因此得到联合国教科文组织等许多国际科技教育组织的关注和支持。

3.2高中数学竞赛促进了基础教育教师素质的提高:高中数学竞赛在内容、思维和方法上的高要求,迫使高中数学教师必须全面提高自身的知识与能力方面的素质。一方面,高中数学教师要改革传统的教学方法。因为只有这样,高中数学教师才能迎合学科竞赛的积极开展,才能在发现、选拔、培养学科英才时立于不败之地。另一方面,高中数学教师明确自己在知识与能力等方面的不足,从而促使自己积极投身到知识更新和能力提高的自觉学习当中去。

3.3高中数学竞赛推动了当前基础教育改革的深化:高中数学竞赛辅导教师在学科竞赛中有着不可或缺的作用,从选手培训到赛前指导,从丰富理论知识到训练逻辑思维,各个环节都是对教师教学质量、教学效果的反馈,也是对新的教学方法的考证。通过辅导学科竞赛,教师可以针对发现的问题,对教学内容进行改进,也可以寻求到融入实践教育的更适宜的方式,从而达到良好的教学效果,使教学质量更上层楼。教练和学生在学科竞赛中互动要较常规教学多得多,这也是對“培养模式多样化,培养方案个性化”的人才培养模式做出的探索。在不断的课程体系和教学内容改革中,必然会有很多新理念、新方法涌现。有时,在把这些探索性成果广泛应用之前,需要一个测试、修正的过程。学科竞赛就可以提供这样一块试验田。

参考文献

[1]陈晓燕,高中数学教学中开展研究性学习的探索[J],数学学习与研究,2012(05)

[2]王维民,高中数学探究性学习评价方法探析[J],科技信息,2010(27)

高中数学导数专题讲义(答案版) 篇4

汇总

导数专题一、单调性问题

【知识结构】

【知识点】

一、导函数代数意义:利用导函数的正负来判断原函数单调性;

二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系.三、分类讨论的思路步骤:

第一步、求函数的定义域、求导,并求导函数零点;

第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论);

第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);

第四步、(列表)根据第五步的草图列出,随变化的情况表,并写出函数的单调区间;

第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值.四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点:

1.最高次项系数是否为0;

2.导函数是否有极值点;

3.两根的大小关系;

4.根与定义域端点讨论等。

五、求解函数单调性问题的思路:

(1)已知函数在区间上单调递增或单调递减,转化为或恒成立;

(2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围;

(3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解.六、原函数单调性转化为导函数给区间正负问题的处理方法

(1)参变分离;

(2)导函数的根与区间端点直接比较;

(3)导函数主要部分为一元二次时,转化为二次函数根的分布问题.这里讨论的以一元二次为主。

七、求解函数单调性问题方法提炼:

(1)将函数单调增(减)转化为导函数恒成立;

(2),由(或)可将恒成立转化为(或)恒成立;

(3)由“分离参数法”或“分类讨论”,解得参数取值范围。

【考点分类】

考点一、分类讨论求解函数单调性;

【例1-1】(2015-2016朝阳一模理18)已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,都有成立,求的取值范围;

(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.

【答案】(Ⅰ)函数的定义域为..

(1)当时,恒成立,函数在上单调递增;

(2)当时,令,得.

当时,函数为减函数;

当时,函数为增函数.

综上所述,当时,函数的单调递增区间为.

当时,函数的单调递减区间为,单调递增区间为.

(Ⅱ)由(Ⅰ)可知,(1)当时,即时,函数在区间上为增函数,所以在区间上,显然函数在区间上恒大于零;

(2)当时,即时,函数在上为减函数,在上为增函数,所以.

依题意有,解得,所以.

(3)当时,即时,在区间上为减函数,所以.

依题意有,解得,所以.

综上所述,当时,函数在区间上恒大于零.

(Ⅲ)设切点为,则切线斜率,切线方程为.

因为切线过点,则.

即.

………………①

令,则

(1)当时,在区间上,单调递增;

在区间上,单调递减,所以函数的最大值为.

故方程无解,即不存在满足①式.

因此当时,切线的条数为.

(2)当时,在区间上,单调递减,在区间上,单调递增,所以函数的最小值为.

取,则.

故在上存在唯一零点.

取,则.

设,则.

当时,恒成立.

所以在单调递增,恒成立.所以.

故在上存在唯一零点.

因此当时,过点P存在两条切线.

(3)当时,显然不存在过点P的切线.

综上所述,当时,过点P存在两条切线;

当时,不存在过点P的切线.

【例1-2】(2015-2016海淀一模理18)已知函数,.(Ⅰ)求函数的最小值;

(Ⅱ)求函数的单调区间;

(Ⅲ)

求证:直线不是曲线的切线.【答案】(Ⅰ)函数的定义域为,当变化时,的变化情况如下表:

递减

极小值

递增

函数在上的极小值为,所以的最小值为

(Ⅱ)解:函数的定义域为,由(Ⅰ)得,所以

所以的单调增区间是,无单调减区间.(Ⅲ)证明:假设直线是曲线的切线.设切点为,则,即

又,则.所以,得,与

矛盾

所以假设不成立,直线不是曲线的切线

【练1-1】(2015-2016西城一模理18)已知函数,且.(Ⅰ)

求的值及的单调区间;

(Ⅱ)

若关于的方程存在两个不相等的正实数根,证明:.【答案】(Ⅰ)对求导,得,所以,解得.故,.令,得.当变化时,与的变化情况如下表所示:

0

0

所以函数的单调减区间为,单调增区间为.(Ⅱ)解:方程,即为,设函数.求导,得.

由,解得,或.所以当变化时,与的变化情况如下表所示:

0

所以函数在单调递减,在上单调递增.由,得.又因为,所以.不妨设(其中为的两个正实数根),因为函数在单调递减,且,所以.同理根据函数在上单调递增,且,可得,所以,即

.【练1-2】(2011-2012石景山一模文18)已知函数.(Ⅰ)若函数的图象在处的切线斜率为,求实数的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)若函数在上是减函数,求实数的取值范围.【答案】(Ⅰ)

…………1分

由已知,解得.…………3分

(II)函数的定义域为.(1)当时,,的单调递增区间为;……5分

(2)当时.当变化时,的变化情况如下:

+

极小值

由上表可知,函数的单调递减区间是;

单调递增区间是.…………8分

(II)由得,…………9分

由已知函数为上的单调减函数,则在上恒成立,即在上恒成立.即在上恒成立.…………11分

令,在上,所以在为减函数.,所以.…………14分

【练1-3】(2015-2016朝阳期末文19)已知函数,.(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,试判断函数是否存在零点,并说明理由;

(Ⅲ)求函数的单调区间.【答案】函数的定义域:..(Ⅰ)当时,..有,即切点(1,3),.所以曲线在点处切线方程是,即.(Ⅱ)若,..令,得(舍),.-

极小值

则.所以函数不存在零点.(Ⅲ)

.当,即时,-

极小值

当,即时,的单调增区间是,;

当,即时,+

极大值

极小值

当,即时,+

极大值

极小值

综上时,的单调增区间是;减区间是.当时,的单调增区间是,;减区间是.当时,的单调增区间是;

当时,的单调增区间是,;减区间是.【练1-4】(2015-2016丰台期末文20)设函数的图象与直线相切于点.

(Ⅰ)求函数的解析式;

(Ⅱ)求函数的单调区间;

(Ⅲ)设函数,对于,,使得,求实数的取值范围.【答案】(Ⅰ)∵函数的图象与直线相切于点,∴,.

∵,∴

解得.

∴.

(Ⅱ),令,得或;

令,得.

∴的单调递增区间为,;单调递减区间为.

…8分

(Ⅲ)记在上的值域为,在上的值域为,∵对于,使得,∴.

由(Ⅱ)得:在上单调递增,在上单调递减,在上单调递增,,,∴.

∵,∴.

当时,在上单调递增,在上单调递减,在上单调递增,∴的最小值为或,的最大值为或.

∵,且,∴或,∴或,即或.

又∵,∴.

当时,在上单调递增,上单调递减,∴的最小值为或,的最大值为

∵,且,∴,∴,即.

综上所述:或.

【练1-5】(2015-2016朝阳二模文20)已知函数.(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若在区间上恒成立,求的取值范围.【答案】(Ⅰ)

函数的定义域为,.(1)

当时,,令,解得,则函数的单调递增区间为

令,解得,函数单调递减区间为.所以函数的单调递增区间为,单调递减区间为.(2)

当时,,令,解得或,则函数的单调递增区间为;

令,解得,函数单调递减区间为.所以函数的单调递增区间为,单调递减区间为.(3)

当时,恒成立,所以函数的单调递增区间为.(4)

当时,,令,解得或,则函数的单调递增区间为,;

令,解得,则函数的单调递减区间为.所以函数的单调递增区间为,单调递减区间为

(Ⅱ)依题意,在区间上.,.令得,或.若,则由得,函数在()上单调递增.由得,,函数在()上单调递减.所以,满足条件;

若,则由得,或;

由得,.函数在(),上单调递增,在上单调递减.,依题意,即,所以;

若,则.所以在区间上单调递增,不满足条件;

综上,.【练1-6】(2015-2016房山二模文19)已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线与曲线没有公共点,求实数的取值范围。

【答案】(Ⅰ),定义域为,令

极小值

所以的增区间为,减区间为。

(II)因为直线与曲线没有公共点,所以方程无实根,即无实根,等价于无实根

设,即无零点。

当时,显然无零点,符合题意;

当时,令

极小值,显然不符合题意;

当时,令

极大值,所以时,符合题意

综上所述:

【练1-7】(2015-2016朝阳一模文19)已知函数.(Ⅰ)若求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)设,若函数在区间上存在极值点,求的取值范围.【答案】(Ⅰ)若,函数的定义域为,.则曲线在点处切线的斜率为.而,则曲线在点处切线的方程为

(Ⅱ)函数的定义域为,.(1)当时,由,且此时,可得.令,解得或,函数为减函数;

令,解得,但,所以当,时,函数也为增函数.所以函数的单调减区间为,单调增区间为,.(2)当时,函数的单调减区间为,.当时,函数的单调减区间为,.当时,由,所以函数的单调减区间为,.即当时,函数的单调减区间为,.(3)当时,此时.令,解得或,但,所以当,时,函数为减函数;

令,解得,函数为增函数.所以函数的单调减区间为,,函数的单调增区间为.…………9分

(Ⅲ)(1)当时,由(Ⅱ)问可知,函数在上为减函数,所以不存在极值点;

(2)当时,由(Ⅱ)可知,在上为增函数,在上为减函数.若函数在区间上存在极值点,则,解得或,所以.综上所述,当时,函数在区间上存在极值点.【练1-8】(2015-2016东城期末理19)已知函数.

(Ⅰ)当时,试求在处的切线方程;

(Ⅱ)当时,试求的单调区间;

(Ⅲ)若在内有极值,试求的取值范围.

【答案】(Ⅰ)当时,,.

方程为.

(Ⅱ),.

当时,对于,恒成立,所以

Þ;

Þ

0.所以

单调增区间为,单调减区间为

(Ⅲ)若在内有极值,则在内有解.

Þ

Þ

.设,所以,当时,恒成立,所以单调递减.又因为,又当时,,即在上的值域为,所以

当时,有解.设,则,所以在单调递减.因为,,所以在有唯一解.所以有:

0

0

递减

极小值

递增

所以

当时,在内有极值且唯一.当时,当时,恒成立,单调递增,不成立.

综上,的取值范围为.

【练1-9】(2015-2016大兴期末理18)已知函数.(Ⅰ)当时,求函数在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)若在上恒成立,求的取值范围.【答案】(1)当

时,所以,函数在点处的切线方程为

即:

(Ⅱ)函数的定义域为:

当时,恒成立,所以,在和上单调递增

当时,令,即:,,所以,单调递增区间为,单调减区间为.(Ⅲ)因为在上恒成立,有

在上恒成立。

所以,令,则.令则

若,即时,函数在上单调递增,又

所以,在上恒成立;

若,即时,当时,单调递增;

当时,单调递减

所以,在上的最小值为,因为所以不合题意.即时,当时,单调递增,当时,单调递减,所以,在上的最小值为

又因为,所以恒成立

综上知,的取值范围是.考点二、已知函数单调求参数范围;

【例2-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例2-2】(2015-2016朝阳期中文19)已知函数,.

(Ⅰ)若函数在区间上单调递减,求的取值范围;

(Ⅱ)当时,证明.【答案】(I)函数的定义域为.因为.又因为函数在单调减,所以不等式在上成立.设,则,即即可,解得.所以的取值范围是.(Ⅱ)当时,.令,得或(舍).当变化时,变化情况如下表:

0

+

极小值

所以时,函数的最小值为.所以成立.【练2-1】(2015-2016海淀期中文18)已知函数.(Ⅰ)若曲线在点处切线的斜率为,求函数的单调区间;

(Ⅱ)若函数在区间上单调递增,求的取值范围.【答案】(Ⅰ)因为,所以曲线经过点,又,所以,所以.当变化时,的变化情况如下表

0

0

极大值

极小值

所以函数的单调递增区间为,单调递减区间为

.(Ⅱ)

因为函数在区间上单调递增,所以对成立,只要在上的最小值大于等于0即可.因为函数的对称轴为,当时,在上的最小值为,解,得或,所以此种情形不成立

当时,在上的最小值为,解得,所以,综上,实数的取值范围是.【练2-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【练2-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

(ⅰ)令,得.

令,得,所以函数在单调递增.

令,得,所以函数在单调递减.

所以,.

所以成立.

(ⅱ)由(ⅰ)知,所以.

设所以.

令,得.

令,得,所以函数在单调递增,令,得,所以函数在单调递减;

所以,即.

所以,即.

所以,方程没有实数解.

【练2-4】(2015-2016海淀期中理18)已知函数,曲线在点处的切线为.

(Ⅰ)若直线的斜率为,求函数的单调区间;

(Ⅱ)若函数是区间上的单调函数,求的取值范围.

【答案】(Ⅰ)

因为直线的斜率为

所以

所以

所以

令解得

所以当和时,当时,所以的单调增区间为和,单调减区间为

(Ⅱ)要使在上单调

只需或在恒成立

(1)在恒成立等价于,即

解得

(2)在恒成立,当时,即,解得(舍)或(舍)

当时,即,解得

综上所述

考点三、已知函数不单调求参数范围;

【例3-1】已知函数.当时,若在区间上不单调,求的取值范围.【答案】解法一:∵

令,解得,因为在区间上不单调,所以区间上存在极值点,所以,或

即,或

所以或

∴.解法二:∵

因为函数在区间不单调,所以函数在上存在零点.令,解得,区间长为,∴在区间上不可能有个零点.所以

即:

∵,∴,又∵,∴.【例3-2】已知函数,若在区间上不单调,求的取值范围

【答案】

考点四、已知函数存在单调区间求参数范围;

【例4-1】设函数,.若函数在上存在单调递增区间,试求实数的取值范围.【答案】解法一:

设,依题意,在区间上存在子区间使得不等式成立.注意到抛物线开口向上,所以只要,或即可

由,即,得,由,即,得,所以,所以实数的取值范围是.解法二:,依题意得,在区间上存在子区间使不等式成立.又因为,所以.设,所以小于函数在区间的最大值.又因为,由解得;

由解得.所以函数在区间上递增,在区间上递减.所以函数在,或处取得最大值.又,所以,所以实数的取值范围是.【例4-2】(2010-2011朝阳二模理18)设函数,.(Ⅰ)若,求函数在上的最小值;

(Ⅱ)若函数在上存在单调递增区间,试求实数的取值范围;

【答案】

【练4-1】已知函数,.函数在上存在单调递增区间,求的取值范围.

【答案

当时,令,解得

则在上单调递增区间,满足题意.当时

当,即时,在上单调递减(舍)

当,即,且时

令,解得:,当时,则在上单调递增区间,满足题意

当时,要使在上存在单调递增区间,则,即,解得

所以

综上所述得:的取值范围为:

解法二:

在上存在单调递增区间等价于在存在区间使成立,即存在使成立

当时,则

所以,的取值范围为:

考点五、两个函数在具有相同的单调性求参数范围;

【例5-1】(2012-2013西城一模文18)已知函数,其中.

(Ⅰ)求的极值;

(Ⅱ)若存在区间,使和在区间上具有相同的单调性,求的取值范围.

【答案】(Ⅰ)的定义域为,且

………………2分

当时,故在上单调递增.

从而没有极大值,也没有极小值.

………4分

当时,令,得.

和的情况如下:

故的单调减区间为;单调增区间为.

从而的极小值为;没有极大值.

…………6分

(Ⅱ)解:的定义域为,且

…………8分

当时,在上单调递增,在上单调递减,不合题意.

………………9分

当时,在上单调递减.

当时,此时在上单调递增,由于在上单调递减,不合题意.

……………11分

当时,此时在上单调递减,由于在上单调递减,符合题意.

综上,的取值范围是.

…………13分

【例5-2】已知函数,其中.若存在区间,使和在区间上具有相同的单调性,求的取值范围.

【答案】的定义域为,当,在单调递减,当时,在单调递减,单调递增,的定义域为,且

当时,显然,从而在上单调递增.

此时在上单调递增,符合题意.

当时,在上单调递增,在上单调递减,不合题意.

当时,令,得.

和的情况如下表:

当时,此时在上单调递增,由于在上单调递减,不合题意.

当时,此时在上单调递减,由于在上单调递减,符合题意.

综上,的取值范围是.

导数专题二、极值问题

【知识点】

一、函数的极值定义

函数在点附近有定义,如果对附近的所有点都有则称是函数的一个极大值,记作;如果对附近的所有点都有则称是函数的一个极小值,记作极大值与极小值统称为极值,称为极值点.

极大值与极小值统称为极值.极大值点与极小值点统称为极值点.

极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

可导函数的极值点必定是它的驻点。但是反过来,函数的驻点却不一定是极值点,例如,点是它的驻点,却不是它的极值点。

极值点上的导数为零或不存在,且函数的单调性必然变化。

极值问题主要建立在分类讨论的基础上,二、求函数的极值点和极值注意事项:

1.求极值或极值点,必须点明是极大还是极小。若没有另一个,要说明没有。

2.要知道如何判断是否存在极值或者极值点。

3.如果已知极值或者极值点,求参数的时候,最后结果需要检验。

4.极值点是导函数的根,如果有两个根,要在合适的时候想到伟达定理。

三、求函数极值的三个基本步骤

第一步、求导数;

第二步、求方程的所有实数根;

第三步、考察在每个根附近,从左到右,导函数的符号如何变化.如果的符号由正变负,则是极大值;如果由负变正,则是极小值.如果在的根的左右侧,的符号不变,则不是极值.

【考点分类】

考点一、分类讨论求函数极值(点);

【例1-1】(2015-2016海淀一模文19)已知函数.(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求函数的零点和极值;

(Ⅲ)若对任意,都有成立,求实数的最小值.【答案】

(Ⅰ)设切线斜率为,所以,所以曲线在点处的切线方程为,即。

(Ⅱ)令,解得。当时,;时,所以函数零点有且只有一个,为1.令,即解得。当时,;当时,所以函数在处取得极小值,无极大值。

(Ⅲ)由(II)知,当时,;时,且在上单调递减,在上单调递增,所以在处取得最小值。且。,所以只需。所以。所以的最小值为1。

【例1-2】(2010-2011朝阳二模理18)设函数,.(Ⅰ)若,求函数在上的最小值;

(Ⅱ)若函数在上存在单调递增区间,试求实数的取值范围;

(Ⅲ)求函数的极值点.【答案】

考点二、已知函数极值(点)情况求参数范围;

【例2-1】(2015-2016朝阳一模文19)已知函数.(Ⅰ)若求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)设,若函数在区间上存在极值点,求的取值范围.【答案】(Ⅰ)若,函数的定义域为,.则曲线在点处切线的斜率为.而,则曲线在点处切线的方程为

(Ⅱ)函数的定义域为,.(1)当时,由,且此时,可得.令,解得或,函数为减函数;

令,解得,但,所以当,时,函数也为增函数.所以函数的单调减区间为,单调增区间为,.(2)当时,函数的单调减区间为,.当时,函数的单调减区间为,.当时,由,所以函数的单调减区间为,.即当时,函数的单调减区间为,.(3)当时,此时.令,解得或,但,所以当,时,函数为减函数;

令,解得,函数为增函数.所以函数的单调减区间为,,函数的单调增区间为.…………9分

(Ⅲ)(1)当时,由(Ⅱ)问可知,函数在上为减函数,所以不存在极值点;

(2)当时,由(Ⅱ)可知,在上为增函数,在上为减函数.若函数在区间上存在极值点,则,解得或,所以.综上所述,当时,函数在区间上存在极值点.【例2-2】(2015-2016东城期末理19)已知函数.

(Ⅰ)当时,试求在处的切线方程;

(Ⅱ)当时,试求的单调区间;

(Ⅲ)若在内有极值,试求的取值范围.

【答案】(Ⅰ)当时,,.

方程为.

(Ⅱ),.

当时,对于,恒成立,所以

Þ;

Þ

0.所以

单调增区间为,单调减区间为

(Ⅲ)若在内有极值,则在内有解.

Þ

Þ

.设,所以,当时,恒成立,所以单调递减.又因为,又当时,,即在上的值域为,所以

当时,有解.设,则,所以在单调递减.因为,,所以在有唯一解.所以有:

0

0

递减

极小值

递增

所以

当时,在内有极值且唯一.当时,当时,恒成立,单调递增,不成立.

综上,的取值范围为.

【练2-1】(2015-2016房山二模理18)已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)设,若在区间上有两个极值点,求实数的取值范围。

【答案】(Ⅰ)当时,定义域为

令,得

0

递增

递减

极小值

递增

(Ⅱ),因为

所以令,只需

设,若在区间上有两个极值点,则在区间上有两个零点

要使在区间上有两个零点,的唯一根必须在区间

所以令,得,且

解得:

【练2-2】已知函数,(为常数).若函数在区间上有两个极值点,求实数的取值范围.【答案】

由题意可知,解得

所以,实数的取值范围为.【练2-3】已知函数,其中且.若函数在区间上有且仅有一个极值点,求实数的取值范围.【答案】在上有且仅有一个极值点,在上有且仅有一个异号零点,由二次函数图象性质可得,即,解得或,综上,的取值范围是.【练2-4】已知函数,其中且.(Ⅰ)求证:函数在点处的切线与总有两个不同的公共点;

(Ⅱ)若函数在区间上有且仅有一个极值点,求实数的取值范围.【答案】(Ⅰ)由已知可得.,又

在处的切线方程为.令,整理得.或,与切线有两个不同的公共点.--7分

(Ⅱ)在上有且仅有一个极值点,在上有且仅有一个异号零点,由二次函数图象性质可得,即,解得或,综上,的取值范围是.【练2-5】(2013-2014海淀二模文18)已知函数,其中且.(Ⅰ)求证:函数在点处的切线与总有两个不同的公共点;

(Ⅱ)若函数在区间上有且仅有一个极值点,求实数的取值范围.【答案】(Ⅰ)由已知可得.---------------------------------1分,---------------------------------2分

在处的切线方程为.---------------------------------4分

令,整理得.或,-----------------------------------5分,----------------------------------------6分

与切线有两个不同的公共点.----------------------------------------7分

(Ⅱ)在上有且仅有一个极值点,在上有且仅有一个异号零点,---------------------------9分

由二次函数图象性质可得,-------------------------------------10分

即,解得或,----------------------------12分

综上,的取值范围是.-------------------------------13分

【练2-6】(2009-2010年北京高考文18)设定函数,且方程的两个根分别为1,4。

(Ⅰ)当且曲线过原点时,求的解析式;

(Ⅱ)若在无极值点,求的取值范围。

【答案】由

因为的两个根分别为1,4,所以

(*)

(Ⅰ)当时,又由(*)式得

解得

又因为曲线过原点,所以

(Ⅱ)由于a>0,所以“在(-∞,+∞)内无极值点”等价于“在(-∞,+∞)内恒成立”。

由(*)式得。

即的取值范围

考点三、已知函数极值求参数值;

【例3-1】已知函数.(Ⅰ)求的单调区间;

(Ⅱ)是否存在实数,使得函数的极大值等于?若存在,求出的值;若不存在,请说明理由.【答案】(Ⅰ)的定义域为.,即

.令,解得:或.当时,故的单调递增区间是.当时,随的变化情况如下:

极大值

极小值

所以,函数的单调递增区间是和,单调递减区间是.当时,随的变化情况如下:

极大值

极小值

所以,函数的单调递增区间是和,单调递减区间是.(Ⅱ)当时,的极大值等于.理由如下:当时,无极大值.当时,的极大值为,令,即

解得

或(舍).当时,的极大值为.因为,所以

.因为,所以的极大值不可能等于.综上所述,当时,的极大值等于.【例3-2】已知函数在处有极值10,求的值.【答案】

依题意得方程组

解得.当a=-3,b=3时,令得x=1.(-∞,1)

(1,+∞)

+

0

+

无极值

显然不合题意,舍去.当时,令得或.x

(1,+∞)

+

0

0

+

极大值

极小值

在处有极小值10,合题意,∴.导数专题三、最值问题

【知识结构】

【知识点】

一、求解函数最值问题的步骤:

对于函数的最值问题主要建立在前面的极值问题的基础上;一般地,求函数在上的最大值与最小值的步骤如下:

第一步、求函数在内的极值;

第二步、将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.

二、主要的问题类型:

1.分类讨论求函数最值;

2.已知函数最值情况求参数范围;

3.已知函数最值求参数值;

4.其他的情况转化为最值问题;

【考点分类】

考点一、分类讨论求函数最值;

【例1-1】(2015-2016东城一模文19)

已知函数,(1)若在处取得极值,求的值;

(2)求在区间上的最小值;

(3)在(1)的条件下,若,求证:当时,恒有成立.【答案】(1)定义域为,因为函数在处取得极值,所以有,解得

(2)

1)当时,在单调递增,所以该区间上的最小值为

2)当时,在单调递增,所以该区间上的最小值为

3)当时,-

0

+

极小值

所以在该区间的最小值为

综上所述,当时,在的最小值为1;

当时,在的最小值为.(3)由已知得,所以在时,恒有

若要证明当时,恒有成立,只需证明,即证明恒成立.令

令,有

当时,恒有,所以当时,所以,所以在时,单调递减,因此恒成立,所以,当时,恒有成立.【例1-2】(2014-2015丰台一模理18)设函数,.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)在(Ⅰ)的条件下,求证:;

(Ⅲ)当时,求函数在上的最大值.

【答案】(Ⅰ)当时,,所以.

因为,即切线的斜率为,所以切线方程为,即

(Ⅱ)证明:由(Ⅰ)知.

令,则.

当时,在上单调递减,当时,在上单调递增,所以当时,函数最小值是.命题得证.(Ⅲ)因为,所以.

令,则.

当时,设,因为,所以在上单调递增,且,所以在恒成立,即.

所以当,在上单调递减;

当,在上单调递增.

所以在上的最大值等于,因为,不妨设(),所以.

由(Ⅱ)知在恒成立,所以在上单调递增.

又因为,所以在恒成立,即.

所以当时,在上的最大值为.

【练1-1】(2015-2016西城期末文19)已知函数,其中是自然对数的底数,.(Ⅰ)求函数的单调区间;

(Ⅱ)当时,求函数的最小值.【答案】(Ⅰ)解:因为,所以.

令,得.

当变化时,和的变化情况如下:

故的单调减区间为;单调增区间为.

(Ⅱ)解:由(Ⅰ),得的单调减区间为;单调增区间为.

所以当,即时,在上单调递增,故在上的最小值为;

当,即时,在上单调递减,在上单调递增,故在上的最小值为;

当,即时,在上单调递减,故在上的最小值为.所以函数在上的最小值为

【练1-2】(2015-2016海淀期末文18)已知函数与函数在点处有公共的切线,设.(I)

求的值

(Ⅱ)求在区间上的最小值.【答案】(I)因为所以在函数的图象上

又,所以

所以

(Ⅱ)因为,其定义域为

当时,所以在上单调递增

所以在上最小值为

当时,令,得到(舍)

当时,即时,对恒成立,所以在上单调递增,其最小值为

当时,即时,对成立,所以在上单调递减,其最小值为

当,即时,对成立,对成立

所以在单调递减,在上单调递增

其最小值为

综上,当时,在上的最小值为

当时,在上的最小值为

当时,在上的最小值为.【练1-3】(2015-2015丰台一模理18)已知函数,.(Ⅰ)若曲线在点(1,0)处的切线斜率为0,求a,b的值;

(Ⅱ)当,且ab=时,求函数的单调区间,并求函数在区间[-2,-1]上的最小值.【答案】(Ⅰ)函数h(x)定义域为{x|x≠-a},1

则,3

h(x)在点(1,0)处的切线斜率为0,即,解得或6

(Ⅱ)记(x)=,则(x)=(x+a)(bx2+3x)(x≠-a),ab=,所以,(x≠-a),令,得,或,因为,所以,故当,或时,当时,函数(x)的单调递增区间为,单调递减区间为,,,①

当,即时,(x)在[-2,-1]单调递增,(x)在该区间的最小值为,②

当时,即,(x)在[-2,单调递减,在单调递增,(x)在该区间的最小值为,③当时,即时,(x)在[-2,-1]单调递减,(x)在该区间的最小值为,综上所述,当时,最小值为;当时,最小值为;当时,最小值为.(不综述者不扣)

【练1-4】(2013-2014延庆一模理18)已知函数.(Ⅰ)

讨论函数的单调性;

(Ⅱ)当时,求函数在区间的最小值.【答案】函数的定义域为,1

(Ⅰ),4

(1)当时,所以在定义域为上单调递增;

(2)当时,令,得(舍去),当变化时,的变化情况如下:

此时,在区间单调递减,在区间上单调递增;

(3)当时,令,得,(舍去),当变化时,的变化情况如下:

此时,在区间单调递减,在区间上单调递增.(Ⅱ)由(Ⅰ)知当时,在区间单调递减,在区间上单调递增.(1)当,即时,在区间单调递减,所以,;

(2)当,即时,在区间单调递减,在区间单调递增,所以,(3)当,即时,在区间单调递增,所以.【练1-5】(2013-2014东城期末理18)已知,函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ)当时,,所以,.2

因此.

即曲线在点处的切线斜率为.4

又,所以曲线在点处的切线方程为,即.6

(Ⅱ)因为,所以.

令,得.

①若,则,在区间上单调递增,此时函数无最小值.

②若,当时,函数在区间上单调递减,当时,函数在区间上单调递增,所以当时,函数取得最小值.

③若,则当时,函数在区间上单调递减,所以当时,函数取得最小值.

综上可知,当时,函数在区间上无最小值;

当时,函数在区间上的最小值为;

当时,函数在区间上的最小值为.

【练1-6】(2014-2015西城二模理18)已知函数,其中.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)求在区间上的最大值和最小值.

【答案】的定义域为,且

当时,,所以曲线在点处的切线方程为,即

(Ⅱ)解:方程的判别式为.

(ⅰ)当时,所以在区间上单调递增,所以在区间

上的最小值是;最大值是.6

(ⅱ)当时,令,得,或.

和的情况如下:

故的单调增区间为,;单调减区间为.

当时,此时在区间上单调递增,所以在区间

上的最小值是;最大值是.

当时,此时在区间上单调递减,在区间上单调递增,所以在区间上的最小值是

因为,所以

当时,在区间上的最大值是;当时,在区间上的最大值是.

当时,此时在区间上单调递减,所以在区间上的最小值是;最大值是.

综上,当时,在区间上的最小值是,最大值是;

当时,在区间上的最小值是,最大值是;

当时,在区间上的最小值是,最大值是;

当时,在区间上的最小值是,最大值是.

【练1-7】(2014-2015丰台一模文19)已知函数,.(1)设函数,且求a,b的值;

(2)当a=2且b=4时,求函数的单调区间,并求该函数在区间(-2,m]

()上的最大值.【答案】(Ⅰ)函数h(x)定义域为{x|x≠-a},则,因为所以解得,或

(Ⅱ)记(x)=,则(x)=(x+a)(bx2+3x)(x≠-a),因为a=2,b=4,所以(x≠-2),令,得,或,当,或时,当时,函数的单调递增区间为,单调递减区间为,①当-2

【练1-8】((2013-2014大兴一模文18)已知函数.(I)求函数的单调区间;

(Ⅱ)当时,求函数在区间上的最小值.【答案】定义域为R

(Ⅰ)①当时,则的单调增区间为

②当时,解得,解得,则的单调增区间为,的单调减区间为

③当时,解得,解得,则的单调增区间为,的单调减区间为

(Ⅱ)

①当时,即

当时,在上是减函数,在上是增函数,则函数在区间[-2,0]上的最小值为

②当时,即

当时,在上是增函数,则函数在区间[-2,0]上的最小值为

综上:

当时,在区间[-2,0]上最小值为

当时,在区间[-2,0]上最小值为

考点二、已知函数最值情况求参数范围;

【例2-1】((2015-2016昌平期末文20)已知函数.

(Ⅰ)

求函数在点处的切线方程;

(Ⅱ)证明:当时,;

(Ⅲ)设,若存在最大值,且当最大值大于时,确定实数的取值范围.

【答案】(Ⅰ)解:定义域为,.由题意,,所以函数在点处的切线方程为.(Ⅱ)证明:当时,可转化为

当时,恒成立.设,所以.当时,所以在上为减函数,所以,所以当时,成立.(Ⅲ)设,定义域为,所以.⑴当时,对于任意的,所以在上为增函数,所以无最大值,即不符合题意.⑵当时,令,即,则.所以,变化如下:

0

+

0

极大值

因为.所以成立,即,令,所以,即在上为增函数.又因为,所以当时,.所以,时,命题成立.综上,的取值范围为.【例2-2】(2015-2016东城一模文20)已知函数

.(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)讨论的单调性;

(III)若存在最大值,且,求的取值范围.【答案】(Ⅰ)当时,..所以.又,所以曲线在点处的切线方程是,即.(Ⅱ)函数的定义域为,.当时,由知恒成立,此时在区间上单调递减.当时,由知恒成立,此时在区间上单调递增.当时,由,得,由,得,此时在区间内单调递增,在区间内单调递减.(III)由(Ⅱ)知函数的定义域为,当或时,在区间上单调,此时函数无最大值.当时,在区间内单调递增,在区间内单调递减,所以当时函数有最大值.最大值.因为,所以有,解之得.所以的取值范围是.【练2-1】(15-2016大兴区一模理18)已知函数,.

(Ⅰ)求函数的单调区间;

(Ⅱ)函数在区间上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.

【答案】(I),.由,得,或.①当,即时,在上,单调递减;

②当,即时,在上,单调递增,在上,单调递减.综上所述:时,的减区间为;

时,的增区间为,的减区间为.(II)(1)当时,由(I)在上单调递减,不存在最小值;

(2)当时,若,即时,在上单调递减,不存在最小值;

若,即时,在上单调递增,在上单调递减,因为,且当时,所以时,.又因为,所以当,即时,有最小值;,即时,没有最小值.综上所述:当时,有最小值;当时,没有最小值.考点三、已知函数最值求参数值;

【例3-1】(2015-2016朝阳期中文20)已知函数(其中,),函数的导函数为,且.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若函数在区间上的最小值为,求的值.

【答案】因为,所以.

因为,所以.

所以.

(Ⅰ)当时,时,所以曲线在点处的切线方程为.

即.

(Ⅱ)由已知得,所以.

(1)当,即时,令得,或;

令得,.

所以函数在和上单调递增,在上单调递减.

所以函数在区间上单调递增.

所以函数在区间上的最小值为.

解得.显然合题意.

(2)当时,即时,恒成立,所以函数在上单调递增.

所以函数在区间上单调递增.

所以函数在区间上的最小值为.

解得.显然不符合题意.

(3)当时,即时,令得,或;

令得,.

所以函数在和上单调递增,在上单调递减.

①若,即时,函数在区间上单调递减.

所以函数在区间上的最小值为.

解得.显然合题意.

②若,即时,函数在在上单调递减,在上单调递增.

此时,函数在区间上的最小值为.

解得.显然不合题意.

综上所述,或为所求.

【例3-2】(2015-2016朝阳期中18)已知函数(其中是常数,),函数的导函数为,且.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)当时,若函数在区间上的最大值为,试求的值.

【答案】因为,所以.

因为,所以,即.

(Ⅰ)当时,.又,所以曲线在点处的切线方程为.

即.

(Ⅱ)由已知得.

所以.

因为,.

因为,所以.

令得,;

令得,或.

所以函数在上单调递增,在和上单调递减.

①若,即时,函数在区间上单调递增.

所以函数在区间上的最大值为.

解得.显然符合题意.此时,.

②若,即时,函数在上单调递增,在上单调递减.

所以函数在区间上的最大值为.

又因为,所以,.

所以.

所以.

不满足函数在区间上的最大值为

综上所述,为所求.

【练3-1】(2015-2016海淀一模理18)已知函数(其中为常数且)在处取得极值.(I)

当时,求的单调区间;

(II)

若在上的最大值为,求的值.【答案】(I)因为所以2

因为函数在处取得极值

当时,,随的变化情况如下表:

0

0

极大值

极小值

所以的单调递增区间为,单调递减区间为

(II)因为

令,因为在处取得极值,所以

当时,在上单调递增,在上单调递减

所以在区间上的最大值为,令,解得

当,当时,在上单调递增,上单调递减,上单调递增

所以最大值1可能在或处取得

所以,解得

当时,在区间上单调递增,上单调递减,上单调递增

所以最大值1可能在或处取得

所以,解得,与矛盾

当时,在区间上单调递增,在单调递减,所以最大值1可能在处取得,而,矛盾

综上所述,或.【练3-2】(2013-2014朝阳一模理18)已知函数,.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数在区间的最小值为,求的值.

【答案】函数的定义域是,.

(Ⅰ)(1)当时,故函数在上单调递减.

(2)当时,恒成立,所以函数在上单调递减.

(3)当时,令,又因为,解得.

①当时,所以函数在单调递减.

②当时,所以函数在单调递增.

综上所述,当时,函数的单调减区间是,当时,函数的单调减区间是,单调增区间为.

(Ⅱ)(1)当时,由(Ⅰ)可知,在上单调递减,所以的最小值为,解得,舍去.

(2)当时,由(Ⅰ)可知,①当,即时,函数在上单调递增,所以函数的最小值为,解得.

②当,即时,函数在上单调递减,在上单调递增,所以函数的最小值为,解得,舍去.

③当,即时,函数在上单调递减,所以函数的最小值为,得,舍去.

综上所述,.

导数专题四、零点问题

【知识结构】

【知识点】

一、零点的定义:定义:

一般地,如果函数在处有实数根,即,则叫做这个函数的零点.1.函数值为零时的值;

2.函数为零时,方程的解;

3.函数的图象与轴交点;

4.两个函数的交点;

二、零点问题主要包括的题型包括:

1.是否有零点;

2.判断零点个数;

3.已知零点求参数

三、函数零点的判定:

方程有实数根⇔函数的图象与轴有交点⇔函数有零点

【考点分类】

考点一、分类讨论求零点个数;

【例1-1】(2014-2015年朝阳一模理18)已知函数,.

(Ⅱ)

当时,讨论函数的零点个数.【答案】(Ⅱ),.(1)当时,时,为减函数;时,为增函数.所以在时取得最小值.(ⅰ)当时,由于,令,则在上有一个零点;

(ⅱ)当时,即时,有一个零点;

(ⅲ)当时,即时,无零点.(ⅳ)当时,即时,由于(从右侧趋近0)时,;时,所以有两个零点.不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(3)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例1-2】(2012-2013石景山期末理18)已知函数是常数.

(Ⅲ)讨论函数零点的个数.

【答案】令,.令,则在上单调递增,在上单调递减,当时,的最大值为.所以若,则无零点;若有零点,则.

若,由(Ⅰ)知有且仅有一个零点.若,单调递增,由幂函数与对数函数单调性比较,知有且仅有一个零点(或:直线与曲线有一个交点).若,解得,由函数的单调性得知在处取最大值,由幂函数与对数函数单调性比较知,当充分大时,即在单调递减区间有且仅有一个零点;

又因为,所以在单调递增区间有且仅有一个零点.切线方法:

综上所述,当时,无零点;

当或时,有且仅有一个零点;

当时,有两个零点.【练1-1】(2015-2016朝阳期末文19)已知函数,.(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,试判断函数是否存在零点,并说明理由;

(Ⅲ)求函数的单调区间.【答案】函数的定义域:..(Ⅰ)当时,..有,即切点(1,3),.所以曲线在点处切线方程是,即.(Ⅱ)若,..令,得(舍),.-

极小值

极大值

极小值

则.所以函数不存在零点.(Ⅲ)

.当,即时,-

极小值

当,即时,+

极大值

极小值

当,即时,+

当,即时,综上时,的单调增区间是;减区间是.当时,的单调增区间是,;减区间是.当时,的单调增区间是;

当时,的单调增区间是,;减区间是.【练1-2】(2015-2016西城期末文20)已知函数,直线

.(1)求函数的极值;

(2)求证:对于任意,直线都不是曲线的切线;

(3)试确定曲线与直线的交点个数,并说明理由。

【答案】(1)(x≠0)

令,得x=1,列表,得:

x

(0,1)

(1,+∞)

0

+

极值

∴在x=1处,有极小值为。

(2)假设是一条切线,设切点为。

将②代入①中,得

不成立

对于任意,直线都不是曲线的切线。

(3)解法一、令

整理得

∴,∴

g(x)是一个减函数。

令g(x)=0得x=-1,∴

有当x<0时,g(x)<2,且x,g(x)-∞;

当x>0时,g(x)>2,且x,g(x)+∞;

当k=2时,没有交点;当k≠2时,有一个交点。

解法二、令,有,当时,恒正,即无零点。

当时,即在时恒正,无零点。

当时,为减函数,取,有;

当时,而,此时,所以有一个零点,即曲线与直线有一个交点。

当时,当时,恒正,无零点;

当时,为增函数,取,有;

当时,而,此时;

因此,在有一个零点,即曲线与直线有一个交点。

综上所述,当

时,曲线与直线没有交点;当

时,曲线与直线有一个交点。

【练1-3】(2015-2016大兴期末文19)已知函数.

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)设实数使得恒成立,求的取值范围;

(Ⅲ)设,求函数在区间上的零点个数.

【答案】(Ⅰ)

曲线在点处的切线方程为

(Ⅱ)设,则

令,解得:

当在上变化时,的变化情况如下表:

+

0

由上表可知,当时,取得最大值

由已知对任意的,恒成立

所以,得取值范围是。

(Ⅲ)令得:

由(Ⅱ)知,在上是增函数,在上是减函数.且,所以当或时,函数在上无零点;

当或时,函数在上有1个零点;

当时,函数在上有2个零点

【练1-4】(2013-2014西城期末理18)已知函数,其中是自然对数的底数,.(Ⅰ)求函数的单调区间;

(Ⅱ)当时,试确定函数的零点个数,并说明理由.【答案】(Ⅰ)解:因为,所以.

………………

2分

令,得.

………………

3分

当变化时,和的变化情况如下:

………………

5分

故的单调减区间为;单调增区间为.…………

6分

(Ⅱ)解:结论:函数有且仅有一个零点.………………

7分

理由如下:

由,得方程,显然为此方程的一个实数解.所以是函数的一个零点.………………

9分

当时,方程可化简为.设函数,则,令,得.

当变化时,和的变化情况如下:

即的单调增区间为;单调减区间为.

所以的最小值.………………11分

因为,所以,所以对于任意,因此方程无实数解.

所以当时,函数不存在零点.综上,函数有且仅有一个零点.………………13分

【练1-5】(2012-2013石景山期末理18)已知函数是常数.

(Ⅰ)求函数的图象在点处的切线的方程;

(Ⅱ)证明函数的图象在直线的下方;

(Ⅲ)讨论函数零点的个数.

【答案】(Ⅰ)

…………………1分,所以切线的方程为,即.

…………………3分

(Ⅱ)令则

最大值

…………………6分,所以且,,即函数的图像在直线的下方.

…………………8分

(Ⅲ)令,.令,则在上单调递增,在上单调递减,当时,的最大值为.所以若,则无零点;若有零点,则.………………10分

若,由(Ⅰ)知有且仅有一个零点.若,单调递增,由幂函数与对数函数单调性比较,知有且仅有一个零点(或:直线与曲线有一个交点).若,解得,由函数的单调性得知在处取最大值,由幂函数与对数函数单调性比较知,当充分大时,即在单调递减区间有且仅有一个零点;又因为,所以在单调递增区间有且仅有一个零点.综上所述,当时,无零点;

当或时,有且仅有一个零点;

当时,有两个零点.…………………13分

【练1-6】(2014-2015东城高一模理18)已知函数,.(Ⅰ)若在处取得极值,求的值;

(Ⅱ)若在区间上单调递增,求的取值范围;

(Ⅲ)讨论函数的零点个数.【答案】(Ⅰ)因为,由已知在处取得极值,所以.解得,经检验时,在处取得极小值.所以.……3分

(Ⅱ)由(Ⅰ)知,.因为在区间上单调递增,所以在区间上恒成立.即在区间上恒成立.所以.……8分

(Ⅱ)因为,所以,.令得,令,..当时,在上单调递增,时,在上单调递减.所以.综上:当时,函数无零点,当或时,函数有一个零点,当时,函数有两个零点.考点二、已知函数存在零点情况求参数范围;

【例2-1】(2015-2016房山二模理18)已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线与曲线没有公共点,求实数的取值范围。

【答案】(Ⅰ)

变化情况

+

所以

函数在区间为减函数,在区间为增函数

(Ⅱ)解法一(分离参数法):

主要的步骤如下:

1写定义域:求出函数的定义域

2分离参数:将等式转化为参数放在等号一边,等号另外一边为一个函数g(x)

3画图象:准确画出g(x)的图象

4移直线:将直线y=b的直线由上往下移动观察交点个数

下面是每一步的注意事项:

1写定义域:一定要先写出函数的定义域

2分离参数:分离参数的时候也要注意对等式变化的时候定义域的改变

3:画图像:这里涉及到画出准确函数图像的注意事项

A:首先通过求导研究函数的单调性(在定义域范围内)

B:画出各极值点

C:画断点(定义域内取不到的值的走势)-----找渐近线1

D:画正负无穷处的点----------找渐近线2

E:将各处用光滑的曲线连接起来

4:移直线:移动的时候看交点要注意所取点空心和实心。

解法一(分离参数法):直线与曲线没有公共点,等价于

方程无实数解,不是该方程的解,所以等价

方程无解

在区间上,在区间上,在区间上

所以

在上递增,在上递减,在上递减

所以,当时,取得极大值

当无限增大时,无限趋近于1

所以的值域为

方程无解,则的取值范围为

解法二:构造新函数法(略)

解法三(转化为过某一定点直线和曲线的交点):

因为直线与曲线没有公共点,所以方程,即无实数解

所以直线与曲线没有公共点,设过点的直线与曲线相切于点

因为,所以直线的斜率

所以直线的方程为

因为直线过点,所以,所以

因为直线与曲线无交点

所以,即

【例2-2】(2015-2016海淀期末文19)已知函数,其中.当时,求函数的单调区间和极值;

若关于的方程有解,求实数k的取值范围.【答案】由题可知函数定义域为:

当时,令得。

当变化时,和的变化如下表:

X

0

+

极小值

∴的单调递增区间为:的单调递减区间为:

∴在时存在极小值:

由题意得,方程有解即为有解,令,令得

(1)当时,令得

令得

在上单调递减,在上单调递增

①当时,,函数有一个解。

②当时,且

(2)当时,恒成立,在上恒减

且当时,综上所述:。

【练2-1】(2015-2016丰台期末理18)已知函数.(Ⅰ)求函数的极值;

(Ⅱ)若存在实数,且,使得,求实数a的取值范围.【答案】(Ⅰ),令得,.x

0

+

0

_

0

+

递增

极大值

递减

极小值

递增

∴函数的极大值为;

极小值为.(Ⅱ)

若存在,使得,则

由(Ⅰ)可知,需要(如图1)或(如图2).(图1)

(图2)

于是可得.【练2-2】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【练2-3】(2015-2016丰台二模文19)设函数.

(Ⅰ)求函数的单调区间和极值;

(Ⅱ)若函数在区间上存在唯一零点,求的取值范围.【答案】(Ⅰ),(1)若,则在区间上,单调递增.所以当时,的单调递增区间为,没有极值点.(2)若,令,即,解得,因为函数在区间是递增函数,所以在区间内,单调递减;在区间内,单调递增.所以当时,的单调递减区间为,的单调递增区间为所以当时,函数有极小值为.(Ⅱ)(1)当时,由(Ⅰ)可知,在上单调递增,因为,令,得.所以当时,在区间上上存在唯一零点.(2)当时,由(Ⅰ)可知,为函数的最小值点

因为,若函数在区间上上存在唯一零点,则只能是:

①,或②.由①得;由②得.综上所述,函数在区间上上存在唯一零点,则或.【练2-4】(2015-2016海淀二模文19)已知函数

(1)当时,求函数的单调区间;

(2)若关于的不等式在上有解,求的取值范围;

(3)若存在,使得既是函数的零点,又是函数的极值点,请写出此时的值.(只需写出结论).【答案】(1)当时,令,从而和时,时

所以在上单调递增,在上单调递减,在上单调递增。

(Ⅱ)要使在上有解,只要在上的最小值小于等于.因为,令,得到.当时,即时,在区间上单调递增,为上最小值

所以有,即,解得或,所以有;

当时,即时,在区间上单调递减,在上单调递增,所以为上最小值,所以有,即,解得,所以.综上,得.法二:(Ⅱ)要使在上有解,只要在上的最小值小于等于.因为,所以当,即时

满足题意,当时,因为,令,得到,因为,所以在区间上的单调递增,所以在区间上的最小值为,所以,根据上面得到,矛盾.综上,.(Ⅲ)

【练2-5】(2015-2016丰台二模理18)设函数.(Ⅰ)当时,求函数在区间内的最大值;

(Ⅱ)若函数在区间内有两个零点,求实数的取值范围.【答案】(Ⅰ)当时,与、之间的关系如下表:

+

0

增函数

极大值

减函数

函数在区间内只有一个极大值点,所以这个极值点也是最大值点,---4分

最大值.(Ⅱ)

(1)当时,显然在区间内没有两个零点,不合题意.(2)当时,.①当且时,函数区间上是增函数,所以函

区间上不可能有两个零点,所以不合题意;

②当时,在区间上与、之间的关系如下表:

+

0

增函数

极大值

减函数

因为,若函数区间上有两个零点,则,所以,化简.因为,,所以.综上所述,当时,函数在区间内有两个零点.【练2-6】(2015-2016房山一模理18)已知函数,其中

(Ⅰ)当,求函数的极大值;

(Ⅱ)若在区间上仅有一个零点,求实数的取值范围是。

【答案】(Ⅰ)a=-2时,f(1)=

a

=

-(-2)-1为极大值1。

(Ⅱ)

时,f(x)在所以f(1)=0

即-a-1=0,a=-1。或者

但无解舍

由f(1)=-a-1<0知

只需f(e)>0

解得

所以,f(x)在(0,1)上递增,(1,e)上递减,且

f(1)此时(0,e)上不可能有零点

综上a=-1或者

【练2-7】(2015西城二模文)已知函数,其中.(Ⅰ)当时,求函数的图象在点处的切线方程;

(Ⅱ)当时,证明:存在实数,使得对任意的,都有成立;

(Ⅲ)当时,是否存在实数,使得关于的方程仅有负实数解?当时的情形又如何?(只需写出结论)

【答案】(Ⅰ)解:当时,函数,求导,得,………………2分

因为,………………3分

所以函数的图象在点处的切线方程为.………………4分

(Ⅱ)证明:当时,的定义域为.求导,得,………………5分

令,解得,………………6分

当变化时,与的变化情况如下表:

+

0

0

+

………………8分

所以函数在,上单调递增,在上单调递减.又因为,当时,;当时,所以当时,;当时,.记,其中为两数,中最大的数,综上,当时,存在实数,使得对任意的实数,不等式

恒成立.………………10分

(Ⅲ)解:当与时,不存在实数,使得关于实数的方程仅

有负实数解.………………13分

考点三、已知函数不存在零点求参数范围;

【例3-1】(2015-2016石景山一模文19)已知函数.

(Ⅰ)求函数的极值;(Ⅱ)证明:当时,;

(Ⅲ)当时,方程无解,求的取值范围.

【答案】(Ⅰ),令解得,易知在上单调递减,在上单调递增,故当时,有极小值

(Ⅱ)令,则,由(Ⅰ)知,所以在上单调递增,所以,所以.(Ⅲ)方程,整理得,当时,.令,则,令,解得,易得在上单调递减,在上单调递增,所以时,有最小值,而当越来越靠近时,的值越来越大,又当,方程无解,所以.【例3-2】(2013-2014海淀期末理18)已知关于的函数

(Ⅰ)当时,求函数的极值;

(Ⅱ)若函数没有零点,求实数取值范围.【答案】(Ⅰ),.------------------------------------------2分

当时,,的情况如下表:

0

极小值

所以,当时,函数的极小值为.-----------------------------------------6分

(Ⅱ).①当时,的情况如下表:

0

极小值

--------------------------------7分

因为,------------------------------8分

若使函数没有零点,需且仅需,解得,-------------------9分

所以此时;

-----------------------------------------------10分

②当时,的情况如下表:

0

极大值

--------11分

因为,且,---------------------------12分

所以此时函数总存在零点.--------------------------------------------13分

综上所述,所求实数的取值范围是.【练3-1】(2013-2014朝阳一模文18)设函数,,记.(Ⅰ)求曲线在处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)当时,若函数没有零点,求的取值范围.【答案】(I),则函数在处的切线的斜率为.又,所以函数在处的切线方程为,即

………………4分

(Ⅱ),().①当时,在区间上单调递增;

②当时,令,解得;令,解得.综上所述,当时,函数的增区间是;

当时,函数的增区间是,减区间是.………………9分

(Ⅲ)依题意,函数没有零点,即无解.由(Ⅱ)知,当时,函数在区间上为增函数,区间上为减函数,由于,只需,解得.所以实数的取值范围为.…………………………………………………13分

综上所述,所求实数的取值范围是.【练3-2】(2014-2015通州期末理18)已知函数,(Ⅰ)求的单调区间;

(Ⅱ)若方程没有实数根,求取值范围.

【答案】(Ⅰ)因为函数,所以…………………

1分

(1)当时,所以的递增区间是,无递减区间.……

3分

(2)当时,令,得,令,得

所以的递增区间是,递减区间是

……………………

5分

综上,当时,的递增区间是,无递减区间,当时,的递增区间是,递减区间是

(Ⅱ)(1)当时,在上显然无零点,所以方程没有实数根.……………………

6分

(2)当时,在上单调递增,因为,所以

所以在上有零点.所以方程有实数根.……………………

8分

(3)当时,的递增区间是,递减区间是,所以是的极小值,也是的最小值.所以没有实数根等价于

……………………

11分

所以所以

所以所以.……………………

12分

综上,的取值范围是

……………………

13分

考点四、证明函数零点情况;

【例4-1】(2015-2016海淀期末理18)已知函数.(Ⅰ)当时,求函数的单调区间和极值;

(Ⅱ)求证:当时,关于的不等式在区间上无解.(其中)

【答案】(Ⅰ)因为,所以,当时,.令,得,所以随的变化情况如下表:

极大值

极小值

所以在处取得极大值,在处取得极小值.函数的单调递增区间为,,的单调递减区间为

(Ⅱ)证明:不等式在区间上无解,等价于在区间上恒成立,即函数在区间上的最大值小于等于1.因为,令,得.因为时,所以.当时,对成立,函数在区间上单调递减,所以函数在区间上的最大值为,所以不等式在区间上无解;

当时,随的变化情况如下表:

极小值

所以函数在区间上的最大值为或.此时,,所以

.综上,当时,关于的不等式在区间上无解.【例4-2】(2015-2016房山一模文19)已知函数,(I)求曲线在处的切线方程;

(II)求的单调区间

(III)设,其中,证明:函数仅有一个零点

【答案】(I)

其中,所以曲线在处的切线方程

(II)的定义域为,令,解得

令,解得

所以,的单增区间为,单减区间为

(III),定义域为

当时,恒成立,即在上单调递增

可知函数仅有一个零点

时,令,解得或

令,解得

所以,在,上单调递增,在上单调递减

又,可知在有一个零点,即函数仅有一个零点

综上所诉,函数仅有一个零点

【练4-1】(2015-2016房山一模文19)已知函数,(I)求曲线在处的切线方程;

(II)求的单调区间

(III)设,其中,证明:函数仅有一个零点

【答案】(I)

其中,所以曲线在处的切线方程

(II)的定义域为,令,解得

令,解得

所以,的单增区间为,单减区间为

(III),定义域为

当时,恒成立,即在上单调递增

可知函数仅有一个零点

时,令,解得或

令,解得

所以,在,上单调递增,在上单调递减

又,可知在有一个零点,即函数仅有一个零点

综上所诉,函数仅有一个零点

考点五、函数交点问题;

【例5-1】(2015-2016东城期末文19)已知函数,.(Ⅰ)当时,求曲线在点处的切线的方程;

(Ⅱ)若曲线与轴有且只有一个交点,求的取值范围;

(Ⅲ)设函数,请写出曲线与最多有几个交点.(直接写出结论即可)

【答案】(Ⅰ)当时,.当时,又,所以曲线在点处的切线方程为.(Ⅱ)由,得.当时,此时在上单调递增.当时,当时,所以当时,曲线与轴有且只有一个交点;

当时,令,得.与在区间上的情况如下:

极大值

若曲线与轴有且只有一个交点,则有,即.解得.综上所述,当或时,曲线与轴有且只有一个交点.(Ⅲ)曲线与曲线最多有4个交点.【例5-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【练5-1】(2015-2016西城期末理18)已知函数

(,为自然对数的底数).(Ⅰ)若曲线在点处的切线平行于轴,求的值;

(Ⅱ)求函数的极值;

(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.

【答案】(Ⅰ)由,得.又曲线在点处的切线平行于轴,得,即,解得.(Ⅱ),①当时,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值

当,在处取得极小值,无极大值.(Ⅲ)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,知方程在上没有实数解.所以的最大值为.解法二:

(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:

(*)

在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:

递减

递增

当时,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解,解得的取值范围是.综上,得的最大值为.【练5-2】(2014-2015丰台期末理18)已知函数.

(Ⅰ)求函数的极小值;

(Ⅱ)如果直线与函数的图象无交点,求的取值范围.

【答案】(Ⅰ)函数的定义域为R.

因为,所以

令,则.

0

0

+

极小值

所以

当时函数有极小值.

………………6分

(Ⅱ)函数.

当时,所以要使与无交点,等价于恒成立.

令,即,所以

①当时,满足与无交点;

②当时,而,所以,此时不满足与无交点.

③当时,令,则,当时,在上单调递减;

当时,在上单调递增;

当时,.

得,即与无交点.

综上所述

当时,与无交点.

导数专题五、恒成立问题和存在性问题

【知识结构】

【知识点】

求解函数的恒成立问题和存在性问题首先转化为函数的最值问题,主要的方法提炼:

一、已知不等式恒成立,求参数取值范围:分参法;

(1)分离参数,使不等式转化为()恒成立;

(2)求导函数;

(3)找出的最大(小)值();

(4)解不等式(),得出参数取值范围.

二、已知不等式恒成立,求参数取值范围:讨论法;

(1)构造新函数,使不等式转化为()恒成立;

(2)求导函数,判断函数的单调性;

(3)找出的最小(大)值();

(4)解不等式(),得出参数取值范围.

【考点分类】

考点一、单变量单函数的不等式型;,即求,即求

【例1-1】(2015-2016朝阳期中文19)已知函数,.

(Ⅰ)若函数在区间上单调递减,求的取值范围;

(Ⅱ)当时,证明.【答案】(I)函数的定义域为.因为.又因为函数在单调减,所以不等式在上成立.设,则,即即可,解得.所以的取值范围是.(Ⅱ)当时,.令,得或(舍).当变化时,变化情况如下表:

0

+

极小值

所以时,函数的最小值为.所以成立.【例1-2】(2015-2016海淀二模理18)已知函数.(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若关于的不等式在上有解,求实数的取值范围;

(Ⅲ)若曲线存在两条互相垂直的切线,求实数的取值范围.(只需直接写出结果).

【答案】(Ⅰ)时且,令则或;令则,递增区间为和;递减区间为。

(Ⅱ)在有解,在有解,令,则在有解,即,且,①

当即时

在上递增,在上递减,在上递增,Ⅰ.若,则,则,则在上递减,在上递增,则恒成立,满足条件。

Ⅱ.若,则,则,则在上递增,则,,又,②

当即时,在上递增,在上递增,由Ⅱ知与矛盾,③

当即时,在上递增,由Ⅱ知与矛盾,综上所述:.

(Ⅲ)。

【练1-1】(2015-2016东城一模理18)设函数,.

(Ⅰ)当时,求的单调区间;

(Ⅱ)当时,恒成立,求的取值范围;

(Ⅲ)求证:当时,.

【答案】(Ⅰ)当时,则,则.令得

+

所以

当时,在上单调递减;

当时,在上单调递增;

当时,.

(Ⅱ)因为,所以恒成立,等价于恒成立.

设,得,当时,所以 在上单调递减,所以 时,.

因为恒成立,所以.

(Ⅲ)当时,等价于.

设,.

求导,得.

由(Ⅰ)可知,时,恒成立.

所以时,有.

所以

所以在上单调递增,当时,.

因此当时,.

【练1-2】(2015-2016东城二模文20)设函数

(1)若,求在区间上的最大值;

(2)设,求证:当时,过点有且只有一条直线与曲线相切;

(3)若对任意的,均有成立,求的取值范围。

【答案】(1)由已知得,+

0

单调增

极大值

单调减

所以在取得最大值,(2)设切点坐标为,有,以及

联立化简得到,易知为单调递增函数

因此,与直线有且只有一个交点,因此切点只有一个,因此,当时,过点有且只有一条直线与曲线相切。

(3)易知当时,满足条件

当时,1)当时,满足条件

2)当时,有,整理得到

因此有,因为,所以,所以

3)当时,有

令,有

设,有,当时,因此当时,所以当时,单调递增,最小值为,因此

综上所述,的取值范围为

【练1-3】(2013-2014朝阳二模理18)已知函数,.(Ⅰ)若曲线在点处的切线与直线垂直,求的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)设,当时,都有成立,求实数的取值范围.

【答案】(Ⅰ)由已知得.

因为曲线在点处的切线与直线垂直,所以.所以.

所以.

……………3分

(Ⅱ)函数的定义域是,.

(1)当时,成立,所以的单调增区间为.

(2)当时,令,得,所以的单调增区间是;

令,得,所以的单调减区间是.

综上所述,当时,的单调增区间为;

当时,的单调增区间是,的单调减区间是.

……………8分

(Ⅲ)当时,成立,.

“当时,恒成立”

等价于“当时,恒成立.”

设,只要“当时,成立.”

令得,且,又因为,所以函数在上为减函数;

令得,又因为,所以函数在上为增函数.

所以函数在处取得最小值,且.

所以.

又因为,所以实数的取值范围.

……………13分

(Ⅲ)另解:

(1)当时,由(Ⅱ)可知,在上单调递增,所以.

所以当时,有成立.

(2)当时,可得.

由(Ⅱ)可知当时,的单调增区间是,所以在上单调递增,又,所以总有成立.

(3)当时,可得.

由(Ⅱ)可知,函数在上为减函数,在为增函数,所以函数在处取最小值,且.

当时,要使成立,只需,解得.所以.

综上所述,实数的取值范围

【练1-4】(2010-2011海淀一模文18)已知函数.(Ⅰ)若,求函数的极值和单调区间;

(Ⅱ)若在区间上至少存在一点,使得成立,求实数的取值范围.【答案】(I)因为,…………………2分

当,令,得,…………………3分

又的定义域为,随的变化情况如下表:

0

极小值

所以时,的极小值为1

.…………………5分的单调递增区间为,单调递减区间为;

…………………6分

(II)解法一:

因为,且,令,得到,若在区间上存在一点,使得成立,其充要条件是在区间上的最小值小于0即可.…………………7分

(1)当,即时,对成立,所以,在区间上单调递减,故在区间上的最小值为,由,得,即

…………………9分

(2)当,即时,①

若,则对成立,所以在区间上单调递减,所以,在区间上的最小值为,显然,在区间上的最小值小于0不成立

…………………11分

若,即时,则有

极小值

所以在区间上的最小值为,由,得,解得,即.…………………13分

综上,由(1)(2)可知:符合题意.…………………14分

解法二:若在区间上存在一点,使得成立,即,因为,所以,只需

…………………7分

令,只要在区间上的最小值小于0即可

因为,令,得

…………………9分

(1)当时:

极大值

因为时,而,只要,得,即

…………………11分

(2)当时:

极小值

所以,当

时,极小值即最小值为,由,得,即.…………………13分

综上,由(1)(2)可知,有

.…………………14分

【练1-5】(2013-2014房山一模文18)

已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若对于任意的,都有,求的取值范围.【答案】(Ⅰ)∵f(x)=ex(x+1),∴f′(x)=ex(x+1)+ex=ex(x+2),∴f′(0)=e0•(0+2)=2,又f(0)=1,∴曲线曲线y=f(x)在点(0,f(0))处的切线方程为:

y-1=2(x-0),即2x-y+1=0;

(Ⅱ)令f′(x)=0,得x=-2,当x变化时,f(x)和f′(x)的变化情况如下表:

x

(-∞,-2)

(-2,0)

f′(x)

0

+

f(x)

极小值

∴f(x)在(-∞,-2)上递减,在(-2,0)上递增,∴f(x)在(-∞,0)上的最小值是f(-2)=-e-2.

∴-e-2>k,即k<-e-2.

∴k的取值范围是(-∞,-e-2).

【练1-6】(2015-2016朝阳二模文20)已知函数.(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若在区间上恒成立,求的取值范围.【答案】(Ⅰ)

函数的定义域为,.(5)

当时,,令,解得,则函数的单调递增区间为

令,解得,函数单调递减区间为.所以函数的单调递增区间为,单调递减区间为.(6)

当时,,令,解得或,则函数的单调递增区间为;

令,解得,函数单调递减区间为.所以函数的单调递增区间为,单调递减区间为.(7)

当时,恒成立,所以函数的单调递增区间为.(8)

当时,,令,解得或,则函数的单调递增区间为,;

令,解得,则函数的单调递减区间为.所以函数的单调递增区间为,单调递减区间为

(Ⅱ)依题意,在区间上.,.令得,或.若,则由得,函数在()上单调递增.由得,,函数在()上单调递减.所以,满足条件;

若,则由得,或;

由得,.函数在(),上单调递增,在上单调递减.,依题意,即,所以;

若,则.所以在区间上单调递增,不满足条件;

综上,.考点二、单变量双函数的不等式型;,构造新函数,即求;,构造新函数,即求;

【例2-1】(2015-2016昌平期末文20)已知函数.

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)证明:当时,;

(Ⅲ)设,若存在最大值,且当最大值大于时,确定实数的取值范围.

【答案】(Ⅰ)解:定义域为,.由题意,,所以函数在点处的切线方程为.(Ⅱ)证明:当时,可转化为

当时,恒成立.设,所以.当时,所以在上为减函数,所以,所以当时,成立.(Ⅲ)设,定义域为,所以.⑴当时,对于任意的,所以在上为增函数,所以无最大值,即不符合题意.⑵当时,令,即,则.所以,变化如下:

0

+

0

极大值

因为.所以成立,即,令,所以,即在上为增函数.又因为,所以当时,.所以,时,命题成立.综上,的取值范围为.【例2-2】(2015-2016丰台一模理18)已知函数.(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求证:;

(Ⅲ)若在区间上恒成立,求的最小值.【答案】(Ⅰ)设切线的斜率为

因为,切点为.切线方程为,化简得:.(Ⅱ)要证:

只需证明:在恒成立,当时,在上单调递减;

当时,在上单调递增;

当时

在恒成立

所以.(Ⅲ)要使:在区间在恒成立,等价于:在恒成立,等价于:在恒成立

因为==

①当时,不满足题意

②当时,令,则或(舍).所以时,在上单调递减;

时,在上单调递增;

当时

当时,满足题意

所以,得到的最小值为

【练2-1】(2015-2016石景山一模理18)已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求证:当时,;

(Ⅲ)若对恒成立,求实数的最大值.

【答案】

(Ⅰ),.

所以切线方程为.

(Ⅱ)令,则,当时,设,则

所以在单调递减,即,所以………6分

所以在上单调递减,所以,所以.

(Ⅲ)原题等价于对恒成立,即对恒成立,………9分

令,则.

易知,即在单调递增,所以,所以,故在单调递减,所以.

综上所述,的最大值为

【练2-2】(2015-2016大兴期末文19)已知函数.

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)设实数使得恒成立,求的取值范围;

(Ⅲ)设,求函数在区间上的零点个数.

【答案】(Ⅰ)

曲线在点处的切线方程为

(Ⅱ)设,则

令,解得:

当在上变化时,的变化情况如下表:

+

0

由上表可知,当时,取得最大值

由已知对任意的,恒成立

所以,得取值范围是。

(Ⅲ)令得:

由(Ⅱ)知,在上是增函数,在上是减函数.且,所以当或时,函数在上无零点;

当或时,函数在上有1个零点;

当时,函数在上有2个零点

【练2-3】(2015-2016东城二模理18)已知

(I)求的单调区间

(II)当时,求证:对于恒成立;

(III)若存在,使得当时,恒有成立,试求的取值范围。

【答案】(I)的定义域是,令,得:,(舍)

+

0

单调增

极大值

单调减

(II)设,由题意只需证明:即可。,可得,在上,且在单调递减,所以对于恒成立,得证。

(III)由(II)得:

当时,所以,又因为当时,所以,则此时没有满足条件的当时,令

则,令,因为,又因为,所以,存在满足题意。

综上,的取值范围是。

【练2-4】(2015-2016朝阳二模理18)已知函数,.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,若曲线上的点都在不等式组所表示的平面区域内,试求的取值范围.

【答案】(Ⅰ)当时,,.

则,而.

所以曲线在点(1,)处的切线方程为,即.

(Ⅱ)依题意当时,曲线上的点都在不等式组所表示的平面区域内,等价于当时,恒成立.

设,.

所以.

(1)当,即时,当时,为单调减函数,所以.

依题意应有

解得所以.

(2)若,即时,当,为单调增函数,当,为单调减函数.

由于,所以不合题意.

(3)当,即时,注意到,显然不合题意.

综上所述,.

【练2-5】(2013-2014海淀一模理18)已知曲线.(Ⅰ)若曲线C在点处的切线为,求实数和的值;

(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【答案】,-----------------------------------2分

因为曲线C在点(0,1)处的切线为L:,所以且.----------------------------------4分

解得,-----------------------------------5分

(Ⅱ)法1:

对于任意实数a,曲线C总在直线的的上方,等价于

∀x,,都有,即∀x,R,恒成立,--------------------------------------6分

令,----------------------------------------7分

①若a=0,则,所以实数b的取值范围是;

----------------------------------------8分

②若,,由得,----------------------------------------9分的情况如下:

0

0

+

极小值

-----------------------------------------11分

所以的最小值为,-------------------------------------------12分

所以实数b的取值范围是;

综上,实数b的取值范围是.

--------------------------------------13分

法2:对于任意实数a,曲线C总在直线的的上方,等价于

∀x,,都有,即

∀x,R,恒成立,-------------------------------------------6分

令,则等价于∀,恒成立,令,则,-----------------------------------------7分

由得,----------------------------------------9分的情况如下:

0

0

+

极小值

-----------------------------------------11分

所以的最小值为,------------------------------------------12分

实数b的取值范围是.

--------------------------------------------13分

【练2-7】(2015-2016西城一模文19)已知函数,且

(Ⅰ)求的解析式

(Ⅱ)若对于任意,都有,求m的最小值

(Ⅲ)证明:函数的图像在直线的下方.【答案】对求导,得,所以,解得,所以.(Ⅱ)解:由,得,因为,所以对于任意,都有.设,则

.令,解得.当x变化时,与的变化情况如下表:

极大值

所以当时,.因为对于任意,都有成立,所以

.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.【练2-8】(2015-2016东城一模文19)

已知函数,(1)若在处取得极值,求的值;

(2)求在区间上的最小值;

(3)在(1)的条件下,若,求证:当时,恒有成立。

【答案】(1)定义域为,因为函数在处取得极值,所以有,解得

(2)

1)当时,在单调递增,所以该区间上的最小值为

2)当时,在单调递增,所以该区间上的最小值为

3)当时,-

0

+

极小值

所以在该区间的最小值为

综上所述,当时,在的最小值为1;

当时,在的最小值为。

(3)由已知得,所以在时,恒有

若要证明当时,恒有成立,只需证明,即证明恒成立。

令,有

当时,恒有,所以当时,所以,所以在时,单调递减,因此恒成立,所以,当时,恒有成立。

【练2-9】(2015-2016大兴期末理18)已知函数.(Ⅰ)当时,求函数在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)若在上恒成立,求的取值范围.【答案】(1)当

时,所以,函数在点处的切线方程为

即:

(Ⅱ)函数的定义域为:

当时,恒成立,所以,在和上单调递增

当时,令,即:,,所以,单调递增区间为,单调减区间为.(Ⅲ)因为在上恒成立,有

在上恒成立。

所以,令,则.令则

若,即时,函数在上单调递增,又

所以,在上恒成立;

若,即时,当时,单调递增;

当时,单调递减

所以,在上的最小值为,因为所以不合题意.即时,当时,单调递增,当时,单调递减,所以,在上的最小值为

又因为,所以恒成立

综上知,的取值范围是.【练2-10】(2012-2013海淀二模文18)已知函数.(Ⅰ)当时,若曲线在点处的切线与曲线在点处的切线平行,求实数的值;

(Ⅱ)若,都有,求实数的取值范围.【答案】(I)当因为,…………………2分

若函数在点处的切线与函数在点

处的切线平行,所以,解得

此时在点处的切线为

在点

处的切线为

所以

…………………4分

(II)若,都有

记,只要在上的最小值大于等于0

…………………6分

则随的变化情况如下表:

0

极大值

…………………8分

当时,函数在上单调递减,为最小值

所以,得

所以

…………………10分

当时,函数在上单调递减,在上单调递增,为最小值,所以,得

所以

………………12分

综上,………………13分

【练2-11】(2015-2016昌平期末理18)已知函数.(Ⅰ)若函数在点处的切线方程为,求切点的坐标;

(Ⅱ)求证:当时,;(其中)

(Ⅲ)确定非负实数的取值范围,使得成立.【答案】定义域为,.由题意,所以,即切点的坐标为.(Ⅱ)证明:当时,可转化为

当时,恒成立.设,所以原问题转化为当时,恒成立.所以.令,则(舍),.所以,变化如下:

0

+

0

极大值

因为,所以.当时,成立.(Ⅲ)解:,可转化为

当时,恒成立.设,所以.⑴当时,对于任意的,所以在上为增函数,所以,所以命题成立.当时,令,则,⑵当,即时,对于任意的,所以在上为增函数,所以,所以命题成立.⑶当,即时,则(舍),.所以,变化如下:

0

0

+

极小值

因为,所以,当时,命题不成立.综上,非负实数的取值范围为.考点三、双变量双函数的不等式型;;

【例3-1】(2015-2016西城二模文15)已知函数

(I)若,求a的值

(II)设,若对于定义域内的任意,总存在使得,求a的取值范围

【答案】

(Ⅰ)证明:函数的定义域,由题意,有意义,所以,求导,得

所以

解得

(Ⅱ)解:“对于定义域内的任意,总存在使得”等价于“不存在最小值”.①当时,由得无最小值,符合题意.②当时,令,得或

随着的变化,与的变化情况如下表:

0

不存在极小

不存在所以函数的单调递减区间为,单调递增区间为.因为当时,当时,.所以.所以当时,不存在使得.综上所述:的取值范围为.【例3-2】(2015-2016海淀一模文19)已知函数.(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求函数的零点和极值;

(Ⅲ)若对任意,都有成立,求实数的最小值.【答案】

(Ⅰ)设切线斜率为,所以,所以曲线在点处的切线方程为,即。

(Ⅱ)令,解得。当时,;时,所以函数零点有且只有一个,为1.令,即解得。当时,;当时,所以函数在处取得极小值,无极大值。

(Ⅲ)由(II)知,当时,;时,且在上单调递减,在上单调递增,所以在处取得最小值。且。,所以只需。所以。所以的最小值为1。

考点四、双变量双函数的绝对值不等式型;

(一)(1)对于任意的,,等价于且;

(2)对于任意的,,等价于或者;

(3)对于任意的,,等价于;

(二)(1)若存在,存在,使得,等价于且;

(2)若存在,存在,使得,等价于或者;

(3)若存在,存在,使得,等价于;

(三)(1)对于任意的,存在,使得,等价于且;

(2)对于任意的,存在,使得,等价于或者;

(3)对于任意的,若存在,等价于;

【例4-1】(2011-2012海淀二模文18)已知函数.(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若对任意,有成立,求实数的最小值.【答案】(Ⅰ)当时,函数的单调递增区间是,函数的单调递减区间是,当时,函数的单调递增区间是,函数的单调递减区间是,.(Ⅱ)

任意,使恒成立的实数的最小值为

【例4-1】(2016湖北理21)设是函数的一个极值点。

(Ⅰ)、求与的关系式(用表示),并求的单调区间;

(Ⅱ)、设。若存在使得成立,求的取值范围。

【答案】(Ⅰ)f

`(x)=-[x2+(a-2)x+b-a

]e3-x,由f

`(3)=0,得

-[32+(a-2)3+b-a

]e3-3=0,即得b=-3-2a,则

f

`(x)=[x2+(a-2)x-3-2a-a

]e3-x

=-[x2+(a-2)x-3-3a

]e3-x=-(x-3)(x+a+1)e3-x.令f

`(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,所以x+a+1≠0,那么a≠-4.当a<-4时,x2>3=x1,则

在区间(-∞,3)上,f

`(x)<0,f

(x)为减函数;

在区间(3,―a―1)上,f

`(x)>0,f

(x)为增函数;

在区间(―a―1,+∞)上,f

`(x)<0,f

(x)为减函数。

当a>-4时,x2<3=x1,则

在区间(-∞,―a―1)上,f

`(x)<0,f

(x)为减函数;

在区间(―a―1,3)上,f

`(x)>0,f

(x)为增函数;

在区间(3,+∞)上,f

`(x)<0,f

(x)为减函数。

(Ⅱ)由(Ⅰ)知,当a>0时,f

(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f

(x)在区间[0,4]上的值域是[min(f

(0),f

(4)),f

(3)],而f

(0)=-(2a+3)e3<0,f

(4)=(2a+13)e-1>0,f

(3)=a+6,那么f

(x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].又在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[a2+,(a2+)e4],由于(a2+)-(a+6)=a2-a+=()2≥0,所以只须仅须

(a2+)-(a+6)<1且a>0,解得0

【例4-2】【2013届山西省第四次四校联考】已知函数

(I)若函数在上是减函数,求实数的最小值;

(2)若,使成立,求实数的取值范围.【答案】(1)因f(x)在上为减函数,故在上恒成立.…1分

所以当时,.………………2分

又,………4分

故当,即时,.

所以于是,故a的最小值为.

…………………………6分

(2)命题“若使成立”等价于

“当时,有”.

由(1),当时,.

问题等价于:“当时,有”.

………………………8分

当时,≤0,在上为减函数,则=,故.

………10分…

当0<时,>0,由于在上为增函数,故的值域为,即.

由的单调性和值域知,唯一,使,且满足:

当时,为减函数;当时,为增函数;

由=,.

所以,与矛盾,不合题意.

综上,得.

…………………………12分

【例4-3】【2013~2014年衡水中学高三上学期二调】已知函数;

(1)求函数在点处的切线方程;

(2)求函数单调递增区间;

(3)若存在,使得(是自然对数的底数),求实数的取值范围.【例4-4】(2015-2016年昌平二模理18)已知函数,且曲线与曲线在它们的交点处具有公共切线.设.(I)求的值,及的关系式;

(II)求函数的单调区间;

(III)设,若对于任意,都有,求的取值范围.

【答案】(I)因为函数,所以函数,.又因为曲线与曲线在它们的交点处具有公共切线,所以,即

(II)由已知,.所以.设,所以,R,所以在上为单调递增函数.由(I)得,所以,即0是的零点.所以,函数的导函数有且只有一个零点0.

所以及符号变化如下,-

+

极小值

所以函数的单调递减区间为,单调递增区间为.(III)由(II)知当

时,是增函数.对于任意,都有等价于,等价于当时,因为,所以在上是增函数,又,所以.【练4-1】(2013房山二模理)已知函数().(Ⅰ)当时,求函数的单调区间;

(Ⅱ)当时,取得极值.(1)若,求函数在上的最小值;

(2)求证:对任意,都有.【答案】(Ⅰ)

…………1分

当时,解得或,解得

……………2分

所以单调增区间为和,单调减区间为………3分

(Ⅱ)①当时,取得极值,所以

解得(经检验符合题意)

……………4分

+

0

0

+

所以函数在,递增,在递减.……5分

当时,在单调递减,………………6分

当时

在单调递减,在单调递增,.………………7分

当时,在单调递增,……………………8分

综上,在上的最小值

……………………9分

②令

得(舍)

因为

所以

……………11分

所以,对任意,都有

【练4-2】(2012-2013房山二模文18)已知函数在处取得极值.(Ⅰ)求的值;

(Ⅱ)求函数在上的最小值;

(Ⅲ)求证:对任意,都有.【答案】(Ⅰ)

……………1分

由已知得即

……………2分

解得:

…………………………3分

当时,在处函数取得极小值,所以

(Ⅱ),.-

0

+

所以函数在递减,在递增.……………………4分

当时,在单调递增,.………………………5分

当时,在单调递减,在单调递增,.…………………………6分

当时,在单调递减,…………………………7分

综上

在上的最小值

………………………………………8分

(Ⅲ)由(Ⅰ)知,.令

因为

所以

……………11分

所以,对任意,都有

【练4-3】(2013-2014年东城零模文18)设函数

(Ⅰ)设,证明:在区间内存在唯一的零点;

(Ⅱ)设,若对任意,有,求的取值范围.

【答案】(Ⅰ)当

又当,.

......6分

(Ⅱ)当时,.

对任意

上的最大值

与最小值之差,据此分类讨论如下:

(ⅰ),.

(ⅱ),.

(ⅲ),.

综上可知,.

......14分

考点五、双变量双函数的等式型;

(一)对任意的,存在,使得,则的值域是值域的子集,即;

(二)存在,存在,使得,则的值域是值域有非空交集,即

【例5-1】(2015-2016丰台期末文20)设函数的图象与直线相切于点.

(Ⅰ)求函数的解析式;

(Ⅱ)求函数的单调区间;

(Ⅲ)设函数,对于,,使得,求实数的取值范围.【答案】(Ⅰ)∵函数的图象与直线相切于点,∴,.

∵,∴

解得.

∴.

(Ⅱ),令,得或;

令,得.

∴的单调递增区间为,;单调递减区间为.

…8分

(Ⅲ)记在上的值域为,在上的值域为,∵对于,使得,∴.

由(Ⅱ)得:在上单调递增,在上单调递减,在上单调递增,,,∴.

∵,∴.

当时,在上单调递增,在上单调递减,在上单调递增,∴的最小值为或,的最大值为或.

∵,且,∴或,∴或,即或.

又∵,∴.

当时,在上单调递增,上单调递减,∴的最小值为或,的最大值为

∵,且,∴,∴,即.

综上所述:或.

【例5-2】(2014-2015海淀二模文19)已知函数,其中.(Ⅰ)求的单调区间;

(Ⅱ)若对任意的,总存在,使得,求实数值.【答案】(Ⅰ)

………………2分

当时,对,所以的单调递减区间为;

………………4分

当时,令,得.因为

时,;时,.所以的单调递增区间为,单调递减区间为.………………6分

(Ⅱ)用分别表示函数在上的最大值,最小值.当且时,由(Ⅰ)知:在上,是减函数.所以

.因为

对任意的,,所以对任意的,不存在,使得.………………8分

当时,由(Ⅰ)知:在上,是增函数,在上,是减函数.所以

.因为

对,,所以

对,不存在,使得.………………10分

当时,令.由(Ⅰ)知:在上,是增函数,进而知是减函数.所以,,.因为

对任意的,总存在,使得,即,所以

所以,解得.………………13分

综上所述,实数的值为.【练5-1】(2008天津文10)10.设,若对于任意的,都有满足方程,这时的取值的集合为(B)

A.

B.

C.

D.

【练5-2】(2008天津理16)设,若仅有一个常数c使得对于任意的,都有满足方程,这时,的取值的集合为

.a=2

考点六、其他的函数单调性问题、极值问题、最值问题、零点问题转化为恒成立问题和存在性问题;

【例6-1】((2015-2016房山二模文19)已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线与曲线没有公共点,求实数的取值范围。

【答案】(Ⅰ),定义域为,令

极小值

所以的增区间为,减区间为。

(II)因为直线与曲线没有公共点,所以方程无实根,即无实根,等价于无实根

设,即无零点。

当时,显然无零点,符合题意;

当时,令

极小值,显然不符合题意;

当时,令

极大值,所以时,符合题意

综上所述:

导数专题六、渐近线和间断点问题

【知识结构】

【知识点】

对于函数的渐近线问题和间断点问题是函数问题中的特殊类型,渐近线问题主要是涉及到函数在无穷处的极限值会等于定值,这样的函数类型主要类型有如下的形式;

几种特殊函数的渐近线:

1.时;

(1)(幂函数的增长快于对数函数增长);

(2)(高阶增长快于低阶增长);

(3)(指数函数增长快于幂函数和对数函数增长)

2.时;

(1)(高阶增长快于低阶增长);

(2)(可转化为形式)

【考点分类】

考点一、函数的渐近线问题;

【例1-1】(2015-2016海淀一模文20)已知函数.(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求函数的零点和极值;

(Ⅲ)若对任意,都有成立,求实数的最小值.【答案】(Ⅰ)因为,.所以..因为,所以曲线在处的切线方程为...(Ⅱ)令,解得,所以的零点为..由解得,则及的情况如下:

0

极小值

.所以函数在时,取得极小值

.(Ⅲ)法一:

当时,.当时,..若,由(Ⅱ)可知的最小值为,的最大值为,.所以“对任意,有恒成立”等价于

即,解得.所以的最小值为1.法二:

当时,.当时,..且由(Ⅱ)可知,的最小值为,.若,令,则

而,不符合要求,所以.当时,,所以,即满足要求,综上,的最小值为1..法三:

当时,.当时,..且由(Ⅱ)可知,的最小值为,.若,即时,令则任取,有

所以对成立,所以必有成立,所以,即.而当时,,所以,即满足要求,而当时,求出的的值,显然大于1,综上,的最小值为1.【例1-2】(2016-2017海淀期中理19)已知函数.(Ⅰ)求的单调区间.(Ⅱ)求证:当时,函数存在最小值.【答案】

【例1-3】(2009-2010西城一模理19)

已知函数,其中,其中

(I)求函数的零点;

(II)讨论在区间上的单调性;

(III)在区间上,是否存在最小值?若存在,求出最小值;若不存

在,请说明理由.

【答案】(Ⅰ)解,得,所以函数的零点为.(Ⅱ)函数在区域上有意义,令,得,因为,所以,.当在定义域上变化时,的变化情况如下:

所以在区间上是增函数,在区间上是减函数.(Ⅲ)在区间上存在最小值.证明:由(Ⅰ)知是函数的零点,因为,所以,1

由知,当时,1

又函数在上是减函数,且,所以函数在区间上的最小值为,且,所以函数在区间上的最小值为,计算得.【练1-1】(2009-2010西城一模文20)已知函数其中。

(I)若函数存在零点,求实数的取值范围;

(II)当时,求函数的单调区间;并确定此时是否存在最小值,如果存在,求出最小值,如果存在,请说明理由。

【答案】(I)或;

(II),得或,在,单调增加;在单调减少,此时,存在最小值.的极小值为,根据的单调性,在区间上的最小值为.解=0,得的零点为和,结合,可得在区间和,因为,所以;

并且,即.所以,当时,存在最小值,最小值为.【练1-2】(2011-2012西城二模理19)已知函数,其中.

(Ⅰ)当时,求曲线在原点处的切线方程;

(Ⅱ)求的单调区间;

(Ⅲ)若在上存在最大值和最小值,求的取值范围.

【答案】(Ⅰ)解:当时,.

由,得曲线在原点处的切线方程是.

(Ⅱ)解:.

当时,.

所以在单调递增,在单调递减.

当,.

当时,令,得,与的情况如下:

故的单调减区间是,;单调增区间是.

当时,与的情况如下:

所以的单调增区间是;单调减区间是,.

(Ⅲ)解:由(Ⅱ)得,时不合题意.

当时,由(Ⅱ)得,在单调递增,在单调递减,所以在上存在最大值.

设为的零点,易知,且.从而时,;时,.

若在上存在最小值,必有,解得.

所以时,若在上存在最大值和最小值,的取值范围是.

当时,由(Ⅱ)得,在单调递减,在单调递增,所以在上存在最小值.

若在上存在最大值,必有,解得,或.

所以时,若在上存在最大值和最小值,的取值范围是.

综上,的取值范围是.【练1-3】(2008-2009海淀二模18)已知:函数(其中常数).(Ⅰ)求函数的定义域及单调区间;

(Ⅱ)若存在实数,使得不等式成立,求a的取值范围.

【答案】(Ⅰ)函数的定义域为..由,解得.由,解得且.

∴的单调递增区间为,单调递减区间为,.(Ⅱ)由题意可知,且在上的最小值小于等于时,存在实数,使得不等式成立.若即时,x

a+1

0

+

极小值

∴在上的最小值为.

则,得.

若即时,在上单调递减,则在上的最小值为.

由得(舍).

综上所述,.

例7.(12西城二模理科19)已知函数,其中.

(Ⅰ)当时,求曲线在原点处的切线方程;

(Ⅱ)求的单调区间;

(Ⅲ)若在上存在最大值和最小值,求的取值范围.

【答案】当时,.

由,得曲线在原点处的切线方程是.

(Ⅱ)解:.

当时,.

所以在单调递增,在单调递减.

当,.

当时,令,得,与的情况如下:

故的单调减区间是,;单调增区间是.

当时,与的情况如下:

所以的单调增区间是;单调减区间是,.

(Ⅲ)解:由(Ⅱ)得,时不合题意.

当时,由(Ⅱ)得,在单调递增,在单调递减,所以在上存在最大值.

设为的零点,易知,且.从而时,;时,.

若在上存在最小值,必有,解得.

所以时,若在上存在最大值和最小值,的取值范围是.

当时,由(Ⅱ)得,在单调递减,在单调递增,所以在上存在最小值.

若在上存在最大值,必有,解得,或.

所以时,若在上存在最大值和最小值,的取值范围是.

综上,的取值范围是.

考点二、函数的间断点问题;

【例2-1】(2015-2016西城二模理18)设,函数;

(1)若函数在(0,f(0))处的切线与直线y=3x-2平行,求a的值

(2)若对于定义域内的任意,总存在使得,求a的取值范围;

【答案】(Ⅰ)证明:函数的定义域,由题意,有意义,所以.求导,得.由题意,得,解得.验证知符合题意.(Ⅱ)解:“对于定义域内的任意,总存在使得”等价于“不存在最小值”.

当时,由,得无最小值,符合题意.

当时,令,得

.随着x的变化时,与的变化情况如下:

不存在0

不存在↗

极大

所以函数的单调递减区间为,单调递增区间为.

9分

因为当时,当时,所以只要考虑,且即可.

当时,由在上单调递减,且,得,所以存在,使得,符合题意;

同理,当时,令,得,也符合题意;

故当时,对于定义域内的任意,总存在使得成立.

当时,随着x的变化时,与的变化情况如下表:

0

不存在↘

极小

不存在↘

所以函数的单调递减区间为,单调递增区间为.

因为当时,当时,所以.

所以当时,不存在使得.

综上所述,a的取值范围为.【例2-2】(2015-2016西城二模文19)已知函数

(1)若,求a的值

(2)设,若对于定义域内的任意,总存在使得,求a的取值范围

【答案】(Ⅰ)证明:函数的定义域,由题意,有意义,所以,求导,得

所以

解得

(Ⅱ)解:“对于定义域内的任意,总存在使得”等价于“不存在最小值”.①当时,由得无最小值,符合题意.②当时,令,得或

随着的变化,与的变化情况如下表:

0

不存在极小

不存在所以函数的单调递减区间为,单调递增区间为.因为当时,当时,.所以.所以当时,不存在使得.综上所述:的取值范围为.【练2-1】(2012-2013海淀期末理18)已知函数

(I)

当时,求曲线在处的切线方程;

(Ⅱ)求函数的单调区间.【答案】当时,又,所以在处的切线方程为

(II)

当时,又函数的定义域为

所以的单调递减区间为

时,令,即,解得

当时,所以,随的变化情况如下表

无定义

0

极小值

所以的单调递减区间为,单调递增区间为

当时,所以,随的变化情况如下表:

0

无定义

极大值

所以的单调递增区间为,单调递减区间为,【练2-2】(2012-2013门头沟一模文16)已知函数,其中.

(Ⅰ)在处的切线与轴平行,求的值;

(Ⅱ)求的单调区间.

【答案】(Ⅰ).

依题意,由,得.

经检验,符合题意.

(Ⅱ)①

当时,.

故的单调减区间为,;无单调增区间.

当时,.

令,得,.

和的情况如下:

故的单调减区间为,;单调增区间为.

当时,的定义域为.

因为在上恒成立,故的单调减区间为,;无单调增区间.

【练2-3】(2012-2013西城期末理18)已知函数,其中.

(Ⅰ)求的单调区间;

(Ⅱ)设.若,使,求的取值范围.

【答案】(Ⅰ)①

当时,.

故的单调减区间为,;无单调增区间.

当时,.

令,得,.

和的情况如下:

故的单调减区间为,;单调增区间为.

当时,的定义域为.

因为在上恒成立,故的单调减区间为,;无单调增区间.

(Ⅱ)解:因为,所以

等价于,其中.

设,在区间上的最大值为.

则“,使得

”等价于.

所以,的取值范围是.。

导数专题七、特殊值法判定超越函数的零点问题

【知识结构】

【知识点】

一、超越函数的定义

超越函数:指的是变量之间的关系不能用有限次加、减、乘、除、乘方、开方运算表示的函数。如对数函数,指数函数等就属于超越函数。

二、判断超越函数零点存在性的方法

1.图像

根据基本初等函数的图像是否存在交点判断。

2.特殊点

带入特殊点判断:如

0,1,-1,e等

3.单调性与切线

利用单调性和切线判断

4.极限

通过函数的极限判断

特殊点的取法与目的【考点分类】

考点一、利用特殊点法求解(无参数的超越函数)

含有的函数:常取等

含有的函数:常取等

终极目的:消参,有理化,最终简单化

【例1-1】求的零点。

【例1-2】求的零点。

考点二、取特值法解不等式(含参,可以参变分离)

【例2-1】(2015-2016朝阳一模理18)已知函数.

(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.

解:设切点为,则切线斜率,切线方程为.

因为切线过点,则.

即.

令,则

当时,在区间上,单调递减,在区间上,单调递增,所以函数的最小值为.

令>0,解得

取,则.

故在上存在唯一零点.

不等式放缩部分(解法探究)

标答

取,则

设,则.

当时,恒成立.

所以在单调递增,恒成立.所以.

故在上存在唯一零点.

因此当时,过点P存在两条切线.

(3)当时,显然不存在过点P的切线.

综上所述,当时,过点P存在两条切线;

当时,不存在过点P的切线.…………………………………………………13分

考点三、利用切线求解;

【例3-1】(2012-2013石景山期末理18)已知函数是常数.

(Ⅲ)讨论函数零点的个数.

【答案】令,.令,则在上单调递增,在上单调递减,当时,的最大值为.所以若,则无零点;若有零点,则.

若,由(Ⅰ)知有且仅有一个零点.若,单调递增,由幂函数与对数函数单调性比较,知有且仅有一个零点(或:直线与曲线有一个交点).若,解得,由函数的单调性得知在处取最大值,由幂函数与对数函数单调性比较知,当充分大时,即在单调递减区间有且仅有一个零点;

又因为,所以在单调递增区间有且仅有一个零点.切线方法:

综上所述,当时,无零点;

当或时,有且仅有一个零点;

当时,有两个零点.考点四、利用函数放缩求解;

【例4-1】(2014-2015年朝阳一模理18)已知函数,.

(Ⅱ)

当时,讨论函数的零点个数.解:(Ⅱ),.(1)当时,时,为减函数;时,为增函数.所以在时取得最小值.(ⅰ)当时,由于,令,则在上有一个零点;

(ⅱ)当时,即时,有一个零点;

(ⅲ)当时,即时,无零点.(ⅳ)当时,即时,由于(从右侧趋近0)时,;时,所以有两个零点.不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(4)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

(ⅰ)令,得.

令,得,所以函数在单调递增.

令,得,所以函数在单调递减.

所以,.

所以成立.

(ⅱ)由(ⅰ)知,所以.

设所以.

令,得.

令,得,所以函数在单调递增,令,得,所以函数在单调递减;

所以,即.

所以,即.

所以,方程没有实数解.

【练1-1】(2015-2016东城一模理18)设函数,.

(Ⅰ)当时,求的单调区间;

(Ⅱ)当时,恒成立,求的取值范围;

(Ⅲ)求证:当时,.

【答案】(Ⅰ)当时,则,则.令得

+

所以

当时,在上单调递减;

当时,在上单调递增;

当时,.

(Ⅱ)因为,所以恒成立,等价于恒成立.

设,得,当时,所以 在上单调递减,所以 时,.

因为恒成立,所以.

(Ⅲ)当时,等价于.

设,.

求导,得.

由(Ⅰ)可知,时,恒成立.

所以时,有.

所以

所以在上单调递增,当时,.

因此当时,.

【练1-2】(2013-2014朝阳二模理18)已知函数,.(Ⅰ)若曲线在点处的切线与直线垂直,求的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)设,当时,都有成立,求实数的取值范围.

【答案】(Ⅰ)由已知得.

因为曲线在点处的切线与直线垂直,所以.所以.

所以.

……………3分

(Ⅱ)函数的定义域是,.

(1)当时,成立,所以的单调增区间为.

(2)当时,令,得,所以的单调增区间是;

令,得,所以的单调减区间是.

综上所述,当时,的单调增区间为;

当时,的单调增区间是,的单调减区间是.

……………8分

(Ⅲ)当时,成立,.

“当时,恒成立”

等价于“当时,恒成立.”

设,只要“当时,成立.”

令得,且,又因为,所以函数在上为减函数;

令得,又因为,所以函数在上为增函数.

所以函数在处取得最小值,且.

所以.

又因为,所以实数的取值范围.

……………13分

(Ⅲ)另解:

(1)当时,由(Ⅱ)可知,在上单调递增,所以.

所以当时,有成立.

(2)当时,可得.

由(Ⅱ)可知当时,的单调增区间是,所以在上单调递增,又,所以总有成立.

(3)当时,可得.

由(Ⅱ)可知,函数在上为减函数,在为增函数,所以函数在处取最小值,且.

当时,要使成立,只需,解得.所以.

综上所述,实数的取值范围

【练1-3】(2013-2014海淀一模理18)已知曲线.(Ⅰ)若曲线C在点处的切线为,求实数和的值;

(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【答案】,-----------------------------------2分

因为曲线C在点(0,1)处的切线为L:,所以且.----------------------------------4分

解得,-----------------------------------5分

(Ⅱ)法1:

对于任意实数a,曲线C总在直线的的上方,等价于

∀x,,都有,即∀x,R,恒成立,--------------------------------------6分

令,----------------------------------------7分

①若a=0,则,所以实数b的取值范围是;

----------------------------------------8分

②若,,由得,----------------------------------------9分的情况如下:

0

0

+

极小值

-----------------------------------------11分

所以的最小值为,-------------------------------------------12分

所以实数b的取值范围是;

综上,实数b的取值范围是.

--------------------------------------13分

法2:对于任意实数a,曲线C总在直线的的上方,等价于

∀x,,都有,即

∀x,R,恒成立,-------------------------------------------6分

令,则等价于∀,恒成立,令,则,-----------------------------------------7分

由得,----------------------------------------9分的情况如下:

0

0

+

极小值

-----------------------------------------11分

所以的最小值为,------------------------------------------12分

实数b的取值范围是.

--------------------------------------------13分

【练1-4】若不等式对恒成立,求实数的取值范围.

【答案】分析:若设,由知,对应分三种情况讨论.若分离参数,则轻易解决.

解:原不等式等价于.当时,显然成立;

当时,因为,所以,则有恒成立,只需.

因为,当,即时取“=”,即,所以.

评注:对二次函数在闭区间上的最值问题是最容易引起“讨论”的.本题求解过程中求的最小值要注意验证取等号的条件.

【练1-5】(2012-2013西城第一学期期末18)已知函数,其中.

(Ⅰ)求的单调区间;

(Ⅱ)设.若,使,求的取值范围.

【答案】分析:第二问,存在性问题,可以转化成函数在给定区间上的最值问题,但是类似这样的问题,咱们都有经验,分离变量会比较简单,但是在实际教学中,很多学生并不能很好的接受这种想法。为什么?分离变量是一种思想方法,还是一种解题技巧?

我们可以这样审视这类问题:给了一个变量的范围,求另一个变量的范围,事实上,就是两个变量的依赖关系,于是可以把所求变量表示成已知变量的函数,从函数出发看待这类问题,分离变量就自然了,于是该题就有了如下简洁的解法:

(Ⅱ)解:因为,所以

等价于,其中.

…………9分

设,在区间上的最大值为.…………11分

则“,使得

”等价于.

所以,的取值范围是.

………………13分

小结:存在性问题、恒成立问题采用分离变量的方法常常比较容易,但是这种方法的教学不能当成一种技巧进行教学,应该揭示这种解法的本质,其本质就是变量的依赖关系即函数关系,分离变量,实际上是把两个变量之间的隐函数关系,变成显函数关系,进而转化成不含参变量的函数,从而使得问题的解决避免分类讨论,变得简单。

【练1-6】(2012-2013朝阳期末18)已知函数.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

【答案】(这里的第三问也是一个存在性问题,可做练习巩固)

【练1-7】(2006天津理11)已知函数的图象与函数(且)的图象关于直线对称,记,若在区间上是增函数,则实数的取值范围是().A.B.C.D.【答案】

考点二、主参换位(主辅元转换),避免分类讨论;

【例2-1】设不等式对满足的一切实数都成立,求的取值范围.

【答案】分析:受思维定势影响,易看成关于的不等式.其实变换一个角度,以为变量可避免分类讨论,只要关于的函数在区间恒为负值即可.

解:由题意,可设,即在内恒成立,因为为关于的一次函数,故有.

评注:将关于的不等式转化为关于的一次不等式,虽然仍需要解关于的一元二次不等式组,但已经成功地避开了复杂的分类讨论,将问题中的参数“消灭”了.这种转变问题视角的方法,对简化运算十分有益.

【例2-2】(2012-2013通州期末19)已知函数

(Ⅰ)若函数在处有极值为10,求b的值;

(Ⅱ)若对于任意的,在上单调递增,求b的最小值.

【答案】分析:该题(Ⅱ)初步转化为

对任意,都成立

多个变量,学生感到无从下手。给了,可以把a看成自变量,于是不等式左边就是关于a的一次函数,又给出,于是进而看成关于x的二次函数,于是问题获解。

【例2-3】设,当时,恒成立,求的取值范围。

【答案】分析:该题初步转化为对任意恒成立,求的取值范围

多个变量,学生感到无从下手。给了,可以把a看成自变量,于是不等式左边就是关于a的一次函数,于是进而看成关于x的二次函数,于是问题获解。

例2-4.(2010崇文一模理)设奇函数上是增函数,且,若函数

对所有的都成立,当时,则t的取值范围是()

A.

B.

C.

D.

【答案】C

导数专题九、公切线解决导数中零点问题

【知识点】将题目中的零点问题,通过转化成初等函数的图形之间的位置关系问题,然后利用公切线的变化求出。

考点一、无零点

【例

1-1】(16年房山二模文科)已知函数

(Ⅱ)若直线与曲线没有公共点,求实数的取值范围。

【解析】因为直线与曲线没有公共点,所以方程无实根,即无实根,等价于无实根

设,即无零点。

当时,显然无零点,符合题意;

当时,令

极小值,显然不符合题意;

当时,令

极大值,所以时,符合题意

综上所述:

【练

1-1】(13年福建文)已知函数().(3)当的值时,若直线与曲线没有公共点,求的最大值.【解析】当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,知方程在上没有实数解.所以的最大值为.考点二、一个零点

【例

2-1】(13年朝阳一模理)已知函数,其中.(Ⅱ)若函数在上有且只有一个零点,求实数的取值范围.【解析】①当时,由(Ⅰ)可知,函数的单调递减区间为,在单调递增.所以在上的最小值为,由于,要使在上有且只有一个零点,需满足或解得或.②当时,由(Ⅰ)可知,(ⅰ)当时,函数在上单调递增;

且,所以在上有且只有一个零点.(ⅱ)当时,函数在上单调递减,在上单调递增;

又因为,所以当时,总有.因为,所以.所以在区间内必有零点.又因为在内单调递增,从而当时,在上有且只有一个零点.综上所述,或或时,在上有且只有一个零点

【练

2-1】(2012年房山一模18)已知函数.

(III)若函数在区间上恰有两个零点,求的取值范围.

【解析】当时,在区间上为增函数,在区间不可能恰有两个零点.

………10分

当时,由(II)问知,又,为的一个零点.

……11分

若在恰有两个零点,只需

………13分

【练

2-2】(13年昌平二模理科)已知函数

(Ⅱ)求在区间上的最小值;

(III)若在区间上恰有两个零点,求的取值范围.【解析】可知当或时,在上是单调递增或递减函数,不可能存在两个零点.当时,要使在区间上恰有两个零点,则

即,此时,.所以,的取值范围为

考点三、两个零点

【例

3-1】已知函数.(III)讨论函数在区间上零点的个数.【解析】

【练

3-1】(15年海淀期末文科)已知函数.(Ⅲ)问集合(且为常数)的元素有多少个?(只需写出结论)

考点四、线上下线问题

【例

4-1】(13年北京高考理科)设L为曲线C:在点(1,0)处的切线.(I)求L的方程;

方程为

(II)证明:除切点(1,0)之外,曲线C在直线L的下方.【练

4-1】(14年海淀一模理科)已知曲线.(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【解析】对于任意实数a,曲线C总在直线的的上方,等价于

∀x,,都有,即

∀x,R,恒成立,令,则等价于∀,恒成立,令,则,由得,的情况如下:

0

0

+

极小值

所以的最小值为,实数b的取值范围是.

导数专题十、极值点偏移问题

【例1】已知函数有且仅有两个不同的零点,则(B)

A.当时,B.当时,C.当时,D.当时,【例2】设函数,若的图像与图像有且仅有两个不同的公共点,则下列判断正确的是(D)

A.当时,B.当时,C.当时,D.当时,【例3】设函数,若的图像与图像有且仅有两个不同的公共点,则下列判断正确的是(B)

A.当时,B.当时,C.当时,D.当时,【例4】(2010东城二模)已知函数.

(Ⅰ)

若函数在上为单调增函数,求的取值范围;

(Ⅱ)

设,且,求证:.

解:(Ⅰ)

.………………………………………3分

因为在上为单调增函数,所以在上恒成立.

即在上恒成立.

当时,由,得.

设,.

所以当且仅当,即时,有最小值.

所以.

所以.

所以的取值范围是.…………………………………………………………7分

(Ⅱ)不妨设,则.

要证,只需证,即证.

只需证.……………………………………………………………11分

设.

由(Ⅰ)知在上是单调增函数,又,所以.

即成立.

所以.………………………………………………………………14分

【例5】(2010天津)已知函数

(Ⅰ)求函数的单调区间和极值;

(Ⅱ)已知函数的图像与函数的图像关于直线对称,证明:当时,.(Ⅲ)如果,且,证明:.解:f’

令f’(x)=0,解得x=1

当x变化时,f’(x),f(x)的变化情况如下表

X

()

()

f’(x)

+

0

f(x)

极大值

所以f(x)在()内是增函数,在()内是减函数。

函数f(x)在x=1处取得极大值f(1)且f(1)=

(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)

令F(x)=f(x)-g(x),即

于是

当x>1时,2x-2>0,从而’(x)>0,从而函数F(x)在[1,+∞)是增函数。

又F(1)=F(x)>F(1)=0,即f(x)>g(x).Ⅲ)证明:(1)

(2)若

根据(1)(2)得

由(Ⅱ)可知,>,则=,所以>,从而>.因为,所以,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内增函数,所以>,即>2.【例6】(2011辽宁)已知函数

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当

时,;

(Ⅲ)若函数的图像与x轴交于A、B两点,线段AB中点的横坐标为,证明:.解:(I)

(i)若单调增加.(ii)若

且当

所以单调增加,在单调减少.………………4分

(II)设函数则

当.故当,………………8分

(III)由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为

不妨设

由(II)得

从而

由(I)知,………………12分

【例7】(2013湖南文)已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)证明:当

时,.解:

(Ⅰ)

.所以,.(Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x)

f(-x)即可...【例8】(2016新课标I)已知函数有两个零点.(I)求的取值范围;

(II)设是的两个零点,证明:

解:(Ⅰ).

(i)设,则,只有一个零点.

(ii)设,则当时,;当时,.所以在上单调递减,在上单调递增.

又,取满足且,则,故存在两个零点.

(iii)设,由得或.

若,则,故当时,因此在上单调递增.又当时,所以不存在两个零点.

若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,所以不存在两个零点.

综上,的取值范围为.

(Ⅱ)不妨设,由(Ⅰ)知,在上单调递减,所以等价于,即.

由于,而,所以

设,则.

所以当时,而,故当时,.

从而,故.

【例9】已知函数.(1)若,求函数在上的零点个数;

(2)若有两个零点,证明:

【例10】设函数.

(1)求函数的单调区间;(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程有两个不相等的实数根,求证:.

【例11】设函数,其图象与轴交于,两点,且x1<x2.

(1)求的取值范围;

(2)证明:(为函数的导函数)

【例12】已知函数,(1)若,求证:函数有极值;

(2)若,且函数与的图象有两个相异交点,求证:

【例13】已知函数,求证:有唯一零点的充要条件a=e

【例14】函数的图像与x

轴交于不同的两点、,求证:

【例15】已知函数

(Ⅰ)(Ⅱ)略

(Ⅲ)当

时,函数的图像与x

轴交于不同的两点、,且,又

是的导函数。若正常数α、β满足条件。证明:

导数专题十一、构造函数解决导数问题

【知识框架】

【考点分类】

考点一、直接作差构造函数证明;

两个函数,一个变量,直接构造函数求最值;

【例1-1】(14顺义一模理18)已知函数()

(Ⅰ)当时,求曲线在处的切线方程;

(Ⅱ)若在区间上函数的图象恒在直线下方,求的取值范围.

【例1-2】(13海淀二模文18)已知函数.(Ⅰ)当时,若曲线在点处的切线与曲线在点处的切线平行,求实数的值;

(Ⅱ)若,都有,求实数的取值范围.【练1-1】(14西城一模文18)已知函数,其中.

(Ⅰ)当时,求函数的图象在点处的切线方程;

(Ⅱ)如果对于任意,都有,求的取值范围.

【练1-2】已知函数是常数.

(Ⅰ)求函数的图象在点处的切线的方程;

(Ⅱ)证明函数的图象在直线的下方;

(Ⅲ)讨论函数零点的个数.

【练1-3】已知曲线.(Ⅰ)若曲线C在点处的切线为,求实数和的值;

(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【练1-4】已知函数,求证:在区间上,函数的图像在函数的图像的下方;

【练1-5】.已知函数;

(1)当时,求在区间上的最大值和最小值;

(2)若在区间上,函数的图像恒在直线下方,求的取值范围。

【练1-6】已知函数;

(1)求的极小值;

(2)如果直线与函数的图像无交点,求的取值范围;

答案:

考点二、从条件特征入手构造函数证明

【例2-1】若函数

在上可导且满足不等式,恒成立,且常数,满足,求证:。

【例2-2】设是上的可导函数,分别为的导函数,且满足,则当时,有()

A.B.C.D.【练2-1】设是上的可导函数,,求不等式的解集。

【练2-2】已知定义在的函数满足,且,若,求关于的不等式的解集。

【练2-3】已知定义域为的奇函数的导函数为,当时,若,则下列关于的大小关系正确的是()D

A.B.C.D.【练2-4】已知函数为定义在上的可导函数,且对于任意恒成立,为自然对数的底数,则()C

A.B.C.D.【练2-5】

设是上的可导函数,且,求的值。

【练2-6】函数为定义在上的可导函数,导函数为,且,下面的不等式在内恒成立的是()

A.B.C.D.【练2-7】已知函数为定义在上的可导函数,导函数为,当时,且,若存在,使,求的值。

(二)关系式为“减”型

(1),构造;

(2),构造;

(3),构造;

(注意对的符号进行讨论)

考点三、变形构造函数

【例3-1】证明:对任意的正整数,不等式都成立。

【例3-2】已知函数;

(1)求函数的单调区间与极值;

(2)若对于任意,恒成立,求实数的取值范围;

【练3-1】设为曲线在点处的切线。

(1)求的方程;

(2)证明:除切点之外,曲线在直线的下方;

【练3-2】已知函数;

(1)若曲线在点处的切线方程为,求的值;

(2)当时,求证:;

【练3-3】已知函数,其中;

(1)求的单调区间;

(2)若对任意的,总存在,使得,求实数的值;

【练3-4】,(1)讨论的单调情况;

(2)设,对.求证:.

【练3-5】已知函数;

(1)求的单调区间;

(2)当时,设斜率为的直线与函数相交于两点,求证:

考点四、消参构造函数

【例4-1】已知函数和的图像有公共点,且在点处的切线相同;

(1)若点的坐标为,求的值;

(2)已知,求切点的坐标。

【例4-2】(2009全国卷2理22)设函数有两个极值点,且

(Ⅰ)求的取值范围,并讨论的单调性;

(Ⅱ)证明:

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(5)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(6)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(7)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(8)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(9)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(10)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

不等式放缩:,由于(从右侧趋近0)时,;时,所以有两个零点.(2)当时,时,为增函数;时,为减函数;

时,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,所以此时有一个零点.且时,所以此时有一个零点.(11)

当时,在上恒成立,所以为增函数.,且(从右侧趋近0)时,;

时,.所以有一个零点.综上所述,或时有一个零点;时,无零点;

有两个零点.【例4-2】(2014-2015年海淀一模理18)已知函数.(Ⅱ)若(其中),求的取值范围,并说明.解:(Ⅱ)由(Ⅰ)知:

当时,函数在区间内是减函数,所以,函数至多存在一个零点,不符合题意.当时,因为

在内是减函数,在内是增函数,所以

要使,必须,即.所以

.当时,.令,则.当时,所以,在上是增函数.所以

当时,.所以

.所以

在内存在一个零点,不妨记为,在内存在一个零点,不妨记为.因为

在内是减函数,在内是增函数,所以

.综上所述,的取值范围是.因为,所以

.特值探究

令.则.不等式放缩:

因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.由得:.所以

.因为,所以,.所以

.【例4-3】(2014-2015海淀二模理18)

已知函数.(Ⅱ)求证:曲线存在斜率为6的切线

解:因为,且由(Ⅰ)得,在内是减函数,所以

存在唯一的,使得.当时,.所以

曲线存在以为切点,斜率为6的切线.导数专题八、避免分类讨论的参变分离和变换主元

【知识结构】

【知识点】

用分类讨论与整合思想解题,在数学解题中占据重要地位,用分类思想解题不仅可以加深对数学基础知识和基本技能的理解,而且也有助于理性思维能力的提高.但是,有时在分类讨论时,会造成解题过程的繁琐,这就要求我们在解分类讨论题目时,注意解法上的优化,对有一些题目,可以采用其它解法,使分类讨论得以避免和简化.【考点分类】

考点一、分离参数(参变分离),避免分类讨论;

【例1-1】(2015-2016石景山期末文20)已知函数,.(Ⅰ)若在处取得极小值,求的值;

(Ⅱ)若在区间为增函数,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,函数有三个零点,求的取值范围.

【答案】(Ⅰ)

由在处取得极大值,得,所以(经检验适合题意)

(Ⅱ),因为在区间为增函数,所以在区间恒成立,所以恒成立,即恒成立,由于,得.所以的取值范围是.(Ⅲ),故,得或

当时,在上是增函数,显然不合题意.当时,随的变化情况如下表:

+

0

+

极大值

极小值

要使有三个零点,故需,即,解得

所以的取值范围是.【例1-2】(2015-2016丰台一模文19)已知函数

(1)求曲线:在处的切线的方程;

(2)若函数在定义域内是单调函数,求的取值范围;

(3)当时,(1)中的直线与曲线:有且只有一个公共点,求的取值范围。

【答案】(1)由已知得,切点坐标为,,所以切线方程为

(2)由已知得,函数的定义域为,又因为函数在定义域中是单调函数,所以有恒成立或者恒成立

1、当恒成立时,即恒成立,恒成立,即大于的最大值

令,有

所以在定义域中单调递减,无最大值,所以不存在满足条件。

2、当恒成立时,即恒成立,恒成立,即小于的最小值

由上种情况可知,单调递减,但恒有,因此的取值范围为

(3)当时,(1)中的直线与曲线:有且只有一个公共点

即只有一个根,令,有只有一个零点,1、当时,在单调递减,在单调递增,在取得最小值2,大于0

因此恒大于0,所以舍去

2、当时,解得,1

0

+

0

极小值

极大值

易知,而当时,所以在只存在一个零点。

3、当时,解得,1

0

+

极小值

当时,所以若只有一个零点,必须有

即,综上所述,的取值范围为和

【例1-3】(2015-2016朝阳期末理18)已知函数,其中.

(Ⅰ)若在区间上为增函数,求的取值范

围;

(Ⅱ)当时,(ⅰ)证明:;

(ⅱ)试判断方程是否有实数解,并说明理由.

【答案】函数定义域,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

(Ⅱ)当时,,.

(Ⅰ)因为在区间上为增函数,所以在上恒成立,即,在上恒成立,则

高中数学竞赛标准讲义 篇5

(一)及答案

一、填空:

1、数学是研究(数量关系)和(空间形式)的科学。

2、义务教育阶段数学课程的总体目标,从以下四个方面作出了阐述:知识技能、(数学思考)、(问题解决)、(情感态度)。

3、《标准》中所提出的“四基”是指:掌握基础知识、训练基本技能、领悟(基本思想)、积累(基本活动经验)。

4、义务教育阶段的数学课程要面向全体学生,适应学生个性发 展的需要,使得:(人人都能获得良好的数学教育,不同的人在数学上得到不同的发展)。

5、《标准》中除了“四基”以外,还提出的“四能”,具体是指:培养学生(发现)和(提出问题)的能力、(分析)和(解决问题)的能力。

6、学生学习应当是一个生动活泼的、主动和富有个性的过程。除接受学习外,(动手实践)、(自主探索)与(合作交流)也是数学学习的重要方式。学生应当有足够的时间和空间经历(观察、实验、猜测、计算、推理、验证)等活动过程。

7、在“图形与几何”的教学中,应帮助学生建立(空间观念),注重培养学生的(几何直观)与(推理能力)。

8、“综合实践”是一类以(问题)为载体,(以师生共同参与)的学习活动,是帮助学生积累(数学活动经验),培养学生(应用意识)与(创新意识)的重要途径。

9、教师教学应该以学生的(认知发展水平)和(已有的经验)为基础,面向全体学 生,注重(启发式)和(因材施教)。

10、在各学段中,《标准》安排了四个方面的课程内容:数与代数、图形与几 何、统计与概率、综合与实践。

二、选择题(1-6 单项选择,7-10 多项选择)

1、数学教学活动是师生积极参与(C)的过程。A、交往互动 B、共同发展 C、交往互动、共同发展。

2、“三维目标”是指知识与技能、(B)、情感态度与价值观。A、数学思考 B、过程与方法 C、解决问题

3、《数学课程标准》中使用了“经历、体验、探索”等表述(A)不同程度。

A、学习过程目标 B、学习活动结果目标。

4、在新课程背景下,评价的主要目的是(C)A、促进学生、教师、学校和课程的发展

B、形成新的教育评价制度 C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学

5、学生是数学学习的主人,教师是数学学习的(C)的过程。

A 组织者 合作者 B 组织者引导者 C 组织者 引导者 合作者

6、推理一般包括(C)。

A、逻辑推理和类比推理推理 B、逻辑推理和演绎推理 C、合情推理和演绎

7、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(BC)

A、人人学有价值的数学 B、人人都能获得良好的数学教育 C、不同的人在数学上得到不同的发展

8、数学活动必须建立在学生的(AB)之上。

A、认知发展水平B、已有的知识经验基础 C、兴趣

9、在各个学段中,课程标准都安排了(A B C D)学习领域。

A、数与代数 B、图形与几何 C、统计与概率 D、综合与实践

10、数学基本能力分为(ABC)

A 运算能力、空间想象能力和逻辑思维能力 B 解决实际问题的能力。C 其它数学能力主要指观察、理解、记忆、运用的能力。

三、判断:

1、教师对学生学习数学的评价就是关注学生的学习结果。(×)

2、学生在学习数学时,最有效的学习活动就是单纯在模仿记忆。(×)

3、合作学习是课堂教学中教学方法的全部。(×)

4、数学学习评价既要关注学生数学学习的水平,更要关注他们在 数学活动中所表现出来的情感、态度、个性倾向。(√)

5、学生的数学学习内容应当是现实的、有意义的、富有挑战性的。(×)

6、学生是数学学习的主人,教师是数学学习的组织者,引导者与 合作者。(√)

7、无论是新课题的引入还是教学内容的展开,都应力求创设具有启发性的问题情境体现知识的形成过程(√)

8、评价的手段和形式应多样化,应以评价结果为主。(×)

9、新课标只提倡关注知识获得的过程,不提倡关注获得知识结果。(×)

10、《标准》提倡采取开放的原则,为有特殊需要的学生留出发展 的时间和空间,满足多样化的学习需求。(√ 探索、合作交流与实践创新。(√))

11、提 高 国 民 整 体 素 质 是 实 现 教 育 政 治 功 能 的 基 础。(√)

12、教师应由学生学习的组织者、引导者转变为知识的传递者和合作者。(×)13、课程标准认为,“数学教学是数学活动的教学”。(√)

14、数学学习评价应由单纯的考查学生的学习结果转变为关注学生 学习过程中的变化与发展,以全面了解学生的数学学习状况,促进学 生更好地发展。(√)

四、名词解释:

1、数感:主要是指关于数与数量表示、数量大小比较、数量和 运算结果的估计、数量关系等方面的感悟。建立数感有助于学生理解 现实生活中数的意义,理解或表述具体情境中的数量关系。

2、符号意识:主要是指能够理解并且运用符号表示数、数量关 系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符 号意识有助于学生理解符号的使用是数学表达和进行数学思考的重 要形式。

3、运算能力:主要是指能够根据法则和运算律正确地进行运算 的能力。培养运算能力还有助于学生理解运算的算理,寻求合理简洁 的运算途径解决问题。

4、空间观念:主要是指根据物体特征抽象出几何图形,根据几 何图形想象出所描述的实际物体; 想象出物体的方位和相互之间的位 置关系;描述图形的运动和变化;依据语言描述画出图形等。

5、几何直观:主要是指利用图形描述和分析数学问题。借助几 何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题 的思路,预测结果。几何直观不仅在“图形与几何”的学习中发挥着 不可替代的作用,而且贯穿在整个数学 学习过程中。

6、了解:从具体事例中知道或举例说明对象的有关特征;根据 对象的特征,从具体情境中辨认或者举例说明对象。同类词有: 认识,知道,说出,辨认,识别。

7、理解:描述对象的特征和由来,阐述此对象与相关对象之 间的区别和联系。同类词:认识,会。

8、掌握:在理解的基础上,把对象用于新的情境。同类词:能。

9、运用:综合使用已掌握的对象,选择或创造适当的方法解决 问题。同类词:证明。

10、经历:在特定的数学活动中,获得一些感性认识。同类词: 感受,尝试。

11、体验:参与特定的数学活动,主动认识或验证对象的特征,获得经验。同类词:体会。

12、探索:独立或与他人合作参与特定的数学活动,理解或提出 问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别 和联系,获得理性认识。

五、简答题:

1、数学课程改革的基本思路是什么?

答: ①以反映未来社会对公民所必需的数学思想方法为主线选择 和安排教学内容;②以与学生年龄特征相适应的大众化、生活化的方 式呈现数学内容;③使学生在活动中、在现实生活中学习数学、发展 数学。

2、数学学习评价改革的特点?

答:①评价主体的多元性。②评价内容的多元化与开放性。③评 价方式的多样性。

3、数学教学中,建立和求解模型的过程包括哪些?

答:建立和求解模型的过程包括:从现实生活或者具体情境中抽 象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题 中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容 的学习有助于学生初步形成模型思想,提高学习兴趣和应用意识。

4、义务教育阶段学生学习数学的总体目标是什么?

答:(1).获得适应社会生活和进一步发展所必需的数学的基础知 识、基本技能、基本思想、基本活动经验。(2).体会数学知识之间、数学与其他学科之间、数学与生活 之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的 能力、分析和解决问题的能力。(3).了解数学的价值,激发好奇心,提高学习数学的兴趣,增 强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科 学态度。

5、小学第一学段学习目标中,知识目标是什么? 答:(1)经历从日常生活中抽象出数的过程,理解万以内数的 意义,初步认识分数和小数;理解常见的量;体会四则运算的意义,掌握必要的运算技能;在具体情境中,能选择适当的单位进行简单的 估算。经历从实际物体中抽象出简单几何体和平面图形的过程。(2)了解一些简单几何体和常见的平面图形;感受平移、旋转、轴对称现 象;认识物体的相对位置。掌握初步的测量、识图和画图的技能。(3)经历简单的数据收集、整理、分析的过程,了解简单的数据处 理方法。

6、小学第一学段“解决问题”的目标是什么?

答:(1)能在教师的指导下,从日常生活中发现和提出简单的 数学问题,并尝试解决。(2)了解分析问题和解决问题的一些基本 方法,知道同一个问题可以有不同的解决方法。(3)体验与他人合 作交流解决问题的过程。(4)尝试回顾解决问题的过程。

7、义务教育数学课程的性质是什么?

答:义务教育阶段的数学课程是培养公民素质的基础课程,具 有基础性、普及性、和发展性。数学课程能使学生掌握必备的基础知识和基本技能,培养学生的抽象思维和推理能力,培养学生的创新意 识和实践能力,促进学生在情感、态度与价值观等方面的发展。义务 教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。

8、简述《标准》中总体目标四个方面的关系?

答:总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系、相 互交融的有机整体。课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展,有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。

9、学生的数感主要表现在哪些方面?

答:理解数的意义;能用多种方法来表示数与数量;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性做出解释。

10、在学生的学习活动中,教师的“组织”作用主要体现在哪些方面?

答:主要体现在:

1、教师应当准确把握教学内容的数学本质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案。

2、在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,形成有效的学习活动。

11、怎样理解学生主体地位和教师主导作用的关系,如何使学生成为学习的主体?

答:好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。启发式教学是处理好学生主体地位和教师主导作用关系的有效途径。教师富有启发性的讲授,创设情境、设计问题,引导学生自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体。

六、论述题:

1、修订后的数学课程标准,为教师实施教学提出的总体建议是什么?

教学活动是师生积极参与、交往互动、共同发展的过程。数学教学应根据具体的教学内容,注意使学生在获得间接经验的同 时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生 自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获 得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生 主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分 析问题和解决问题的能力。在数学教学活动中,教师要把基本理念转化为自己的教学行为, 处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发 扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学 生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极 开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学 生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的 发展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有 效地使用计算机和有关软件,提高教学效益。

2、如何重视学生在学习活动中的主体地位 ? 有效的数学教学活动是教师教与学生学的统一,应体现“以人为 本”的理念,促进学生的全面发展。(1)学生是数学学习的主体,在积极参与学习活动的过程中不断 得到发展。学生获得知识,可以通过接受学习,也可以通过自主探索等方式,但必须建立在自己思考的基础上;学生应用知识并逐步形成技能,离 不开自己的实践;学生在获得知识技能的过程中,只有亲身参与教师 精心设计的教学活动,才能在数学思考、问题解决和情感态度方面得 到发展。(2)教师应成为学生学习活动的组织者、引导者、合作者,为学 生的发展提供良好的环境和条件。教师的“组织”作用主要体现在两个方面:第一,教师应当准确 把握教学内容的数学本质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案。第二,在教学活动中,教师要选择适当的教 学方式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂 氛围,形成有效的学习活动。教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生 的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积 累经验;能关注学生的差异,用不同层次的问题或教学手段,引导每 一个学生都能积极参与学习活动。教师与学生的“合作”主要体现在:教师以平等、尊重的态度鼓 励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功 和挫折、分享发现和成果。做好教学的组织者、引导者、合作者,教师就起到了主导作用。(3)处理好学生主体地位和教师主导作用的关系。好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥; 另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。启发式教学是处理好学生主体地位和教师主导作用关系的有效 途径。教师富有启发性的讲授,创设情境、设计问题,引导学生自主 探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论 证等,都能有效地启发学生的思考,使学生成为学习的主体。

3、组织学生开展探索活动应当注意哪些?

① 鼓励学生在独立思考的基础上,与他人合作交流。没有每个 学生的独立思考,合作交流就缺乏基础;没有同伴间的合作交流,个 人的思考有时难以深入。此外,适当的合作交流,也有利于学生逐渐 形成良好的身心素质。② 课堂教学的时间是有限的,教师必须把握好学生自主探索活 动的时间,给最终的归纳总结留有余地。教师需要在实践中不断提高 自己组织、引导学生开展探索活动的能力,提高探索活动的实效。③ 给学生自主探索适当的空间。探索过程中获得的结果固然 重要,探索过程本身也是有价值的。④ 处理好学生自主探索与教师示范的关系。对于学生的探索活 动,教师不仅要给予启发、引导,而且应适时地进行归纳,示范阶段 12 性结论,明晰进一步探索的思路。⑤ 对于进行自主探索有困难的学生,教师应给以具体的帮助、鼓励和指导,努力使他们也能参与探索活动并积极地思考。

2011版小学数学课程标准知识竞赛试题 测试题

(二)及答案

一、选择题(1-10单项选择,11-15多项选择)(30%)

1、数学教学活动是师生积极参与,(C)的过程。

A、交往互动

B、共同发展

C、交往互动、共同发展

2、教师要积极利用各种教学资源,创造性地使用教材,学会(B)。A、教教材

B、用教材教

3、“三维目标”是指知识与技能、(B)、情感态度与价值观。A、数学思考

B、过程与方法

C、解决问题

4、《数学课程标准》中使用了“经历、体验、探索”等表述(A)不同程度。A、学习过程目标

B、学习活动结果目标。

5、评价要关注学习的结果,也要关注学习的(C)

A、成绩

B、目的 C、过程

6、“综合与实践”的教学活动应当保证每学期至少(A)次。A、一

B、二

C、三

D、四

7、在新课程背景下,评价的主要目的是(C)

A、促进学生、教师、学校和课程的发展

B、形成新的教育评价制度

C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学

8、学生是数学学习的主人,教师是数学学习的(C)。

A 组织者合作者

B组织者引导者

C 组织者 引导者 合作者

9、学生的数学学习活动应是一个(A)的过程。A、生动活泼的主动的和富有个性

B、主动和被动的 生动活泼的 C、生动活泼的 被动的 富于个性

10、推理一般包括(C)。

A、逻辑推理和类比推理

B、逻辑推理和演绎推理

C、合情推理和演绎推理

11、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(BC)A、人人学有价值的数学

B、人人都能获得良好的数学教育 C、不同的人在数学上得到不同的发展

12、数学活动必须建立在学生的(AB)之上。

A、认知发展水平B、已有的知识经验基础 C、兴趣

13、数学课程应致力于实现义务教育阶段的培养目标,体现(ABC)。A、基础性

B、普及性

C、发展性

D、创新性

14、在“数与代数”的教学中,应帮助学生(ABCD)。

A、建立数感

B、符号意识

C、发展运算能力和推理能力

D、初步形成模型思想

15、课程内容的组织要处理好(ABC)关系。

A、过程与结果 B、直观与抽象

C、直接经验与间接经验

二、填空题。(45%)

1、数学是研究数量关系和空间形式的科学。

2、有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。

3、义务教育阶段数学课程的总体目标,从以下四个方面作出了阐述:知识技能、数学思考、问题解决、情感态度。

4、在各学段中,《标准》安排了四个方面的课程内容:数与代数、图形与几何、统计与概率、综合与实践。

5、学生学习应当是一个生动活泼的、主动和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。

6、在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的 几何直观 与推理能力。

7、在“统计与概率”的教学中,应帮助学生逐渐建立起来数据分析观念,了解随机现象。

8、“综合实践”是一类以问题为载体、师生共同参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。

9、《标准》中所提出的“四基”是指:基础知识、基本技能、基本思想、基本活动经验。

10、《标准》中所提出的“四能”是指:发现和提出问题的能力、分析和解决问题的能力。

11、教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。

12、义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。

三、简答题。(25%)

1、简述《标准》中总体目标四个方面的关系? 答:总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系、相互交融的有机整体。课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展,有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。

2、学生的数感主要表现在哪些方面?

答:理解数的意义;能用多种方法来表示数与数量;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性做出解释。

3、在学生的学习活动中,教师的“组织”作用主要体现在哪些方面?

答:主要体现在:

1、教师应当准确把握教学内容的数学本质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案。

2、在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,形成有效的学习活动。

4、怎样理解学生主体地位和教师主导作用的关系,如何使学生成为学习的主体?

答:好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。

资质标准审查讲义 篇6

2011年7月.哈尔滨

目录

一、修订工程监理企业资质管理规定和资质标准的背景和原则

二、工程监理企业资质管理规定修订的主要内容

三、关于资质标准调整变化的主要内容

四、关于资质标准实施细则主要问题的说明

五、资质审查中应当注意的有关事项

一、修订工程监理企业资质管理规定和资质标准的背景和原则

(一)修订的背景

1、适应《行政许可法》的要求。

2、适应加强注册监理工程师执业制度建设的需要。

3、适应工程监理企业的健康发展。

4、适应工程项目管理工作发展的需要。

(二)修订的原则

按照《行政许可法》要求,依法规范行政许可;资质标准总体框架不变,局部调整、平稳过渡。本着这个原则,在资质标准修订时,一是局部调整现行资质序列,修订部分专业分类标准,调整后不搞重新就位,实现平稳过渡;二是增设综合资质,扩大大型企业的业务范围,扶持其做大做强;三是明确对相关注册执业人员的考核要求,使考核指标定量与定性相结合,简单明了,便于操作。

二、工程监理企业资质管理规定修订的主要内容

• 一是明确了受理、初审、审批的权限和部门。

• 二是明确了受理和审查的期限。

• 三是创新了监管方式,强化后续监管。

• 四是调整了资质证书的内容规定。

• 五是增加了有关工程项目管理的规定。

三、关于资质标准调整变化的主要内容

(一)重新划分工程监理企业资质序列

增设综合资质和事务所资质,将工程监理企业资质分为综合类资质、专业

1类资质和事务所三个序列。

(二)调整了资质级别的划分

1、综合类资质不分等级。

2、专业类资质原则上分为甲、乙两个级别。

除房屋建筑、水利水电、公路和市政公用四个专业工程类别设丙级资

质外,其它10个专业工程类别不设丙级资质。

3、监理事务所资质不分专业和等级。

(三)调整了专业资质标准条件

1、适当提高企业的注册资金,甲级资质由100万元调到300万元,乙级资质由50万元调到100万元,丙级资质由10万元调到50万元。

2、调整了对注册执业人员的考核。由只考核注册监理工程师,调整为要考核注册监理工程师、注册造价工程师及其他工程建设类注册执业人

员。

同时,适当降低了甲、乙两个级别注册监理工程师人数要求。对各专业资质注册监理工程师人数要求在附表1中予以了明确。

3、项目业绩数量进行了调整。如以前房屋建筑工程甲级资质要求近3年内监理过5个以上二等工程项目,调整为近2年内独立监理过3个相

应专业的二级工程项目。

4、增加了对企业质量管理体系、必要试验监测设备以及市场违规、质量、安全事故等方面等考核要求。

5、对申请资质升级的年限进行了调整。

申请升级的年限由三年改为两年。

6、对甲级设计和一级及以上施工总承包企业申请监理资质给予了扶持。具有甲级设计资质或一级及以上施工总承包资质的企业申请本专业工程类别甲级资质的除外。

7、对新设立企业申请资质的等级进行了调整。新设立企业可直接申请专业工程乙级监理资质,不必从丙级开始申请。

8、对申请增加资质的等级进行了调整。申请增加资质等级只能最高从乙级开始,不能直接增加甲级资质。

(四)综合资质的主要条件

1、注册资本不少于600万元。

2、具有5个(含5个)以上工程类别的专业甲级工程监理资质。

3、注册监理工程师不少于60人,注册造价工程师不少于5人,一级注册建造师、一级注册建筑师、一级注册结构工程师或者其它勘察设计注册工程师合计不少于15人次。且具有一级注册建造师不少于1人次、具有一级注册结构工程师或其它勘察设计注册工程师或一级注册建筑师不少于1人次。

(五)事务所资质主要条件

1、取得合伙企业营业执照,具有书面合作协议书。

2、合伙人中有不少于3名注册监理工程师,合伙人均有5年以上从事建设工程监理的工作经历。

(六)调整了业务范围

1、增加了项目管理、技术咨询等相关服务范围。

2、对综合资质业务范围不加限定。

•可以承担所有专业工程类别建设工程项目的工程监理业务,以及建设工程的项目管理、技术咨询等相关服务。

3、适当限定了事务所资质业务范围。

• 国家规定必须实行强制监理的建设工程监理业务除外。

(七)调整了专业工程类别和等级表

1、调整完善了部分专业工程等级指标。

2、只对房屋建筑、水利水电、公路和市政公用四个专业工程类别设立了三级工程,其他专业工程不设三级工程。

3、增加了农业工程,将林业生态工程调整为农林工程。

4、明确了结合城市建设与民用建筑修建的附建人防工程属于房屋建筑工程。

四、关于资质标准实施细则主要问题的说明

(一)受理和审批

省、自治区、直辖市人民政府建设主管部门负责受理本行政区域内

工商注册企业的监理资质申请,并负责审批乙级、丙级资质和事务所

资质。

建设部负责审批专业工程甲级和综合资质。

1、必须是已经办理完在本企业注册的手续。

2、已有监理资质的企业,申请升级和增加资质时,企业注册监理工程师的人数必须先满足已有监理资质要求的相应专业注册监理工程师人数

后,方可申请。

3、一人具有两个及以上资格证书,其注册人次的认可问题。

• 一人同时具有注册监理工程师、一级注册建造师、一级注册建筑师、一级注册结构工程师或者其它勘察设计注册工程师执业资格且在同一

企业注册的,可按取得的注册执业资格证书个数重复计算其相应的人

次。

• 企业申请资质时要分别满足《标准》中要求的注册人数和注册人次要求。

(三)申报材料的核验和保存

1、省、自治区、直辖市人民政府建设主管部门,应当对申请综合资质和专业甲级资质申报材料附件的原件进行核验,确认企业填写的《工

程监理企业资质申请表》各项内容与原件相符。

2、各级人民政府建设主管部门对工程监理企业的所有申请、审查等书面材料应保存五年。

(四)关于新的工程监理企业资质证书的变化

1、增加项目管理、技术咨询等相关服务的范围。

2、各级别资质证书要分别核发。

3、不再分主项和增项。

4、证书有效期五年。

(五)申请专业甲级资质需提交材料

1、《工程监理企业资质申请表》;

2、企业法人营业执照正、副本复印件;

3、企业章程复印件;

4、工程监理企业资质证书正、副本复印件;

5、企业法定代表人、企业负责人的身份证明、工作简历及任命(聘用)文件的复印件;

6、企业技术负责人的身份证明、工作简历、任命(聘用)文件、毕业证

书、相关专业学历证书、职称证书和加盖执业印章的《中华人民共和

国注册监理工程师注册执业证书》等复印件;

7、《工程监理企业资质申请表》中所列注册执业人员的身份证明、加

盖执业印章的注册执业证书复印件(无执业印章的,须提供注册执业

证书复印件);

8、企业近2年内业绩证明材料的复印件,包括:监理合同、监理规划、工程竣工验收证明、监理工作总结和监理业务手册;

9、企业必要的工程试验检测设备的购置清单。

五、资质审查中应当注意的有关事项

(一)资质申报类型

1、乙级企业申请主项资质晋升甲级资质;

2、甲级企业申请增项晋升甲级资质;

3、甲级企业申请综合资质;

4、甲级设计资质或一级及以上施工总承包资质的企业直接申请甲级资质 ;

5、甲级企业改制、分立、合并后申请甲级资质。

(二)审查要点

1、申请表:初审意见、企业概况;

2、综合材料:完整性、注册资金、原资质证书及取得时间、技术负责人;

3、人员材料:注册类别、注册证书、数据库信息、注册有效期、注册总人次、独立造价工程师、原有资质专业监理工程师、新申请资质专

业监理工程师;

4、业绩材料:数量、专业判定、审查要件完整性、规范性、时效性、有效参数指标等。

(三)审查表填写要点

1、一审、二审、三审标注;

2、审查人声明;

3、资料编号;

4、企业名称、经济性质、申请类别;

5、综合资料考核情况;

6、申报资质情况;

7、已有专业资质监理工程师(甲、乙、丙级)(申请综合选5项填写); •

8、晋升专业甲级资质监理工程师;

9、业绩审查情况(分专业,全部业绩,不合格理由);

10、审查意见及理由;

11、审查人签字;

12、不合格的详细原因(理由充分、表达准确、言简意赅)。

(四)常见问题(人员)

1、注册执业人员类别:包括注册监理工程师、注册造价工程师、一级注册建造师、一级注册建筑师、一级注册结构工程师或者其它勘察设

计注册工程师(注册土木工程师、注册公用设备工程师、注册电气工

程师、注册化工工程师);不包括注册房地产估价师、注册咨询工程师、二级注册建造师、二级注册建筑师、二级注册结构工程师等。

2、其他部委颁发的监理工程师证书:按无效对待,只承认住建部颁发的监理工程师注册证书。

3、注册过期:以评审日期为准,评审日期超过注册证书有效期的视为注册过期,以书面材料和住建部网上数据库信息为审查依据。

4、书面材料和数据库信息的关系:

•(1)书面证书与数据库信息一致,有效;

•(2)书面有证书,数据库无信息,无效;

•(3)书面没有证书,数据库有信息,无效;

•(4)书面没有证书但有正在办理的证明,数据库有信息,有效; •(5)书面没有证书但有正在办理的证明,数据库无信息,无效。•

5、人次和人数:人次按有效注册证书的数量计算,一人多本注册证书可算作多人次;人数按独立注册人员数量计算,当一人同时具备监理

工程师和造价工程师注册证书,其作为专业监理工程师人数计算时,就不能再作为造价工程师计算,反之亦然。

6、计算造价工程师和专业监理工程师人数:先扣除独立造价工程师,再扣除同时具有监理工程师注册证书的造价工程师,计算时要按照有

利于企业的原则。

7、已有专业资质监理工程师审查:对已有的甲、乙、丙级监理资质对应的专业监理工程师人数均需进行审查,已有资质专业监理工程师人

数不达标的,新申请甲级资质审查意见不同意。

常见问题(业绩)

11月1日起至企业申报日期内完成的业绩均有效。例如,某企业2010年10月21日申报资质,竣工时间为2008年1月1日至2010年10月21日间的业绩均有效。

2绩为超资质时,不论其他业绩是否能满足资质要求,该项专业资质审查意见均为不同意。

3158号)中的《专业工程类别和等级表 》为标准,审查业绩材料中是否有与之相符合的有效参数指标,《等级表》中没有的参数指标不能作为审查依据。例如,风电工程未包含在《等级表》中的电力工程专业中,不能作为申请电力工程专业资质的业绩申报。

4、(建设部令第158号)中的《专业工程类别和等级表 》工程规模范围:表中的“以上”含本数,“以下”不含本数。例如,房屋建筑工程,一般公共建筑一级:28层以上(含28层);一般公共建筑二级:14—28层(含14层,不含28层)。

5、(审查要件和监理业务手册:以合同、验收、业务手册作为审查工程时间、规模、有效参数指标的主要依据;监理规划和总结作为辅助参考依据。

6158号)中的《专业工程类别和等级表 》为依据。

7收证明不完整,只体现了其中一部分时,视为业绩不达标。例如,某住宅小区工程由10栋住宅楼组成,竣工验收证明只提供其中8栋住宅楼的验收证明材料,另2栋住宅楼未提供,视为该工程业绩不达标。

8定为虚假业绩材料。例如,存在复印件之间字体、盖章雷同等问题时。但原则上专家应尊重初审部门的初审意见,不能随便质疑申报材料的真实性。

常见问题(其他)

1、注册资本金:按企业法人营业执照上注明的实收资本金考核。

2、工程试验检测设备:只考核企业是否提供必要的工程试验检测设备的购置清单。

高中数学竞赛标准讲义 篇7

怎样的一节数学课才算是一节“好课”呢?笔者以为,一节有效的课才能称得上是一节“好课”,它至少需要做到以下几个“有效”。

一、有效的课堂导入

自从新课程实施以来,笔者听了很多的公开课、示范课、评比课,发现很多课堂在导入时,都千方百计设置与现实生活密切相关的问题以创设情景,使数学充满生活味,不可否认,让数学有一些生活味可以使数学变得“和蔼可亲”,让数学更有趣,问题情景如果设计得科学合理,是值得推广的。但现实情况是,有些问题情景的设置过于牵强,反而弄巧成拙。邵老师这节课通过询问三个学生的年龄,猜出全班学生的平均年龄,然后指出:“根据一个或三个已知同学的年龄,做出关于你们的年龄的判断,像这样的思维过程,我们给他一个名字,就叫做推理”,同时通过PPT出示推理的概念,进一步指出推理分成合情推理和演绎推理,“今天我们就来讲讲合情推理中的一种:归纳推理”。这种以猜学生年龄引入,简单快捷、紧扣课题,又可以创设一个轻松的课堂氛围,拉近师生距离,是个成功的引课典范。从中可以看出,数学课堂的引入是否有效,关键在于引入是否围绕课堂的中心任务,是否有数学味,是否有效率。

二、师生的有效互动

随着新课程的实施,大多数教师已经摈弃填鸭式教学方式,而采用启发、探究等方式实施课堂教学。我们可以发现,在很多公开课的课堂上热闹异常,师生互动广泛,课堂不再是教师的一言堂,这是一个喜人的转变。同时我们也发现,还有一些课堂仅仅停留在表面的热闹上,学生没有深层次的思考,有些老师常会对学生发出诸如“对不对”、“是不是”等无效问题,或者提的问题过于简单,表面上学生是动起来了,实际上学生的思维量很小,这种师生互动是低效的甚至是无效的。真正有效的师生互动,应该是教师精心设计的一个个问题让学生去探究,让学生的思维真正动起来,让学生在探究问题的过程中,数学品质得到有效的培养。在邵老师这节课中,学生通过探究老师预设的一个个问题,理解了归纳推理的概念,培养了归纳推理的意识,掌握了归纳推理的方法,但学生在学习的过程中碰到困难时,邵老师能够及时点拨、引导,让学生能够及时化解困难,教师扮演着一个引领者、合作者的角色。真正做到了师生的有效互动。

三、例题的有效设置

本节课在归纳推理的概念得出后,配置了以下两个例题:

例1.已知数列{an} 第一项a1=2,且(n=1 , 2 , …),试归纳出这个数列的通项公式.

例2.如图,已知点O在线段C1为线段A1B外一点,且,过O作直线l1⊥A1O连接BC1交l于D1,过D1作D1C2/A1O交OC1于C2过C2作C2A2⊥A2O于A2,连接BC2交l于D2,过D2作D2C3 /A1O交OC1于C3,过C3作C3A3⊥A1O于A3,一直继续下去,可以得到一系列的点An设|OAn|=an,则an=______.

连接,过C2作于A2,连接,过C3作于A3,一直继续下去,可以得到一系列的点An设|OAn|=an,则an= .

本案例中例2与例1遥相呼应,从形上刻画了例1,让我们体验了数学美,应该说例2是个不可多得的好题。但在课堂教学中,我们例2出现以后,学生的反应变得有些沉闷,这不免引起我们的反思,例2的出现是否与学生情况不符?笔者以为例2的描述较为冗长,学生在读题和画图上花去的时间较多,另外学生在寻找解题思路时也要较多时间,从而显得例2的难度偏大,在本案例中,例2的出现,使得本节课的重心有所偏移,课堂的后半部分变得凝重,课堂小结也显得匆忙。在数学课堂中,例题的设置最终是为了落实教学任务,应根据所教学生的实际情况和相应教学任务而确定合适的例题,在某一个班级适用的例题到另一个班级不一定适用,在课堂教学中,我们要舍得放弃一些“好题”,让例题的设置符合学情,满足教学所需。

四、多媒体的有效使用

曾经有一段时间,有些课堂从“黑板加粉笔”完全转化到“鼠标一节课点到底”,真正做到“无尘教学”,例题的解答过程都完完全全的用幻灯片展示出来。这样做,容量是大了,但是学生目不暇接,思考的时间少了,问题认识变得不深刻,最终导致课堂教学效率低下。多媒体的使用是一种辅助手段,在数学教学过程中,特别是有关图像变换问题如果借助几何画板辅助教学,效果当然令人满意,但多媒体仅仅是一种辅助手段,不能用得过多过滥,可以不用的就无需使用,不要患上“多媒体依赖症”。邵老师在本节课中多媒体的使用较为妥当,理由有三:一是在概念教学中,在幻灯片上巧妙的打上像“部分”、“整体”、“个别”、“一般”等關键词,让概念的得出变得水到渠成,二是在体验歌德巴赫猜想的得出和介绍陈景润的成就时使用多媒体,可以使问题变得清晰、有效率,三是例2教学时用几何画板将图形从复杂的背景中剥离出来(由 图(1)分解出图(2)与图(3)),渗透了解决问题的思想方法,有效地降低了例2的难度。

五、数学文化的有效渗透

正如张奠宙先生所言“数学文化必须走进课堂”,教学中适时、适当地引入数学史知识,教材内容能得到“生活化”“情境化”,在概念、定理、公式的教学时如果向学生介绍一些数学家的生平轶事、概念的起源、定理的发现、历史上数学进展中的曲折历程,以及在教学中提供一些历史的、现实的真实“问题”,不仅能够活跃课堂教学,激发学生的学习兴趣,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学课不再是枯燥呆板的学科,而是一门不断进步的、生动的、有趣的学科。本案例中邵老师通过体验歌德巴赫猜想的提出过程领会归纳推理的方法,在体验归纳推理的方法的同时向学生介绍了数学史知识,也进行了爱国主义教育。数学文化的有效渗透与否,在于相关内容与本节课是否有关、是否有利于本节课教学任务的落实,不能为渗透数学文化而渗透数学文化。

总之,一节有效的数学课才能称之为一节“好课”,有效的数学课堂的构建首先需要教师在理解课程要求的基础上深入挖掘教材,结合学生的实际情况进行合理的预设,其次需要教师在课堂上引领学生主动学习,让课堂的各个环节真正为教学任务服务,使学生真正成为学习的主人。

参考文献:

[1]严士健、张奠宙.普通高中数学课程标准解读[M] .南京:江苏教育出版社,2004,3

上一篇:风过竹静材料作文讲评下一篇:标日初级上册第四课