盈亏问题

2024-06-18

盈亏问题(共6篇)

盈亏问题 篇1

--盈亏问题

内容点击:五年级第二学期 应用题例4 目标引领:

1、会正确分析题目中较复杂的数量间的关系。

2、会根据题目中的不变量列出方程解应用题。课题研究目标: 结合学生实际,利用生活的有关数据来适度开放教学内容,培养学生的探究能力和解决实际问题的能力。疑难剖析:

重点:会正确分析题目中较复杂的数量间的关系。难点:正确理解题意,举一反三,具体问题具体分析。教学导航:

一、弄清概念:

分东西在生活中比较常见,平均分是其中的一种分法,平均分可能会出现什么结果?根据学生汇报小结

板书:

正好分完

有多(盈)

有少(亏)

今天我们就来研究生活中的一些盈亏问题。(出示课题)

二、创设情景

1、同学们,3月12日是什么节?(植树节)为了迎接一年一度的植树节,我们班各小队正准备协助曹家渡社区进行栽种树苗活动。这是我们同学在领树苗时得到的一组信息:

3、出示:

一组学生栽树苗,如果每人栽6棵,还剩10棵;如果每人栽8棵,还少6棵。这组学生有多少人?共有多少棵树苗?

你能用列方程解应用题的方法来解答这些问题呢?

三、探究新知

1、列方程解应用题的一般步骤是怎样的?

2、现在,就请同学们分组根据这些步骤先进行讨论,想一想题目中哪些条件是不变的,交流等量关系式。然后填写这张表格:

3、小组讨论

4、反馈:

这个小组的学生人数和要种树苗的总棵数是不变的,根据不变量,可以写出等量关系式。每人栽6棵时树苗的总棵数=每人栽8棵时树苗的总棵数

5、列方程解答

解:设这组学生共有X人。(为什么设人数为X?)6X+10=8X-6 10-6=8X-6X 16=2X X=8 6X+10=6×8+10=58

还可以怎么算?8X-6=8×8-6=58

为什么? 答:这组学生共有8人,树苗共有58棵。在两次分的情况中,除了一盈一亏外,还有可能会出现哪种情况?两盈:

一组学生栽树苗,如果每人栽6棵,还剩10棵;如果每人栽()棵,还剩()棵。这组学生有多少人?共有多少棵树苗?

7、2 5、18 两亏:

一组学生栽树苗,如果每人栽()棵,还少()棵;如果每人栽8棵,还少6棵。这组学生有多少人?共有多少棵树苗?

9、14

6、讨论数量关系,列方程解答。

7、小结:看一看,想一想,议一议。学生比较: 相同:不变量都是总数和份数。要抓住不变量,寻找等量关系。根据盈亏,选择正确的解法。我们要善于仔细分析,哪些条件是没有不变化的,特别是一些隐藏的不变量,发现不变量,找寻数量关系式列出方程并解答。

二、课内巩固与拓展:

1、选择:中队主席为大家买奖品,他所带的钱买4本练习本还多1.60元,买6本就少0.10元。每本练习本多少元? 解:设每本练习本X元

(1)4X+1.60=6X+0.10

(2)4X+1.60=6X-0.10(3)4X-1.60=6X+0.10

(4)4X-1.60=6X-0.10

2、同学们去春游,如果每车坐65人,就有15人不能上车;如果每车多坐5人,恰好多余了1辆车。一共有多少辆车?有多少学生去春游?

*

3、学校有一批关于绿色环保的图书,分给几个班级,如果每个班分15本,就多10本;如果每个班分18本,那么就有一个班只分到4本。这批图书共有多少本?分给几个班级?

四、总结

今天我们通过小组合作,发现和解决了生活中的一些比较简单的盈亏问题,今后我们还可以继续运用数学问题来解决生活中的问题

年龄问题是小学数学中常见的一类问题.例如:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等.年龄问题又往往是和倍、差倍、和差等问题的综合.它有一定的难度,因此解题时需抓住其特点。

年龄问题的主要特点是:大小年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住差不变这个特点,再根据大小年龄之间的倍数关系与年龄之和等条件,解答这类应用题。解答年龄问题的一般方法是:

几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差。例1 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

分析 五年后,爸比妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题。解:①爸爸年龄:(72+6)÷2=39(岁)②妈妈的年龄:39-6=33(岁)

答:爸爸的年龄是39岁,妈妈的年龄是33岁。

例2 在一个家庭里,现在所有成员的年龄加在一起是73岁.家庭成员中有父亲、母亲、一个女儿和一个儿子.父亲比母亲大3岁,女儿比儿子大2岁.四年前家庭里所有的人的年龄总和是58岁.现在家里的每个成员各是多少岁? 分析 根据四年前家庭里所有的人的年龄总和是58岁,可以求出到现在每个人长4岁以后的实际年龄和是58+4×4=74(岁)。

但现在实际的年龄总和只有73岁,可见家庭成员中最小的一个儿子今年只有3岁.女儿比儿子大2岁,女儿是3+2=5(岁).现在父母的年龄和是73-3-5=65(岁).又知父母年龄差是3岁,可以求出父母现在的年龄。

解:①从四年前到现在全家人的年龄和应为: 58+4×4=74(岁)

②儿子现在几岁? 4-(74-73)=3(岁)③女儿现在几岁?3+2=5(岁)④父亲现在年龄:(73-3-5+3)÷2=34(岁)⑤母亲现在年龄: 34-3=31(岁)

答:父亲现在34岁,母亲31岁,女儿5岁,儿子3岁。

例3 父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?

分析 父女年龄差是50-14=36(岁).不论是几年前还是几年后,这个差是不变的.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁.这36岁是父亲比女儿多的5-1=4(倍)所对应的年龄。解:(50-14)÷(5-1)=9(岁)当时女儿9岁,14-9=5(年),也就是5年前。答:5年前,父亲年龄是女儿的5倍.例4 6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁? 分析 6年后母子年龄和是78岁,可以求出母子今年年龄和是 78-6×2=66(岁).6年前母子年龄和是 66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄。解:①母子今年年龄和: 78-6× 2=66(岁)②母子6年前年龄和: 66-6×2=54(岁)

③母亲6年前的年龄:54÷(5+1)×5=45(岁)④母亲今年的年龄:45+6=51(岁)答:母亲今年是51岁。

例5 10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?

分析 根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。

10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。由于年龄差不变,所以儿子10年前的年龄的6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。

解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)②儿子现在年龄:5+10=15(岁)③吴昊现在年龄: 5×7+10=45(岁)答:吴昊现在45岁,儿子15岁.例6 甲对乙说:“我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的2倍减7.”问:甲、乙二人现在各多少岁? 分析 从已知条件中可以看出甲比乙年龄大,甲乙年龄差这是一个不变的量。甲对乙说“我在你这么大岁数的时候”,意思是说几年以前.这几年就是甲乙的年龄差.因此,甲整句话可理解为:乙今年的岁数,减去年龄差,正好是甲今年岁数的一半.乙对甲说“我到你这么大岁数的时候”,意思是说几年后.因此,乙整句话可理解为:甲今年的岁数,加上年龄差,正好是乙今年岁数的2倍减去7。即 甲今+年龄差=2×乙今-7(2)把甲乙的对话用下图表示为:

由(1)得甲今=2×乙今-2×年龄差(3)由(2)得 甲今=2×乙今-7一年龄差(4)由(3)(4)年龄差=7(岁)„

从上图不难看出,甲现在的年龄是乙几年前年龄的2倍,1倍相当于2个年龄差,2倍相当于4个年龄差.乙现在的年龄相当3个年龄差。

乙几年后的年龄和甲现在的年龄相等,所以乙几年后相当4个年龄差.甲几年后的年龄比乙几年后的年龄多一个年龄差,正好是7岁,从而得出年龄差是7岁。解:①乙现在年龄: 7×3=21(岁)②甲现在年龄:7×4=28(岁)答:乙现在21岁,甲现在28岁.小学三年级奥数下册鸡兔同笼问题教案 鸡兔同笼问题

例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?

分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2 =56÷2 =28(只)

②免有多少只? 46-28=18(只)

答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:

鸡数=(每只兔脚数× 兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数

当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。解:(2×100-80)÷(2+4)=20(只)。100-20=80(只)。

答:鸡与兔分别有80只和20只。

例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少? 解法1:

一班:[135-5+(7-5)]÷3=132÷3 =44(人)

二班:44+5=49(人)三班:49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和 42人。

分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少? 解法2:(135+ 5+ 7)÷3 =147÷3 =49(人)49-5=44(人),49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

想一想:根据解法

1、解法2的思路,还可以怎样假设?怎样求解?

例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? 分析 我们分步来考虑:

①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假 ③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。解:[6×10-(41+1)÷(6-4)= 18÷2=9(条)10-9=1(条)

答:有9条小船,1条大船。

例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿? 6×18=108(条)②有蜘蛛多少只?

(118-108)÷(8-6)=5(只)③蜻蜒、蝉共有多少只? 18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)⑤蜻蜒多少只?

(20-13)÷ 2-1)= 7(只)答:蜻蜒有7只.和倍问题

和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题.为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

例1 甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

分析 设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系: 解:乙班:160÷(3+1)=40(本)甲班:40×3=120(本)或 160-40=120(本)

答:甲班有图书120本,乙班有图书40本。这道应用题解答完了,怎样验算呢?

可把求出的甲班本数和乙班本数相加,看和是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。验算:120+40=160(本)120÷40=3(倍)。

例2 甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?

分析 解这题的关键是找出哪个量是变量,哪个量是不变量.从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍.依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。

解:①甲、乙两班共有图书的本数是: 30+120=150(本)

②甲班给乙班若干本图书后,甲、乙两班共有的倍数是: 2+1=3(倍)

③乙班现有的图书本数是:150÷3=50(本)④甲班给乙班图书本数是:50-30=20(本)综合算式:

(30+120)÷(2+1)=50(本)50-30=20(本)

答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。验算:(120-20)÷(30+20)=2(倍)

(120-20)+(30+20)=150(本)。

例3 光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?

分析 把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。解:①女生人数:(760+40)÷(3+1)=200(人)②男生人数:200×3-40=560(人)或 760-200=560(人)

答:男生有560人,女生有200人。验算:560+200=760(人)(560+40)÷200=3(倍)。

例4 果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵? 分析 下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。解:①梨树的棵数:

(552+20-12)÷(1+1+2)=560÷4=140(棵)

②桃树的棵数:140×2+12=292(棵)③苹果树的棵数: 140-20=120(棵)

答:桃树、梨树、苹果树分别是292棵、140棵和120棵。

例5 549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?

分析 上图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。解:①丙数是:(549+2-2)÷(2+2+1+4)=549÷9 =61 ②甲数是:61×2-2=120 ③乙数是:61×2+2=124 ④丁数是:61×4=244 验算:120+124+61+244=549 120+2=122 124-2=122 61×2=122 244÷2=122 答:甲、乙、丙、丁分别是120、124、61、244.

盈亏问题 篇2

一、他人的经验及方法

把一定数量的物品平均分给一定数量的人, 每人少分, 则物品有余 (盈) ;每人多分, 则物品不足 (亏) 。已知所盈和所亏的数量及两次每人所分的数量, 求人数的应用题叫盈亏问题。

盈亏问题的基本解法是:份数= (盈+亏) ÷两次分配数的差;

物品总数=每份个数×份数±盈亏数。

解答盈亏问题的关键是要求出总差额和两次分配的数量差, 然后利用基本公式求出分配人数, 进而求出物品的数量。

趣味数学之《木长几何》——《孙子算经》里有这样一道题:今有木, 不知长短。引绳度之, 余绳四尺五, 屈绳量之, 不足一尺。木长几何? (屈绳的意思是把绳子对折, 度是量的意思, 四尺五是4.5 尺)

分析:用绳量木, 绳子多出4.5 尺, 把绳对折再量, 绳子又短1 尺, 可推出单股绳子比对折起来长5.5 尺, 多出的5.5 尺正好是绳子的一半 (如图) 。

解答:绳子的长度: (4.5+1) ×2=11 (尺)

木料的长度:11-4.5=6.5 (尺)

答: (略)

分析中, “用绳量木, 绳子多出4.5 尺, 把绳对折再量, 绳子又短1 尺, 可推出单股绳子比对折起来长5.5 尺。”这里用到了一点点“盈亏问题”。为什么这样说呢?遇到类似问题还能用这种方法解答吗?请关注下面的内容。

二、建立数学模型

他人的方法及经验看似简单易行, 可事实并非如此。学生机械地套用公式, 并不完全理解解题思路, 题目稍加变化, 他们又束手无策了。

笔者引导学生先分析并找出“盈亏问题”的特点———它就是两种有余数的除法, 再根据有余数除法各部分间的关系, 建立“盈亏问题”总的数学模型:

“盈亏问题”总的数学模型中两次被平均分的总数——被除数是一定 (不变) 的;平均分的标准不同, 我们归纳为两种, 即除数1和除数2;分得的结果中的份数———商也是一定 (不变) 的, 分得的结果中的余数———盈亏数则不同, 我们把它们分别定义为余数1和余数2。当被除数和商不变时, 除数变大, 余数则会变小, 反之。

两次分得的余数之间的差, 我们把它定义为“总差”, 两次平均分的标准之间的差, 我们把它定义为“小差”。正因为有分得的结果之一“商”那么多个“小差”才汇成最后结果之二“余数”间的“总差”, 即“小差×商=总差”。于是, 关键问题“商”就得到解决:商=总差÷小差。

如“幼儿园买来一些玩具, 如果每班分7 个玩具, 则多出2 个玩具;如果每班分10 个玩具, 则差13 个玩具, 幼儿园有几个班?这批玩具有多少个?”的数学模型:

三、进行数学分析

根据建好的数学模型, 我们进行“盈亏问题”的数学分析:

从上面的模型中可以看出:

第二种分法的总个数比第一种分法的总个数多 (2+13) 个为“总差”, 第二种分法比第一种分法每班多分 (10-7) 个为“小差”, 每班多分的“小差”乘班数就等于最后的“总差”。由此可以求出幼儿园共几班这个关键问题。

这个幼儿园有 (2+13) ÷ (10-7) =5 (班)

求出了模型中的商, 再根据有余数的除法中“被除数=商×除数+余数”就可求出这批玩具共有多少个了。

这批玩具有7×5+2=37 (个) 或10×5-13=37 (个)

答: (略)

四、适时推广应用

我们通过建立数学模型和进行数学分析, 掌握了“盈亏问题”的解题方法, 适当增加难度, 加以推广应用。

1.用一根长绳测量井的深度, 如果绳子两折时, 多5 米, 如果绳子三折时, 差1 米。求绳子长度和井深。 (提示:绳子两折即把绳子平均分成两份, 三折即三股。)

很明显, 该题不能用“他人的经验及方法”之《木长几何》的方法来进行解答。而《木长几何》题目却能用“盈亏问题”的模型来进行分析和解答。

2.小宏从家到校上学, 出发时他看看表, 发现如果每分钟步行80 米, 他将迟到5 分钟;如果先步行10 分钟后, 再改成骑车每分钟行200 米, 他就可以提前1 分钟到校。问小宏从家出发时离上学时间有几分钟?

观察分析, 这两题都属“盈亏问题”, 只是题中的“盈亏 (余数) ”不是现成的, 需要首先求出。

第1 题的数学模型及数学分析:

井深: (5×2+1×3) ÷ (3-2) =13 (米)

绳长:2×13+5×2=36 (米) 或 (13+5) ×2=36 (米)

答: (略)

《木长几何》数学模型及数学分析:

木长: (4.5×1+1×2) ÷ (2-1) =6.5 (尺)

绳长:6.5+4.5=11 (尺) 或 (6.5-1) ×2=11 (尺)

答: (略)

通过比较《木长几何》的两种方法, 我们发现, 他人的经验及方法具有局限性, 只能用于特例;而我们的“盈亏问题”模型具有通用性, 只要是“盈亏问题”都能用它来解答。

第2 题的数学模型及数学分析———

“余数1”:80×5=400 (米)

求“余数2”步骤多一些。

①10 分钟的步行改成骑车要提前:10-80×10÷200=6 (分)

②假如他骑车一直骑到上学时间到时会多行:200× (6+1) =1400 (米)

“余数2”也可: (200-80) ×10+200×1=1400 (米)

小宏从家出发时离上学有: (400+1400) ÷ (200-80) =15 (分)

答: (略)

我相信, 只要坚持让学生按数学模型来读题、抄题, 数学分析就更加容易和明了, 他们就会更好地解决各种数学难题。

参考文献

第6讲 盈亏问题 篇3

盈亏问题,顾名思义有剩余就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产生这种盈亏现象.盈亏问题的关键是抓住两次分配时盈亏总量的变化.

盈亏问题分为5类:⑴有盈有亏; ⑵都是盈;⑶都是亏;(4)一个盈,一个刚好分完;(5)一个亏,一个刚好分完。

盈亏问题常用公式:(1)(盈+亏)÷两次分配的差=参与分配的数量(2)(盈-盈)÷两次分配的差=参与分配的数量(3)(亏-亏)÷两次分配的差=参与分配的数量(4)盈÷两次分配的差=参与分配的数量

(5)亏÷两次分配的差=参与分配的数量

例1 某校参加数学竞赛,原定考场若干个。如果每个考场坐22人;则多出18人,如果每个考场坐25人正好坐满。参加这次竞赛的学生共有多少人?

分析:本题为盈亏问题中只盈不亏的类型。根据题目条件“如果每个考场坐22人;则多出18人,如果每个考场坐25人正好坐满。”可知:考场共有18÷(25-22)=6(个),考生人数为25×6=150(人)解:18÷(25-22)=18÷3 =6(人)

25×6=150(人)

答:参加这次竞赛的学生人数为150人。

说明:本题运用公式 盈÷两次分配的差=参与分配的数量

随堂练习学校组织体操比赛。四(2)班同学站成若干排,如果每排5人,则多出6人,如果每排站6人,则刚好站完。问四(2)班一共有多少人?

解:6÷(6-5)

=6(排)

6×6=36(人)

答:四年级2班一共有36人。

例2 五年级在植树节组织学生植树,如果每人栽5棵。则缺20棵,如果每人栽3棵,则刚好栽完。问五年级一共植树多少棵?

分析:根据题目“如果每人栽5棵。则缺20棵,如果每人栽3棵,则刚好栽完。”可知,本题属于只亏不赢的情况。根据条件有20÷(5-3)=10(人)10×3=30(棵)解:20÷(5-3)

=10(人)

10×3=30(棵)答:一共植树30棵。

说明:本题运用公式 亏÷两次分配的差=参与分配的数量

随堂练习解放军某部队举行阅兵仪式。如果每车坐40人。则缺100人,如果每车坐30人,则刚好坐完。问这支部队一共有多少人?

解100÷(40-30)100÷10 =10(辆)30×10=300(人)

答:这支部队一共有300人。

例3 学校为某班新生分宿舍,每间住5人则多12人,每只住6人则多2人。问:有多少间宿舍?多少名新生?

分析:本题属于都是盈的情况,由题意可知,新生的人数和房间的间数是不变的。比较两种分配方案,结果相差12-2=10人,即第一种方案的结果比第二种多10人。这是因为每间房间比原来多住了6-5=1人,所以房间的数量为:(12-2)÷(6-5)=10(间),人数为5×10+12=62(人)解:房间:(12-2)÷(6-5)

=10(间)

人数:5×10+12 50+12 =62(人)

答:房间有10间,新生人数为62人。

说明:本题运用公式:(盈-盈)÷两次分配的差=参与分配的数量

随堂练习张老师带了一些钱去文具店买练习本,如果买40本还剩15元,如果买50本还剩5元,问:张老师一共带了多少钱? 解:(15-5)÷(50-40)=10÷10 =1(元)40×1+15=55(元)答:张老师共带了55元。

例4 露露从家到学校如果每分钟60米的速度走,那么要迟到5分钟;如果每分钟走70米,那么仍迟到3分钟。她应以每分钟多少米的速度走才能准时到达?

分析:根据题目条件,我们可以判断出本题属于都是亏的情况。“每分钟60米的速度走,要迟到5分钟;每分钟走70米,仍迟到3分钟。”根据公式直接求解问题不大,但是本题要注意的是亏到底是什么,如果直接以亏5分钟和3分钟计算,则会出现错误。所以,分析题目的“亏”是很关键的一步,以每分钟60米的速度走要迟到5分钟,说明距离学校还有60×5=300(米),以每分钟70米的速度走要迟到3分钟,说明距离学校还有70×3=210(米)所以 亏-亏=300-210=90(米)即90÷(70-60)=9(分钟)距离为:60×(9+3)=720(米)720÷9=80(米/分)解:(60×5-70×3)÷(70-60)=90÷10 =9(分钟)60×(9+5)60×14 =840(米)

840÷9=?(米/分)

答:她应该以每分钟80米的速度走才能准时到达。

说明:本题运用公式:(亏-亏)÷两次分配的差=参与分配的数量 随堂练习妈妈用袋子装报纸,如果每个袋子放20张则有一个袋子只有2张。如果每个袋子放16张,则有一个袋子里有14张。问一共有多少张报纸? 解:第一种方案亏为:20-2=18(张)

第二种方案亏为:16-14=2(张)(18-2)÷(20-16)=16÷4 =4(个)20×4-18 =80-18 =62(张)

答:报纸一共有62张。

例5 四年级一班数学组买了一些水果糖分给学生,如果每人分4粒就多9粒;如果每人分5粒就少6粒。四年级一班数学组有多少名学生?老师买了多少粒水果糖?

分析:由题目条件可知:两次参与分配的人数和糖果数量不变,两次分得的糖果数量一多一少,相差9+6=15(粒),两次分配分别为4粒和5粒,两次分配的差5-4=1(粒)。所以参与分配的人数为15÷1=15(人),糖果的数量为15×4+9=69粒。

解:人数:(9+6)÷(5-4)

=15(人)

水果糖数量:15×4+9

=60+9

=69(粒)

答:四年级一班数学组有15名学生;老师买了69粒水果糖.说明:本题运用了公式1(盈+亏)÷两次分配的差=参与分配的数量

随堂练习小红的妈妈买回一筐桔子,如果每人吃2个则多3个,每人吃3个则差4个,小红家里有几人?桔子一共有多少个? 解:人数:(3+4)÷(3-2)

=7(人)

桔子:2×7+3 =14+3

=17(个)

答:小红家里有7人;桔子一共有17个

例6 幼儿园给小朋友分梨,如果大班小朋友每人分5个则多10个,如果小班小朋友每人分8个则少4个,已知大班小朋友比小班小朋友多5人,问这框苹果有多少个?

分析:题目中出现的参与分配的人数在变化,不方便计算。在解答盈亏问题过程中,我们要确保参与分配的人数是定值。仔细观察题目,大班小朋友比小班小朋友多5人,如果大班小朋友每人分5个,则会多出来10+5×5=35个,由公式(1)可知小班小朋友有:(35+4)÷(8-5)=13(人)13×8-4=100(个)解:(10+5×5+4)÷(8-5)

=39÷3 =13(人)13×8-4 =104-4 =100(个)

答:这框苹果有100个.随堂练习老猴子给大小猴子分桃,如果大猴子每只分6个则少3个,如果小猴子每只分3个则多3个,已知小猴子比大猴子多5只,问有多少个桃? 解:(3+3×5+3)÷(6-3)

=21÷3 =7(只)7×6-3 =42-3 =39(个)

答:共有桃39个。

例7 上体育课时,老师把全体学生分成若干组,然后分发篮球,若每组分3个,则剩下23个篮球,若每组分5个,则有一组学生没有篮球,。问一共有多少个小组?有多少个篮球?

分析:判断本题是哪一种类型,需要认真分析。“若每组分3个,则剩下23个篮球”是盈余,“若每组分5个,则有一组学生没有篮球,”是亏,亏多少呢?每组分5个,一组分不到,则亏5个。解:(23+5)÷(5-3)=28÷2 =14(组)3×14+23 =42+23 =65 答:一共有14组,65个篮球。

说明:本题运用了公式1(盈+亏)÷两次分配的差=参与分配的数量

随堂练习劳动小组为新修食堂搬砖。如果每人搬16块,还剩4块;如果每人搬20块,就有一位同学没砖可搬。问共有多少块砖?

解:(4+20)÷(20-16)

=24÷4 =6(人)6×16+4 =96+4 =100(块)

答:共有100块砖.例8 解放战争胜利后,解放军给老百姓分粮食。如果其中2户每户分300千克,其余每户分200千克,还多出1500千克,如果一户分400千克,其余每户分300千克,又缺2000千克,这批粮食一共多少千克?

分析:本题为中等难度题目。首先我们要明白一点,就是在分的时候应该以相同的标准分,然后判断题目中的盈亏。根据题目条件:“如果其中2户每户分300千克,其余每户分200千克,还多出1500千克,如果一户分400千克,其余每户分300千克,又缺2000千克”。我们把两种方案中分别不同的分发转化成方案中相同的分发,即不能让人搞特殊。所以在第一个方案中我们让特殊的2户也和别人一样分200千克,则盈余为1500+(300-200)×2=1700(千克),第二个方案中我们也让特殊的一户和别人一样,则亏为2000-(400-300)=1900(千克)

根据盈亏公式(1)可得(1700+1900)÷(300-200)=36(户)粮食有36×200+1700=8900(千克)解:盈:1500+(300-200)×2 =1500+200 =1700(千克)亏;2000-(400-300)=2000-100 =1900(千克)

(1700+1900)÷(300-200)=3600÷100 =36(户)

粮食:36×200+1700 =7200+1700 =8900(千克)

答:这批粮食一共有8900千克。说明:本题运用公式(1)(盈+亏)÷两次分配的差=参与分配的数量

随堂练习王叔叔去工厂上班,如果先用每分钟60米的速度走2分钟,再改用每分钟50米的速度前进,结果早到1分钟,如果先用70米的速度走1分钟,再以每分钟40米的速度前进,就会迟到3分钟,王叔叔家到工厂的距离是多少? 解:盈:50×1-(60-50)×2 =50-20 =30(米)

亏:40×3+(70-40)×1 =120+30 =150(米)

(30+150)÷(50-40)=18(分钟)50×18-30 =900-30 =870(米)

答:王叔叔家到工厂的距离是870米。

习题

1.某校学生参加劳动,分成若干组,如果12人一组,正好分完,如果10人一组,多10人.参加劳动的有多少人? 解:10÷(12-10)

=10÷2 =5(组)

12×5=60(人)答:参加劳动的有60人。

2.农场组织学生卖桔子,如果每人卖出5千克,就刚好卖完;如果每人卖出6千克,则还差300千克,那么有多少学生参与活动,农场有桔子多少千克?

解:300÷(6-5)=300÷1 =300(人)

300×5=1500(千克)

答:有300参加活动,农场有桔子1500千克。

3.村民修公路,如果每人修24米,则超过总长120米,如果每人修30米,则超过总长300米.修路的共有多少人,公路长多少米? 解:(300-120)÷(30-24)=180÷6 =30(人)

30×24-120 =720-120 =600(米)

答:修路的共有30人,公路长600米。

4.课外活动跳绳比赛,其中2组各借绳4根,其余的组借5根,这样分配最后余下12根;如果每组借6根,这样恰好借完.问有绳多少根? 解:[12-(5-4)×2] ÷(6-5)

=10÷1 =10(组)6×10=60(根)答:有60根绳。

5. 小丽读一本书,她每天读10页,在规定天数内还剩25页没读完,如果她每天读12页,则在规定天数内还剩13页看不完,这本书一共多少页? 解:(25-13)÷(12-10)=12÷2 =6(天)6×10+25 =60+25 =85(页)

答:这本书一共有85页。

6.妈妈去商店买布,如果买3米布还缺18元,如果买2米还缺5元,妈妈带了多少钱?

解:(18-5)÷(3-2)=13÷1 =13(元)13×3-18 =39-18 =21(元)

答:妈妈带了21元。7.学校组织春游,如果每车坐55人则多35人没座位,如果每车坐60人则还能坐10人。一共有多少名学生?

解:(35+10)÷(60-55)=45÷5 =9(辆)60×9-10 =540-10 =530(人)

答:一共有530名学生。

8.小朋友去买东西,如果每人出8块钱则多6块钱,如果每人出6块钱则少4元。有多少个小朋友?东西卖多少元? 解:(6+4)÷(8-6)=10÷2 =5(人)

8×5-6 =40-6 =34(元)

答:有5个小朋友,东西卖34元。

9.用一根绳子测量池塘的水深。对折后露出水面60厘米,三折后还差40厘米。问池塘水深多少米?绳子长多少米? 解:(60×2+40×3)÷(3-2)=240÷1 =240(厘米)

240厘米=2.4米

(240+60)×2=600(厘米)600厘米=6米

答:池塘水深2.4米,绳子长6米。

10.老师买小提琴,若买6把,则缺120元,若买4把,则多60元。老师一共带了多少钱?

解:(120+60)÷(6-4)=180÷2 =90(元)90×4+60 =360+60 =420(元)

答:老师一共带了420元。

11.小陶给家人分桃子,如果爸爸妈妈各分5个,其余的每人分3个,则剩下9个桃子;如

果 有4人各分3个,其余的各分6个,则剩余10个桃子。问,家里有几人?桃子有几个?

解:盈:9+(5-3)×2=13(个)

亏:(6-3)×4-10=2(个)(13+2)÷(6-3)=5(人)(5-2)×3+5×2=19(个)

答:家例有5人,有19个桃子。12.老师给美术小组的同学分铅笔。如果每人分6支则缺2支;如果每人分8支还缺12支。问一共有多少支铅笔?

解:(12-2)÷(8-6)=10÷2 =5(人)5×6-2 =30-2 =28(支)

答:一共有28支铅笔。

13.学校大扫除,老师让一些同学擦玻璃。如果其中3人各擦4块,其余每人擦5块,则余23块;如果每人擦7块,正好擦完。求擦玻璃的人数和玻璃的块数?

解:[23-(5-4)×3] ÷(7-5)=(23-3)÷2 =20÷2 =10(人)

10×7=70(块)

答:擦玻璃的人数为10人,玻璃一共70块。

14. 小华从家地到图书馆如果每分钟走90米,那么要迟到5分钟;如果每分钟走100米,那么仍迟到3分钟。他应以每分钟多少米的速度走才能准时到达? 解:(90×5-100×3)÷(100-90)=150÷10 =15(分钟)100×(15+3)=100×18 =1800(米)

1800÷15=120(米)

答:他应以每分钟120米的速度走才能准时到达。

15.有一批故事书分给几个小朋友,如果其中3人每人5本,其余每人4本,那么会剩2本;如果其中1人分3本,其余每人5本,就会刚好分完。这批故事书共有多少本?[北京市第四届“迎春杯”刊赛] 解:盈:(5-4)×3+2=5(本)

亏:(5-3)×1=2(本)

(5+2)÷(5-4)=7÷1 =7(人)

3+(7-1)×5 =3+30 =33(本)

销售中的盈亏问题 篇4

(一)、引入问题:

①某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是

②某种品牌的彩电降价3%以后,每台售价为a元,则该品牌彩电每台原价应为

元;

③某商品按定价的八折出售,售价是14.8元,则原定价是

④某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为

⑤我国政府为解决老百姓看病问题,决定下调药品的价格,某种药品在1999年涨价30%后,2001降价70%至a元,则这种药品在1999年涨价前价格为

元。

(二)提出问题、探究新知

问题:销售中的盈亏(课本104页探究1)

某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总收入是盈利还是亏损?或是不盈不亏?

分析:进价、售价和利润之间有什么关系?什么是利润率? 利润=售价-进价;利润率=利润/进价×100%.本题看是否盈利还是亏损的依据是什么? 依据是看卖出两件衣服盈利与亏损谁大。

现在我们来看卖出盈利25%的这件衣服盈利多少。

设盈利25%的这件衣服进价是x元,可得怎样的方程?

。再来看亏损25%的这件衣服亏损多少元。

设亏损25%的这件衣服进价是y元,可得怎样的方程?

。所以这件衣服的利润是

元。因此,卖这两件衣服

元。

例2 某种商品零售价每件900元,为了适应市场的竞争,商店按零售价的9折降价并让利40元销售,仍可获利10%,则这种商品进货每件多少元?

分析:问题中的等量关系是什么?

实际售价-40-进价=利润。

设这种子商品进货每件x元,那么实际售价是多少?利润是多少?

实际售价是

,利润是。

由此可得方程为

解之,得x=

。所以这种商品进货每件

元。

(三)、学生自主探索解决。

问题1:一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?

问题2:我国股市交易中每天、卖一次各交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为多少?

出油率问题

问题:油菜种植的计算(课本105页探究2)某村去年种植的油菜籽亩产量达160千克,含油率40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。

(1)今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少?

(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去今两年油菜种植成本与将菜油全部售出所获收入。

分析:问题中有基本等量关系:

产油量=油菜籽亩产量×含油率×种植面积

师生共同探讨完成下列问题:

(1)设今年油菜种植面积为x亩,则可列式表示去今两年的产油量(单位:千克)去年产油量=。

今年产油量= 根据今年的产油量=去年的产油量(1+20%),可得方程:。解之,得 x=。

所以今年油菜种植面积是 亩。(2)去年的油菜种植情况为

油菜种植成本是:。

售油收入是:。

1、电价问题

据我们调查,我市居民生活用电价格为每天早晨7时到晚上23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.

2、水费问题 我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.50元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.

问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)

(2)根据你家用水情况,设计出最佳用水方案.

3、用气问题

某市按下列规定收取每月的煤气费:用煤气如果不超过60 立方米,按每立方米o.8元收费;如果超过60 立方米,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.

4、电信支费

随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.

(1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元.超过3分钟以后,每分钟付1元.

(2)某移动通讯公司升级了两种通讯业务,“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元.,根据上述资料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?(2)某人估计一个月内通话300分钟,应选择哪种移动通讯或用长途电话合算些?

第三章第一阶段复习3.1-3.2〔1〕

一、双基回顾

1、方程、方程的解和解方程

含有 的 叫做方程;

使方程 相等的 的值叫做方程的解。的过程叫做解方程。

2、一元一次方程

〔1〕只含有 未知数,并且未知项的次数 的方程叫做一元一次方程。〔2〕指出下列各式中哪些是一元一次方程?并说明理由。

(1)2x-y=3;(2)x=0;(3)x2-2x+1=0;(4)x+3=2x-1.3、等式的性质

性质1 等式两边 同一个数(或),结果仍相等。

性质2 等式两边 同一个数,或 的数,结果仍相等。〔3用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。(1)如果3x+8=6,那么3x=6[ ];(2)如果-5x=25,那么x=[ ];(3)如果2x-3=5,那么2x=[ ];(4)如果

4、合并同类项解一元一次方程

如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。

二、例题导引

例1 下列说法中正确的是〔 〕

① 若x=y,则③若xmx4=-7,那么x=[ ] xm2=

ym2;②若x=y,则mx=my;=ym,则x=y;④若x2=y2,则x3=y3

例2 已知方程(m-2)x︱m︱-1+3=m-5是关于x的一元一次方程,求m的值。

2例3 已知x=1/2是关于x的方程4+x=3-2ax的解,求a+a+1的值。

例4 小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。)

三、练习提高

1、下列各式中,是方程的有〔 〕 ①2x+1;②x=0;③2x+3>0;④x-2y=3;⑤

1x-3x=5;⑥x2+x-3=0.A、3个 B、4个 C、5个 D、6个

2、下列方程中,解为

12的是〔 〕A、5(t-1)+2=t-2 B、12x-1=0 C、3y-2=4(y-1)D、3(z-1)=z-2

3、下列变形不正确的是〔 〕

A、若2x-1=3,则2x = 4 B、若3x = -6,则x =2 C、若x+3=2,则x =-1 D、若-

12x=3,则x=-6 3

4、已x=y,下列变形中不一定正确的是〔 〕

A、x-2=y-2 B、-2x=-2y C、ax=ay D、xm2=

ym2

5、下列各式的合并不正确的是〔 〕

A、-x-x = -2x B、-3x+2x = -x C、110x-0.1x = 0 D、0.1x-0.9x = 0.8x

6、若x2a-1+2=0是一元一次方程,则a=.7、某班学生为希望工程捐款131元,比每人平均2元还多35元。设这个班的学生有x人,根据题意列方程为.8、解下列方程:(1)6x-5x=-5(2)-(3)

9、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

设前年购买了计算机x台,可以表示出:去年购买计算机 台,今年购买计算机 台。根据问题中的相等关系:前年购买量+去年购买量+今年购买量=140台,列得方程.解这个方程。

10、从30㎝长的木条上零截出两段长度相等的木条后,还剩6㎝长的木条,求截去的每一段木条的长是多少?

11、写出一个一元一次方程,使x=1是它的解:.12、若关于x的方程2(x-1)-a=0的解是3,则a的值是〔 〕

A、4 B、-4 C、5 D、-5

13、下列等式的变形错误的是〔 〕

A、若ac2=bc2,则a=b B、若

acbc2312x+

32x=4 y-y=-3+1(4)2x-7x=19+31

=,则a=b C、若a2=b2,则︱a︱=︱b︱ D、若a=b则a2=b2

14、代数式8x-7与6-2x的值互为相反数,那么x的值是.15、一桶油重8千克,油用去一半后边桶重4.5千克,设桶中原有油千克,则下列方程错误的是〔 〕

A、8-x=4.5-0.5x B、x-0.5x=8-4.5 C、0.5x+8-4.5=x D、x-8=0.5x+4.5

第三章第二阶段复习3.2-3.3

一、双基回顾

1、移项

把等式一边的某一项 移到另一边,叫做移项。

〔1〕把方程2-2x=3x-1含未知数的项移到左边,常数项移到右边。

2、去括号

方法:运用乘法分配律。

〔2〕a+2(b-c-d)=;a-3(b+c-d)=.3、去分母

方程两边同乘以所有分母的。

〔注意〕①每一项都要乘,不能漏乘;②去掉分数线后,分子要加上括号。〔3〕解方程2x5110x1101时,去分母后正确的是〔 〕

A、4x+1-10x+1=1 B、4x+2-10x-1=1 C、4x+2-10x-1=10 D、4x+2-10x+1=10

4、解一元一次方程的步骤:

(1);(2);(3);(4);(5)。〔注意〕具体解方程时,这些步骤要灵活处理,不能死搬硬套。

5、列方程解应用题的基本过程:

(1);(2);(3);

(4);(5);(6);(7)。

二、例题导引

例1 解方程:

(1)10y-2(7y-2)=5(4y+3)-2y(2)x-例2 解方程:

x4x3x2(1)x52360.2x13x(2)1.50.32.532[(x4-1)-2]=-2.例3 某校一、二两班共有95人,体育锻炼的平均达标率(达到标准的百分率)是60%,如果一班达标率是40%,二班达标率是78%,求一、二两班的人数各是多少?

例4 国外营养学家做了一项研究,甲组同学每天正常进餐,乙组同学每天除正常进餐外每人还增加六百毫升牛奶。一年后发现,乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01㎝,甲组同学平均身高的增长值比乙组同学平均身高的增长值的㎝,求甲、乙两组同学平均身高的增长值。

三、练习提高

1、将方程4x+1=3x-2进行移项变形,正确的是〔 〕

A、4x-3x=2-1 B、4x+3x=1-2 C、4x-3x=-2-1 D、4x+3x=-2-1

2、已知y1=2x+1,y2=3-x,当x= 时,y1=y2.3、将下列各式中的括号去掉:

(1)a+(b-c)=;(2)a-(b-c)=;(3)2(x+2y-2)=;(4)-3(3a-2b+2)=.34少0.344、方程去分母后,所得的方程是〔 〕

A、2x-x+1=1 B、2x-x+1=8 C、2x-x-1=1 D、2x-x-1=8

5、如果式子x-32x23与的值相等,则x=.6、小明买了80分与2元的邮票共16枚,花了18元8角,若设他买了80分邮票x枚,可列方程为.7、解下列方程:

(1)5(x+2)=2(2x+7)(2.)3(x-2)=x-(7-8x)

(3)13x14x343y245y73(4)2

8、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆,现在停车场有50辆中、小型汽车,这些共缴纳停车费230元,问中、小型汽车各有多少辆?

9、某工厂原计划每天烧煤a吨,实际每天少烧b吨,则m吨煤可多烧的天数为〔 〕 A、ma-mb B、ma-b C、ma-

ma-b D、ma-b-

ma

10、在公式l=t0(1+at)中,已知l、t0、a,则t=.11、关于x的方程6x=16-ax与方程5(x+2)=2(2x+7)有相同的解,则a的值为.12、甲队人数是乙队人数的两倍,若设乙队有x人,则甲队有 人,若从甲队调12人到乙队,则甲、乙两队的人数就一样多,则可列方程为.13、解方程:

(1)2(x-2)-3(4x-1)=9(1-x)(2)30%(x-1)=20%(x+1)+0.2

(3)

(5)

14、在社会实践活动中,某校甲、乙、丙3位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(第小时通过观测点的汽车辆数),3位同学汇报高峰时段的车流量如下:

甲同学说:“二环路车流量为每小时10000辆。”

乙同学说:“四环路比三环路车流量每小时多2000辆。”

丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍。” 请你根据他们提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 12(x-3)-13(4)y(2x+1)=5

y122y25

x0.70.170.2x0.031(6)2[

43x-(23x-

12)]=

34x

第三章第三阶段复习3.4

一、例题导引

例1 某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路,虽然行车的速度增加到每小时12千米,但比去时还是多用了10分钟,求甲、乙两地的距离。

例2 张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半及所得的利息又全部买了这种一年期的债券(利率不变),到期后得本息和1320元,问张叔叔当初购买这种债券花了多少钱?

例3 某市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果超过60立方米,超过部分按每立方米1.2元收费。已知11份某用户的煤气费平均每立方米0.88元,那么11月份该用户应交煤气费多少元?

例4 某学校八年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:“羽毛球及球拍都打9折”优惠,乙商店说:“买一副球拍赠送2只羽毛球”优惠。

(1)学校准备花90元钱全部用于买2副羽毛球及羽毛球若干只,问到哪家商店购买更合算?

(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店一样合算?

二、练习提高

1、用40㎝长的铁丝围成一个长方形,已知长是宽的3倍,则围成的长方形的面积为多少㎝.2、要锻造一个直径为12㎝,高为10㎝的圆柱形零件,需要直径为16㎝的圆柱形钢条 ㎝.3、甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运12吨货物,则三辆卡车共运货物 吨.4、某商品提价10%后,欲恢复原价,则应降价〔 〕

A、10% B、9% C、100% D、111009

2%

5、一个两位数,数字之和为11,如果原数加45得到的数和原数的两个数字交换位置后恰好相等,问原数是多少?

6、某城市现有人口42万人,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?

7、张先生于1999年3月8日买入1999年发行的5年期国库券1000元,回家后他在存单的背面记下了当国库券于2004年3月8日到期后他可获得的利息数为390元。若张先生计算无误的话,则该种国库券的年利率是多少?(利息=本金×存期×年利率,国库券无利息税。)

8、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了,则这次买卖的盈亏情况为〔 〕

A、赚6元 B、不亏不赚 C、亏4元 D、亏24元

9、一张试卷只有25道选择题,做对一道得4分,不做或做错一题倒扣1分,某学生做了全部试题,共得70分,他做对了的题数是〔 〕

A、17 B、18 C、19 D、20

10、某市出租车的收费标准是:起步价5元(行驶距离不超过3千米,都需付5元车费),超过3千米,每增加1千米,加收1.2元。某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是多少?

11、某商品售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获得10%,此商品的进价是每件多少元?

12、一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校将一个紧急通知传给队长。通讯员立即从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少时间可以追上学生队伍?

13、“五·一”期间,某校由4位教师和若干位学生组成的旅游团,拟到国家4A级旅游风景区-闽西豸山旅游,甲旅行社的收费标准是:如果买4张全票,则其余的人按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,旅游团体票按原价的八折优惠,这两家旅行社的全票价格均为每人300元。(1)若有10位学生参加该旅游团,问选择哪家旅行社更省钱?(2)参加该旅游团的学生人数是多少时,两家旅行社收费一样? 小刚为书房买灯,现有两种灯可供选购,其中一种是9W(即0.009kW)的节能灯,售价49元/盏;另一种是40W(即0.04kW)的白炽灯,售价18元/盏。假设两种灯的照明度一样,使用寿命都可以达到2800h。已知小刚家所在地的电价是每千瓦时0.5元。

(1)当照明时间是多少时,使用两盏灯的费用一样多?

(2)试用特殊值判断:照明时间在什么范围内选用节能灯费用低?

小学盈亏问题的练习题附参考答案 篇5

有些问题初看似乎不像盈亏问题,但将题目条件适当转化,就露出了盈亏问题的“真相”。

例1.某班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。问:学生有多少人?

分析:本题也是盈亏问题,为清楚起见,我们将题中条件加以转化。假设船数固定不变,题目的条件“如果增加一条船……”表示“如果每船坐6人,那么有6人无船可坐”;“如果减少一条船……”表示“如果每船坐9人,那么就空出一条船”。这样,用盈亏问题来做,盈亏总额为6+9=15(人),两次分配的差为9--6=3(人)。

解:(6+9)÷(9--6)=5(条),6×5+6=36(人),答:有36名学生。

例2.少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。问:一共要挖几个坑?

分析:我们将“其中2人各挖4个坑,其余每人挖6个坑”转化为“每人都挖6个坑,就多挖了4个坑”。这样就变成了“典型”的盈亏问题。盈亏总额为4+3=7(个)坑,两次分配数之差为6--5=1(个)坑。

解:[3+(6-4)×2]÷(6-5)=7(人),5×7+3=38(个)。答:一共要挖38个坑。

例3.在桥上用绳子测桥离水面的高度。若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米。问:桥有多高?绳子有多长?

解:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米)。两种方案都是“盈”,故盈亏总额为16--6=10(米),两次分配数之差为3-2=1(折),所以桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米)。

例4.有若干个苹果和若干个梨。如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。问:苹果和梨各有多少个?

解:容易看出这是一道盈亏应用题,但是盈亏总额与两次分配数之差很难找到。原因在于第一种方案是1个苹果“搭配”2个梨,第二种方案是3个苹果“搭配”5个梨。如果将这两种方案统一为1个苹果“搭配”若干个梨,那么问题就好解决了。将原题条件变为“1个苹果搭配2个梨,缺4个梨;有梨15×2-4=26(个)。

例5.乐乐家去学校上学,每分钟走50米,走了2分钟后,发觉按这样的速度走下去,到学校就会迟到8分钟。于是乐乐开始加快速度,每分钟比原来多走10米,结果到达学校时离上课还有5分钟。问:乐乐家离学校有多远?

解:乐乐从改变速度的那一点到学校,若每分钟走50米,则要迟到8分钟,也就是到上课时间时,他离学校还有50×8=400(米);若每分钟多走10米,即每分钟走60米,则到达学校时离上课还有5分钟,如果一直走到上课时间,那么他将多走(50+10)×5=300(米)。所以盈亏总额,即总的路程相差:400+300=700(米)。

两种走法每分钟相差10米,因此所用时间为700÷10=70(分),也就是说,从乐乐改变速度起到上课时间有70分钟。所以乐乐家到学校的`距离为:50×(2+70+8)=4000(米),或50×2+60×(70--5)=4000(米)。

例6.王师傅加工一批零件,每天加工20个,可以提前1天完成。工作4天后,由于改进了技术,每天可多加工5个,结果提前3天完成。问:这批零件有多少个?

浅析企业盈亏的财税处理 篇6

一、企业盈亏的财税处理中存在的问题

目前, 我国企业的盈亏财税处理工作中主要存在以下几个方面的问题。 具体体现在:

(一) 企业对盈亏财税处理工作的政策解读不到位。 目前, 有些企业的财务人员对国家有关企业盈亏财税处理工作的相关政策的解读不到位, 造成企业不必要的额外损失。 例如, 根据国家颁布的《企业财务通则》第五十条的相关规定, 我国企业的年度净利润分配, 除国家法律和行政法规另有规定的以外, 必须按照既定的顺序进行税后利润的分配, 然而在实际的分配处理过程中, 有些企业并没有根据规定的程序进行利润的分配, 使得企业在今后的查账或者其他财务申请时, 不能得到应有的补偿。

(二) 企业缺乏完善的盈亏财税处理内控制度体系。 目前, 我国的企业在财务管理过程中, 缺乏科学、合理、完善的盈亏财税处理内部控制的规范和制度。 没有建立专门的完善的企业盈亏财税处理内控机构, 缺乏相应的盈亏财税处理内控人员。 再加上对企业盈亏财税处理的管理缺乏独立性, 使得内控人员在进行企业盈亏财税处理的管理和控制时, 没有充分的制度依据和监督处罚手段, 造成企业的盈亏财税处理内控制度形同虚设。

(三) 国家对企业盈亏财税处理的相关法律法规不完善目前, 我国有关企业盈亏财税处理的法律法规虽然很多, 但是缺乏系统性和条理性, 其盈亏财税处理法律的权威性不高, 缺乏可操作性。 在许多企业中, 管理人员将这些法律法规用企业内部的文件作为代替, 造成企业盈亏财税处理的方法各异、政出多门, 给企业盈亏财税处理的改革和创新增加了难度和挑战。

(四) 盈亏财税处理的信息化程度低。 目前, 虽然我国有一些企业已经引用了较为先进的企业财务管理控制办公软件作为企业日常生产经营活动的财务控制形式, 但由于其软件应用范围和操作人员水平的限制, 通常只是减轻了财务会计运算的工作量, 而没有真正发挥出其在企业内部财务信息化管理控制中的作用, 无法真正实现企业各部门之间信息资源的共享。

(五) 盈亏财税处理的管理力度不足。 企业在实际的盈亏财税处理过程中, 有些部门只注重眼前自身的局部利益而忽视了企业整体的、长远的经济利益, 对企业的实际发生业务的数量和金额虚报、瞒报, 严重阻碍了企业盈亏财税处理人员对企业经营状况进行的核算和分析, 进而造成企业盈亏财税处理核算的不准确。

(六) 缺乏强有力的会计基础。 目前, 我国有些企业为了追求短期的利益最大化, 授权、指使会计机构、会计部门或者会计人员伪造会计凭证, 制作企业假账, 对企业正常的财务会计工作造成了严重的影响和破坏。 同时, 在企业中, 有些会计人员由于其法律意识和管理观念淡薄, 业务素质和能力水平偏低, 使得他们无法准确地对记账凭证、财务数据进行填制、分析和处理, 导致企业会计资料不能真实、全面正确、 有效地记录和反映企业在实际的生产经营活动中发生的各项财务经济活动, 造成企业财务会计信息的失真。此外, 部分会计人员为了自身利益, 弄虚作假, 故意违纪, 导致企业财务报告的数据不真实, 造成会计基础工作的混乱。

二、加强企业盈亏财税问题处理的措施

针对上文中提到的有关企业盈亏财税处理工作中存在的一些问题和不足, 在实际的处理工作过程中, 企业可以采取以下几个方面的措施, 来加强盈亏财税处理工作的水平和效果, 进而促进和推动企业的不断健康发展。

(一) 企业要正确的解读有关政策, 熟练掌握相关处理程序。 企业的相关财务工作人员要对国家颁布的有关企业盈亏财税问题的处理政策和法律法规进行正确和深入的解读, 熟练掌握相关的处理程序。 例如, 对企业盈利财税的处理就必须要依照以下的程序进行, 即:

1.要及时弥补企业以前的年度亏损。 在处理企业盈利的财税问题时, 企业财务人员首先要做的就是弥补企业以前年度存在的亏损。 在这项工作完成后, 方可进行其他的操作。

2.应在利润中提取10%的法定公积金。 所谓的法定公积金又被称为法定盈余公积金, 是用于企业弥补亏损, 增加企业资本, 扩大企业生产经营规模的资金基础。它不同于企业的资本公积金, 是企业财务人员依照法律必须提取的资金。 当提取的法定公积金的累计数额达到企业注册资本的50%以后, 就可以不再进行提取。

3.应在利润中提取一定数额的任意公积金。 任意公积金又被称为任意盈余公积金, 是由企业的财务人员根据企业召开的股东会议的决定或者企业相应的章程规定来自由提取的除法定公积金以外的公积金。

4.对企业的投资者分配其所得的利润。 在分配前, 财务人员首先要把企业以前的年度未分配的利润并入到本年度的利润金额中来, 并在充分的考虑当前企业现金流量的实际状况后, 将利润向企业的投资者进行分配。若企业属于各级人民政府或者相应行政事业部门、机构出资的, 要根据相应的国家规定向所属部门上缴国有利润, 之后并入相应的财政收入。

(二) 建立健全企业的盈亏财税处理内控制度体系。 企业要建立和健全自身的盈亏财税处理内控制度体系, 完善企业相关的政策管理制度和体制, 努力探索和建立科学、规范的盈亏财税处理内控模式, 从企业的各个部门和岗位支持和参与企业盈亏财税处理工作。同时, 还要加强企业盈亏财税处理内控工作的独立性和权威性, 确保盈亏财税处理的公平、公正、公开, 从而保证企业盈亏财税处理工作的顺利、有效进行。

(三) 建立健全企业盈亏财税处理的法律法规。 国家要建立和完善企业盈亏财税处理的相关法律和法规, 加强对盈亏财税处理的法制化建设。 根据时代的变化和经济的需求, 对现有的相关会计法律法规进行修订和完善, 并就企业盈亏财税处理工作中的基本问题和行为进行规范, 同时建立和完善企业盈亏财税处理的相关配套政策和法规, 建立企业盈亏财税处理法律制度体系。

(四) 积极建立盈亏财税处理的信息化平台。 二十一世纪是信息网络化时代, 因此, 企业财务部门要积极的引进和运用当前先进的企业财务处理软件, 如ERP系统软件等同时, 还要通过运用计算机网络信息技术, 以企业各个部门的整体业务和财务信息系统为数据库基础, 建立能够自动搜索、综合分析、科学管理、有效决策的企业财务信息网络系统, 使企业的相关业务、财务信息数据能够实现快速的录入、高容量储存、准确的查询等, 进而实现企业盈亏财税处理的智能化、网络化、数字化。

(五) 企业要大力加强盈亏财税处理内部各个环节的审计工作。通过制定相应的管理制度和规范, 加强盈亏财税处理内部审计工作的独立性和权威性, 全面对企业的财务活动进行会计监督和审计, 严格审计的标准和行为规范, 及时发现和分析盈亏财税处理活动中出现的错误和潜在的隐患, 并实施相应的解决防范措施, 以减少和降低财务会计报表中的错误或误差, 避免造成企业不必要的经济损失。

(六) 加强对会计基础工作的重视和管理。 企业要加强对会计基础工作的重视, 严格的按照国家颁布的有关法律法规和企业自身的财务管理制度对会计基础工作进行管理和规范。坚决杜绝违法、违规行为, 加强对会计基础工作的监督和审核。 加强会计人员的法制意识, 对出现弄虚作假、虚报瞒报、做假账等违法违规行为, 要予以坚决的处罚和取缔。

三、结语

企业的盈亏财税处理工作是企业生产经营管理中的一项十分重要的财务管理活动, 它直接影响到企业的正常生产经营状况、资金的周转和企业的壮大发展。 因此, 在当前形势下, 企业要建立和完善企业的盈亏财税处理管理制度, 提高企业盈亏财税处理相关人员的业务素质和能力, 强化盈亏财税处理的水平, 从而提高企业在当前激烈的市场竞争中的整体竞争力和市场地位, 促进和推动企业的快速、稳健、高效、可持续发展。

参考文献

[1] .何晓蓉.企业若干经营方式的节税筹划[J].湖南税务高等专科学校学报, 2012, (6) .

[2] .葛长银.企业盈亏的财税处理[J].财会学习, 2011, (8) .

上一篇:罗盛教背后的真实故事下一篇:绿野仙踪中小学生读后感1000字