数图形中的学问教案(精选4篇)
数图形中的学问教案 篇1
数图形的学问
谢宇
教学目标
1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并用多样化的画图策略解决问题的过程。
2、在数图形的过程中,逐步形成有序思考的良好习惯,发展推理能力。
3、在发现规律的过程中能有条理的表达解决问题的过程和结果,提高学习兴趣。
课前游戏:感受“有序”的必要性。
游戏规则:老师先说一组有序的数字,学生复述,如0123456789,你能把它说出来吗?再说出另一组数字,如2709473685,你还能复述出来吗?为什么第一组数你们能这么快说出来,第二组数字却有困难了呢?
归纳:因为第一组数字我是按从小到大的规律有序说出的,所以你们能不遗漏地复述出来,但是第二组我没有按明显的规律说出来,你们复述的时候就有困难了,看来,有序的说一句话,做一件事是多么的重要。(板书:有序)等 一下你们思考、回答老师的问题时,也要做到有序,能做到吗?
一、引入新课,体验有序的重要性
(一)今天,谢老师给大家带来了一只可爱的小动物――――鼹鼠,我们一起来看,(出示幻灯片)。解读情景图的意思。
读一读这句话,(1)这里有几个洞口?(4个),为了叙述方便,我们把这4个洞口分别用A、B、C、D来表示。(2)什么是任选一个洞口进入,向前走?如果小鼹鼠从A洞口进去,可以从哪个洞口出来?(B、C、D然后往前走)(3):如果你是这只可爱的小鼹鼠,你会怎么走?(让学生在体验中感悟)(4)你们走了这么多条路线,老師也想走走,大家看,我从D洞口进去,可以吗?为什么?
(5)刚才有我同学还想上來走,但是时间关系就不让大家一个一个上来了.你想提出什么数学问题吗?(学生说)最后引出问题:有多少条不同的路线?
(二)展示一长纸条,说明:如果用这张纸条表示弯曲的通道,上面的字母表示各个洞口,你能把这个问题情景画成线段图的形式吗?也就是示意图。请你在练习纸上完成第一小题。
(1)学生先独立画,然后同桌讨论。(教师巡视指导并留意完成情况)
(2)你画的这条线段表示什么?表示通道,上面的字母或图形表示什么?各个洞口。
(三)问题抽象
如果把这条通道看作一条线段,上面的点表示洞口,小鼹鼠有几种走法,其实就是让我们数这里有几条线段,你有什么办法数数出来吗?,请你在练习单上画一画,数一数,并记下来,做到不重复,不遗漏。做完后,同桌间相互交流一下自已的想法。
(1)学生汇报第一种方法。你数出了几条线段?说说你是怎么数的?你先数什么?(线段AB、线段AC、线段AD、有几条?根据
回答板书:3)再数什么?(线段BC、线段BD有几条?根据回答板书:2)然后呢?(线段CD这里有1条,记下来。板书:1)学生在黑板上说,边指边画出路线。
他说得好吗?好在哪里?让学生点评。(说的时候让学生按:他是这样数的,先数、、、、,再数、、、,最后数、、、、的模式说,突出有序)。
(2)教师归纳:在这里,我们是按出发点的不同,先数出从A点出发的AB、AC、AD三条线段,再数从B点出发的BC、BD两条线段,最后数从C点出发的线段CD线段,从而求出一共有6条线段,写算式。(线段和字体颜色的一样)
谁还有不同的方法数出线段的?(留意学生的完成情况)
(3)方法二:你数出了几条线段?你又是怎么数的?你先数什么?(线段AB、线段BC、线段CD有几条?老师板书:3)再数什么?(线段AC、线段BD,有几条?老师板书:2)最后数什么?(线段AD。这里有1条,老师板书:1)所以全起来也有6条线段。并写出算式。
我们先数最短的线段,有AB、BC、CD.一共有3条基本线段,再把相邻的两段拼成比较长的线段,有AC、BD这两条,最后把相邻的3条基本段拼成更长的线段,有AD,所以共有3+2+1=6(条)
(4)归纳:这里,我们按线段的长短来分类,有序的数出了线段的条数。
(三)比较两种数法的异同。
1、“大家来看这两种数法,你认为它们有什么不同点和相同
点?同桌可以讨论一下”
2、学生汇报。不同点:第一种方法是按出发点的不同来数的的。第二种是从根据线段的长短不同来来数的。(还有什么不同点?这里的3、2、1、和这里的3、2、1所表示的是相同的的线段吗?,指算式,不一样。借助多媒体理解3个数分别所表示的线段。)
相同点:算式是一样的,所以数出的线段都是6条;还有呢?(学生可能说不出,可引导:在刚才数线段之前,老师一直强调,数的时候要注意什么?指“有序”一词,对,不管是哪一种方法,我们在数图形的时候根据不同的标准做到有序,知道先数什么,再数什么,最后数什么。)只有这样数才会数得不重复,也不遗漏,这是数图形的基本方法,这也是我们这节课学习的内容。(板书课题)
反馈:你们会用这种方法数图形了吗?现在我们就用这种方法来解决小鼹鼠遇到了下一个问题。
三、菜地旅行,运用有序。
(一)1、解读图中的信息。(1)小鼹鼠菜地旅行的出发点在哪个站?目的地在哪个站?从出发点到目的地一共有几个站?(画出始发站和终点站,用线段连接)小鼹鼠遇到了什么问题呢?读问题。
(2)师直接说出:单程指的是从出发点到目的地的车票.不包括返回时的车票。
2、用我们刚才学的的方法,数一数5个车站要几种单程票?然后同桌交流一个你的想法.3、学生汇报。这里要我们求有几种车票,也就是求这里有几条线段。(1)你是怎样数的?(先说出图中线段和点所表示的意思,边说边画出数的过程)。根据学生的回答,老师板书:4+3+2+1=10,学生评价:你觉得他说得怎么样?好在哪?(突出“有序”)
4、谁还有不同的方法?请你上来数一数。(他说得好吗?好在哪里?
(二)如果有6个汽车站,又需要准备多少种不同的单程车票呢? 6个站,说明这里有6个点了。这次比一比,谁最快?
1、学生独立完成。让学生来说一说,数一数,记一记。(像老师一样)
5、谁还有不同的做法?(预设:学生想不到,如何引导?A:刚才是5个点,有10条线段,现在增加一个点,增加了几条线段?你能把这5条线段在图上表示出来吗?学生上来画,所以可以怎么列式?板书:5+4+3+2+1=15B:学生看书。)
6、归纳:当线段上的点数增加1个时,我们可以再画一次图,重新再数一数,也可以和增加前的线段数联系起来思考。象这里,我们可以在前面5个点的基础列式:5+4+3+2+1=15
(三)如果有7个汽车站,又需要准备多少种不同的单程车票呢? 也就是这条线段上有几个点了?(7个)
1、比一比,谁最快知道答案?说说你是怎样找到答案的?
2、学生汇报反馈。(你是怎样想的?学生说想法,最快的是:6+5+4+3+2+1=21,如果学生没说到,就问还有更快的方法的
吗?请你来说说)
(四)如果有8个汽车站,又需要准备多少种不同的单程车票呢?
学生说,简单说说想法,然后老师板书:7+6+5+4+3+2+1=28
你还能往下说吗?9个点有几条线段?10 个点呢?15个呢 ? 你们这么快就说出来了,发现了什么规律了吗?
(五)引导观察 发现规律
现在请同学们观察学习单上的图和算式,你有什么发现?(引:想车站单程车票的数量和车站的站数之间有没有什么关系?
1、独立思考。2.汇报 3总结。
四、总结全课,回归课题并板书:数图形的学问
五、板书设计:(略)
数图形中的学问教案 篇2
一、长方形和正方形的面积公式推导教学,数方格可以强化学生对面积的认识,感悟面积是面积单位平铺度量出来的结果
在长方形面积计算公式推导教学时,首先给出一个5 cm×3 cm的长方形,让学生估计面积,然后引导学生用边长1 cm的正方形纸片(面积单位)来摆一摆。这个长方形中可以摆几个面积单位,面积就是几。于是就呈现(如右图)每个方格的面积为1 cm2的长方形,让学生去通过数方格(面积单位)得到:长方形的长边有5个面积单位,宽边有3个面积单位,面积单位总数为5×3=15(个)。接着让学生用12个面积为1 cm2的小正方形去拼出不同的长方形,画出示意图(如下图)
再观察并数出长边摆的个数和宽边摆的个数,发现:长方形的面积=长边所摆面积单位的个数(即每行的面积单位数)×宽边所摆面积单位的个数(即行数),同时发现:每行的面积单位数正好是长方形长刻度数,行数正好是宽的刻度数,长方形的面积=长的刻度数×宽的刻度数=长×宽。作者在长方形面积计算公式推导教学过程中,是将面积转化为方格,让学生理解面积的计算就是计算面积单位的数量,而数方格的过程就是学生主动探索,发现长和宽与面积单位数之间联系的过程。
二、平行四边形面积公式推导教学中,让学生在数方格的过程中感悟转化的思想
在平行四边形的面积公式推导教学中,教学瓶颈和学生的困惑是:为什么把平行四边形转化为长方形?是怎么想到把平行四边形转化为长方形的呢?这也是平行四边形面积公式推导有别于长方形面积公式推导之处。教材是通过让学生数一数的方法,数出画在方格中(且注明:一个方格代表1 cm2,不满一格按半格计算)的平行四边形与一个长方形(底和长相等、高与宽相等)的面积来体验平行四边形与长方形的底和长相等、高与宽相等,面积相等,体验平行四边形可以通过剪拼转化成与之面积相等的长方形来计算面积,得出平行四边形面积计算公式。但作者认为,这样数没有真正地让学生体验到转化的思想,并且为了学生能数出面积,教材还特意注明“一个方格代表1 cm2,不满一格按半格计算”,这显然不能解决学生的困惑和教学的瓶颈,也没有真正地发挥数方格的价值。作者认为,数方格的过程是要让学生在数的过程中,去感悟“剪一剪、拼一拼”将不能直接用标准面积单位度量的图形,能准确地得到它的面积,其方法是“转化”。为实现这样的目标,可以这样展开。
环节一:估测面积引入。在引入环节中老师先拿出一个平行四边形纸片,让学生摸一摸它的面积,然后让学生估一估它的面积大约是多少。
环节二:引出数方格。为了验证谁估测的比较准确,让学生思考:有什么办法可以准确地知道这个平行四边形的面积?有学生就说测量底和邻边长度,并且将它们相乘,有学生说用方格去摆。老师就顺势把这个平行四边形画在了方格纸上,并且告诉学生“每一个方格是面积为1 cm2”的正方形。学生独立地在方格纸操作,老师提出操作要求:请在方格纸上把你数的过程清楚地表示出来,做到让人一目了然。
环节三:学生操作,反馈交流。当学生有了自己的方法与答案之后,我们展开交流,发现数方格的效果凸显出来了。
学生除了先得到满格20个以后,还可发现:20个半、21个半……得到24以外,大部分学生用了转化的方法,如图1用了左右不满格去拼成一个满格。图2和图3学生用了整体剪拼、转化而成,得到面积为24 cm2。图2的学生从中已经发现转化后是长方形,用了长乘宽即底乘高的方法计算得到。
以上的教学中我们得到:让学生数方格,不仅仅是让其数出结果,更重要的是让学生在数的过程中,体验和感悟到平行四边形可以转化成长方形,自己发现。当有了图2中学生的引领,大部分学生的头脑开窍了,知道“只要算出拼成的长方形面积就可以知道平行四边形的面积了”。老师借势让学生再思考:是不是任意一个平行四边形都可以这样剪下来拼过去转化为长方形呢?是不是都可以通过所拼成的长方形面积的计算得到平行四边形的面积呢?
可见,通过数方格学生已经发现了平行四边形似乎可以通过剪拼转化成长方形,而且可以通过所拼成的长方形面积的计算得到平行四边形的面积。在后续的学习中只要通过操作验证任意一个平行四边形只要沿高剪就能拼成长方形或正方形,并且寻找所拼成长方形与平行四边形之间的相等关系,就可得出:平行四边形面积=底×高。
以上教学说明:学生的转化思想缘于直观的数方格,他们想把方格补完整的同时实施了这种朴素的转化方法。因此,在平行四边形的面积公式推导教学中,我们教师的教学落脚点应该是让学生在数方格中经历方格割补凑整到图形割补转化的递进,以此实现书本知识与学生经验无缝对接。
三、三角形和梯形面积公式推导教学,数方格让学生拓展思维,建立空间联系,感悟殊途同归的同化思想
在学习完平行四边形面积公式推导后,教材在三角形和平行四边形的面积公式推导过程中没有编写用方格,而是让学生通过用两个完全一样的三角形或梯形来拼成平行四边形来实现。如果从学生的角度想一想,学生是怎样知道两个完全一样的三角形或梯形可以拼成一个平行四边形的呢?学生基本上很难想到。
作者认为,要借助于数方格,让学生充分利用方格的直观感知来悟出其中的奥秘。三角形面积公式的推导可迁移平行四边形的剪拼法,但同时又有属于它自己的转化方法,即加拼法,而加拼法需要更多的空间想象能力。因此,三角形面积公式推导教学要在这一点上有所凸现。如,在进行三角形面积的教学时,教师先提供给学生一个有方格(每个方格边长1 cm)支撑的平行四边形(图4),算一算平行四边形的面积,紧接着让学生再思考“从图中,你还能知道哪个图形的面积吗?”有的学生稍加思索,顿时想到了三角形的面积是12 cm2。方法就是通过用对角线将平行四边形分成两个完全一样的三角形(图5),感悟到这两个三角形的面积相等且等于等底、等高的平行四边形面积的一半。同时也朦胧地悟到两个完全一样的三角形可以拼成一个平行四边形。在此基础上,老师再次呈现带有方格的三角形(图6),让学生继续探究,培养了学生个性化的且多样化的转化思路。
有了这样的经验,我们在教学梯形的面积公式推导时,可以更大胆地去运用方格。让学生的聪明与才智得以充分的发挥,形成多角度地探索与发现梯形的面积计算方法,让学生的智慧得以施展(如图10~13)。
数方格让学生能够想得清楚,并且由此衍生出多种转化方法。使图形与图形之间的转换关系,直观地呈现在学生的面前,“两个完全一样的三角形或梯形可以拼成一个平行四边形”这时加拼法的出现是那么的自然,又符合学生思维特征,面积在方格里学生更容易产生转化的想法,蕴含了多种转化的思想,使学生真正地去体验与探索知识的真谛,知其然而知其所以然。数方格的作用在这时体现得淋漓尽致。
四、圆面积公式推导教学,数方格引发学生联想,突破方圆,领悟化曲为直的解决问题原理
圆作为曲线图形,好像与数方格关系有点远,有点牵强。其实不然,我们完全可以用同样的思维方式,将其置于方格中,通过数圆的四分之一所占的方格数推算出圆的面积,如(图14)。并且可以对圆面积与小正方形(半径的平方)的倍数有一个猜测,从而产生圆面积=半径的平方×3倍多一些的猜想,与实际操作推导公式相呼应。
然后引导学生:能不能将圆形转化成我们会算面积的图形?为学生提供8个八分之一圆,如图15摆放,组织学生操作,以此类推,得出下面的过程。通过观察所拼成的长方形(平行四边形)的关系,验证数方格得出的圆面积=半径的平方×3倍多一些,并明确“3倍多一些”具体的值为“圆周率”。
总之,数方格在平面图形面积公式推导教学中既可以作为一种基本的计量面积方法,又可以在数方格中体现转化的策略,很自然地帮助学生建立转化方法和公式的猜想,在学生操作验证后还可以作为典型例子,进行关系的梳理和公式推导的回顾和总结。但数方格也不是没有缺陷的,很多时候必须要特定的形状,特定的摆法,才能适合学生操作。但这并不影响数方格对平面图形面积公式推导教学的作用。教学中教师可以用特殊例子来发现问题,用一般图形来操作验证,最后回到典型例子梳理推导过程和图形之间的关系。
《数图形中的学问》的教学反思 篇3
知错就改,深思熟虑后,我打算给11班上这节课时严格按新课标、新思路、新方法去上课:首先创设“谁才是最公正的法官”这一情境,将学生带入教学内容,并激发起学生的浓厚兴趣;二是让学生以小组为单位,在小组内展开比赛,看谁数得又快又准确;三是我借用多媒体设计了移动圆盘的数学游戏,教师只说明游戏规则,其他的都是放手发动学生,让学生通过仔细观察、动手实践、猜想、验证等许多步骤,让学生发现其中的规律。这堂课我要求学生预习是改变了原来学生预习后老师向他们提问的做法,变成他们预习后必须书面向老师提出至少一个“为什么”请老师回答,爱因斯坦说过一句名言“提出一个问题甚至比解决一个问题更重要,一个人只有发现问题才能够提出问题,只有提出问题才能解决问题,只有提出了最有价值的问题,才有可能对自然与社会发展做出重大的贡献……”这一改果然比老师提问学生回答好使得多,原因是这样做创出了平等、民主、和谐的课堂氛围,让每一个学生都投入到知识的探索与研究中来,把学习的主动权还给了学生,让学生从被动地接受转变为主动出击,学生预习后交上来的问题,我都仔细进行了归类整理,并严肃认真地作了回答,学生对我认真回答他们提出的问题,感到很满意,脸上洋溢着幸福的笑容。离下课还有5分钟,我又把同步作业中的练习题让学生做,大部分学生很快就交上了作业,下课时,学生全部把作业交齐了。课后回到办公室,我马上批改作业,全班41个同学只有2个同学出现了错误,其它全部答对,我的心里别提有多高兴了。
我是一个具有7年教龄的教师,上课时总是担心学生学不会,以为自己不去讲就完不成教学任务,时常自觉或不自觉地将课堂变成简单机械的“填鸭式”,这样做只能是好心做坏事,只能违背学生的学习规律,妨碍学生创新能力的发展,影响学生的学习兴趣,使学生对学习感到厌倦。
从前后两节课由于授课方式不同而得到截然不同的两种效果,使我清醒地认识到从被动接受学习到自主发现式学习,从个体独立式学习到小组合作式学习,从传承性学习到创新性学习的改变是多么重要!
数图形中的学问教案 篇4
教学目标:
1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。
2、在数图形的过程中,注重学生思维的生长,逐步形成有序思考的良好习惯,发展推理能力。
3、在发现规律的过程中,能够独立思考和自主探究,有条理地表达解决问题的过程和结果,增强学习的自信心,提高对数学问题探索的兴趣。教学重难点:找到数线段的方法,体会有序思考的必要性。教学准备:课件 教学过程:
一、唤醒旧知,激活储备
师:在三年级的时候我们学过服装的搭配,现在请大家告诉我,如果我用三角形和正方形搭房子,共有几种搭法?注意要有序搭配。生:6种。师:看来同学们已经掌握了搭配中的学问。其实在生活中还有很多类似于这样的搭配学问,今天就让我们一起来研究数图形的学问。(板书课题)
二、创设情境,探究新知(出示课件)
师:这是小鼹鼠的洞穴,洞口之间是相连的,小鼹鼠说,“我想从一个洞口进去,向前走,从另一个洞口出来,”(把四个洞口看成A、B、C、D四个点)(用激光笔举例子)说:如果从A进入有几种方法出来,那B呢?C呢? 如果每两个洞口相距5米,那5米走法有几种?10米呢?15米呢?20米呢? 生:回答走法 师:把AD看成一条线段,把B、C看成线段上的2个端点,就变成了“线段图”)师:现在我们借助线段图来数一数,它到底有几种走法?
自己独立画数,再组内交流一下
(生动手操作,教师巡视。)
师:谁来跟大家一起分享你的成果呢?(学生动手操作后,上台展示,(让学生到黑板上边画边说)讲清楚自己的方法,并写出算式。)
引导学生进行对比,学生说出自己的想法。师:(利用课件,帮助学生梳理一共有多少种方法,)看来大家已经掌握了正确数线段的方法,我们一起来回顾一下,第一种,按线段的长短;第二种,按出发点的位置。(课件展示)
也就是说我们在数图形时,一定要有顺序地去数,才不会数重复或者遗漏。
三、深入探究,发现规律 出示汽车站站牌。师:小鼹鼠其实真实的身份是一名公交车售票员,它负责的是从红薯站开往到土豆站单程的售票,从图中你知道哪些数学信息?(引导学生先理解题意。)生:单程需要准备多少种不同的车票?
师:现在由你们来画出示意图,帮小鼹鼠解决这道难题。但数图形时,一定要有顺序地去数
学生动手操作,记录在学习卡上,再上台进行展示,并说说自己是怎么数的。
师再播放课件,帮助学生直观理解。师:这时候,公交司机看到鼹鼠这么勤劳,就想让他再多负责一个站——南瓜站,那六个汽车站,又该需要多少种不同的车票呢? 学生动手操作,再上台展示。
师:很多同学很快就数出来,有15种不同的车票。这时好学的小鼹鼠又产生了新的疑问,如果有七个车站,单程又需要准备多少种不同车票呢?你可以画示意图,也可以用你自己观察到的方法列出算式。(学生思考)给出算式6+5+4+3+2+1=21 师:请你观察,你发现了什么规律,你能尝试用你发现的规律,说出八个车站需要几种车票吗?
(引导学生发现算式规律,尝试写出算式: 7+6+5+4+3+2+1=28)并让学生说一说算式的意思,即多增加的那个6和7表示什么意思? 师:观察刚才我们写的这些式子,你有什么发现呢? 学生说出自己的想法。
四、回顾反思,交流心得
师:通过今天这节课的学习,你得到了什么收获呢?
五、延伸扩展,提高生长
师先介绍中国在世乒赛上所取得的成就,再提问学生:如果有24名运动员参加乒乓球比赛,每两人比赛一场,那需要进行多少场比赛呢? 让学生自行思考,再说出各自的想法。
师:其实在我们生活中还存在着很多数图形的学问,在今后的数学学习中,我们还会碰到类似于比赛场次的规律。希望同学们能善于发现生活中的数学问题,并勇于运用所学知识去解决它。教学反思:
学生在三年级已经学习过搭配中的学问,掌握了搭配的方法,并能结合具体情境进行初步的有序思考,这些知识储备和已有的生活经验,将成为本节课数学学习生长的“土壤”。而本节课的教学着力点在于提升学生的经验水平,通过具体情境的创设,利用画图策略来解决实际问题,培养学生有序思考的能力,发展推理能力。同时也为今后“图形中的规律”等类似的数学知识的学习生长“播下种子”。
1、本节课我先通过唤醒学生已学的搭配中的学问,让学生体验有序搭配才能做到不重不漏,为生长延伸至探究数图形的学问埋下伏笔。
2、教学中,让学生经历独立思考、动手操作、讨论交流的过程,使他们在交流中互相引导,探索出如何有序地数图形的方法。
3、注重对学生数学语言表达能力的培养,给予学生充分的时间上台展示,并说出自己的想法,使学生懂得表述有序数图形的方法,帮助学生主动构建知识。从本节课的教学情况来看,我还存在一些需要改进的地方:
1、课堂语言不够生动,对学生的回答未能及时给予评价,课堂评价语言较为单一,需要不断丰富,才能更好地激发学生学习的兴趣。
2、与学生的互动还需加强,课堂教学中教师应真正融入学生的思考与情感当中,才能使课堂更加生动活跃。
.探索规律提问:从表格中你们发现了什么?(1)基本线段=点数-1(2)第一个加数刚好比点数少1,然后每个加数少1,依次加下去,直到1为止。(点数-1)+„„+2+1(3)线段总条数就是1道基本线段所有自然数的和。3.试做
(1)线段上共有100个点,请问共有多少条线段?(指明学生板演)(2)师板书:
第一种做法:99+98+97+„„+2+1=4950(条)第二种做法:(99+1)×99÷2=4950(条)4.师问:我们用哪种方法计算比较简单?
(用第二种方法比较简单)
5.我们用“点数×基本线段数÷2”的方法更简便。
四、自主学习
1.试做求票价题(同桌一个人出题,另一个人解答)2.途中有几条线段,你怎么想出来的?
五、归纳小结 板书设计:
数图形的学问
【数图形中的学问教案】推荐阅读:
数图形的学问教案05-12
《数图形的学问》教学反思08-12
剪枝的学问教案10-17
生活中的学问五年级作文09-03
小学生作文生活中的学问06-15
大班数图形教学反思06-14
三年级数学《搭配中的学问》教学设计10-14
三年级数学上学期“搭配中的学问”教学设计05-23
立体图形与平面图形教案08-17
开放图形和封闭图形的教案10-24