小学数学目标教学

2024-11-03

小学数学目标教学(共12篇)

小学数学目标教学 篇1

心理学研究表明:能力的培养不同于知识的传递, 需要学生亲身经历活动的实践过程.而发现问题、提出问题、分析问题和解决问题是问题解决中的一个完整的、相对独立又密切联系的过程, 因此, 从培养小学生问题意识和解决问题的能力的角度来考察小学数学教学, 必然要求改变教师教的方式和学生学的方式, 让学生完整地经历问题解决的全过程, 并在一个个亲身经历的过程中得到发展.

基于这种教育思想的小学数学教学过程, 必然是一个充满生命活力的过程, 也是一个充满理性思考的过程.在特定的生活情境或数学化了的情境中去发现可能存在的问题, 从而提出数学问题, 面对困惑分析问题, 最终解决问题.因此, 我们的教学也应适应这种目标, 转变策略.

一、情景———问题教学

数学“情境——问题教学”, 以培养学生问题意识和问题解决能力为宗旨, 以转变学生数学学习态度和学习方式为目标, 把质疑提问和解决问题反复循环地贯穿于教学的全过程, 其基本模式如下:

学生学习:质疑问题, 自主合作探究

教师导学:启发诱导, 矫正解惑

如“植树问题”的教学:3月12日植树节快到了, 学校组织四年级同学到马路边植树, 这条路长20米, 在路的一边从头到尾每隔5米种一棵树苗, 一共需要准备多少棵树呢?

1.学生独立思考, 再分组解决. (课堂上学生多数采用画图等方法解决的)

2.把路长改成25米、30米, 学生独立地、快速地完成解答.

3.三题之间的关系, 讨论:可发现什么?

4.根据棵数与段数之间的关系, 解决如果路长1000米, 应准备多少棵树.

可见, 我们在教学中应科学地设置问题情境, 关注学生思维的“最近发展区”, 由易到难, 由简到繁, 由浅入深, 层层推进, 步步深入.让学生思维始于问题、问题始于情境.在情境———问题教学中, 教师应引导学生在学习过程中把发现、探究、质疑等认识活动凸现出来, 使学习过程更多地成为学生发现和提出问题、分析和解决问题的过程, 强调和注重学生问题意识和应用意识的培养.

二、开放性问题解决

开放性问题要求学生对问题深层次或多角度进行观察、发现、猜想, 用不同的方法加以解决.问题解决的过程往往反映学生思维的严密性、灵活性、深刻性.其基本模式如下:

学生学习:归纳猜想, 合作探究

教师导学:启发设疑, 矫正引领

如“分类”一课中设置了这样一个问题:

如图所示, 桌上散落着一些扣子, 希望同学们把扣子分类.教学流程设置如下:

1.学生观察、交流得出画面上扣子的特点:颜色分为蓝色、黄色;形状分为长方形、椭圆形;扣眼数不同, 分为4个和2个.

2.提出问题, 交流解决:可以按颜色分;可以按形状分;也可以按扣眼数分.

3.选择不同的分类标准, 学生分组操作, 完成计数.

4.分类展示, 互评共评.

5.归纳总结.

上例体现了结果开放, 那么“两位数乘两位数”一课的教学体现了问题解决策略的开放.结合图形计算28×15, 课堂中学生出现了以下几种思路:

学生在解决开放性问题时的心理模式和解决常规问题是不一样的, 他们的思考空间会更大.面对开放题学生必须综合运用知识的分类、推理、整理、归纳, 并利用数学方法解决问题.因此开放性问题的教学能进一步加强学生整体性、思考性、过程性的评估, 有利于加强对“四能”的整体关注.

三、实践问题探究

实践问题强调学生主动学习, 不仅强调对知识的学习, 更重要的是强调学生学习方法的养成.基本方法是行动、提问、研究和实践.它不是死记硬背可以得到的, 而需要学生在活动过程 (问题解决) 中, 通过与同伴的交流、合作、比较、展示中逐步形成的.基本模式如下:

学生学习:动手实践, 实践验证

教师导学:组织引导, 参与矫正、归纳

如“包装设计”综合实践活动课, 教学流程如下:

1.学生分组合作, 通过操作、交流总结出:4盒磁带有几种包装方式?

2.在忽略接头的情况下, 通过计算发现五种方式的包装纸是否同样多?哪种方式更省包装纸?

3.研究用纸量不同的原因.

4.若有8盒磁带, 哪种方式更省包装纸?若有20盒磁带呢?

5.节约包装纸的一般策略总结.

实践探究对于发展学生的应用意识具有重要的作用, 这类问题解决的一个重要方面就是发现问题, 它是解决问题的基础学生在实践活动中发现和提出问题, 结合已有知识, 对问题进行数学思考, 积极主动去解决问题.在这个过程中, 学生不仅体验到数学在实际生活中的应用, 而且品尝到应用数学知识解决实际问题的成功和喜悦, 不仅提高学习数学的兴趣, 也提高了学生了解其他知识的兴趣, 无论是课堂教学活动中, 学校学习环境中、还是学校所在社区, 都存在值得研究的数学问题, 教师可以在日常教学、生活中引起关注.

参考文献

[1]全日制义务教育数学课程标准 (修改稿) .北京:北京师范大学出版社, 2007.

[2]伊红, 钟旭天, 陈士军.初中数学教学案例专题研究.杭州:浙江大学出版社.2005.

[3]徐兆洋, 吕传汉.系统观视野下的中小学数学“情境——问题”教学.数学教育学报.2008.

小学数学目标教学 篇2

一、情况分析

我班有学生32人。男生24人,女生8人。刚进入学校的孩子活泼好动,天真烂漫,大多小学数学生思维活跃,学习小学数学的兴趣较浓,有着良好的家庭教育和学习爱好。通过入学测试全部达到了入学要求。

虽然学生们有着强烈的好奇心和求知欲。但是,学生们不懂得怎样去学习,也不会学习;有些同学学习能力差,注意力容易分散,所以教师要有层次、有耐心得进行引导,教给学生们学习的方法,培养学生们养成爱好学习的习惯,使每个学生都能够顺利地完成本学期的学习任务。

二、目的要求

1、知识与技能方面:

经历从实际情境中抽象出数的过程,认识20以内的数,并学会读写;初步理解20以内数的组成,认识符号<、=、>的含义,会用符号或语言描述20以内加减法的估算。结合具体的情境,初步了解加法和减法的含义;经历探索一位数加法和相应减法的口算方法的过程,能熟练地口算一位数加一位数和相应的减法;初步学会20以内加减法的估算。认识钟面及钟面上的整时和大约几时。结合具体的情境认识上、下、前、后、左、右,初步具有方位观念。通过具体物体认识长方体、正方体、圆柱和球,认识这些形体相应的图形,通过实践活动体会这些形体的一些特征,能正确识别这些形体。感受并会比较一些物体的长短、大小和轻重。认识象形统计图和简易统计表,通过实践初步学会简单的分类,经历和体验数据的收集和统计的过程,并完成相应的图表。根据统计的数据回答简单的问题,能和同伴交流自己的想法。

2、小学数学思想方面:

初步学会从小学数学思维的角度观察事物的方法,如数出物体的个数,比较事物的多少,比较简单的长短、大小、轻重等。在数的概念形成过程中发展思维能力,如在认识20以内数时通过比较、排列发现这些数之间的联系,在学习“分与合”时发展学生的有序思考和分析、推理能力,在“认钟表”时进行比较、综合和判断等。能用“分”与“合”的思想进行初步的小学数学思考,能联系具体情境探索一位数加、减法,并经历与同伴交流各自算法的过程,正确地、有条理地说明自己的算法;对估计的过程能作出自己的解释。在探索简单物体和图形的形状、大小和物体之间位置关系的过程式中,发展空间观念。感受简单的收集、整理数据的过程,具有对简单事物和简单信息进行比较分类的意识,具有简单的统计思想。

3、解决问题方面:

在教师的指导下,从日常生活和现实情境中发现并提出简单的小学数学问题,并能应用已有的知识、经验和方法解决问题;能对简单的几何体进行简单的分类,能联系情境描述一些物体的相对位置;能在教师的组织下收集有效信息并进行分类、整理,用简单的统计方法表示问题解决的结果等。体验与同桌合作解决问题的过程,能和同伴交流自己的想法。

4、情感与态度方面:

在学习小学数学的过程中,初步感受小学数学与日常生活的密切联系,对身边与小学数学有关的某些事物产生好奇心,有学习小学数学的热情,有主动参与小学数学活动的积极性。能在教师和同学的鼓励、帮助下,克服在小学数学活动中遇到的某些困难,获得成功的感受,逐步树立学好小学数学的自信心。

三、教学措施

〔一〕、培养学生小学数学学习的兴趣和良好习惯

小学数学学习的兴趣对于小学数学学习非常重要。因此注意激发学生的学习兴趣,利用教材所提供的素材,组织学生开展多种多样的学习活动。教学时,首先关注学生参与学习活动的热情,学生回答得对与错或语言是否完整,老师延缓评价,要多鼓励学生积极参与。注意倾听学生的发言,特别注意的是不宜用统一的、程式化的语言来训练学生,允许学生用自己的语言表达想法。让每个学生首先喜欢上课、喜欢教师,进而喜欢学小学数学。

学生良好学习习惯的养成,不能简单地理解为只是要求学生上课坐好、举手发言等外在的形式,更重要的是要逐步引导学生学会独立思考、敢于提问、认真倾听他人的意见、乐于表达自己的想法等内在品质。

〔二〕、让学生在生动具体的情境中学习小学数学

教学中,充分利用学生的生活经验,设计生动有趣、直观形象的小学数学活动,如运用讲故事、做游戏、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识小学数学知识,鼓励每一位学生动手、动口、动脑,参与小学数学的学习过程。例如,在实践活动“小小运动会”的教学中,老师可以将教材中的内容设计成一个童话故事,在讲故事的进程中自然引入需要讨论的问题;也可以引导学生自己扮演不同的角色,进行模拟表演;还可以结合学校的运动会,鼓励学生从中发现小学数学问题,并尝试解答。

〔三〕、引导学生自己思考,并与同伴进行合作交流

独立思考、合作交流是学生学习小学数学的重要方式。教学中,老师要鼓励学生在具体活动中进行思考,鼓励学生发表自己的意见,并与同伴进行交流。在思考与交流的过程中,老师应提供适当的帮助和指导,善于选择学生中有价值的问题或意见,引导学生开展讨论,以寻找问题的答案。老师可以有意识地培养学生与人交流的愿望和习惯,使学生逐步学会运用适当的方式描述自己的想法,学会注意倾听他人的意见。

〔四〕、培养学生初步的提出问题和解决问题的能力

教材特别注重培养学生提出问题的意识和能力,设立了“问题银行”等栏目,鼓励学生提出问题,即使有的问题当时不能解决,可以放在“问题银行”以后解决。教学中,教师应该充分利用学生已有的知识经验,随时引导学生把所学的小学数学知识应用到生活中去,解决身边的小学数学问题,并尝试从日常生活中发现小学数学问题,了解小学数学在现实生活中的作用,体会学习小学数学的重要性。

〔五〕、创造性地使用教材

小学数学教学学习目标思考 篇3

【关键词】小学数学教学 学习目标 有效性 具体策略

我县现阶段推行的“五学”课堂教学模式包括目标导学、自主研学、合作探学、展示赏学和检测评学五个基本环节,该教学模式把学生放在学习的中心位置,它的有效应用,培养了学生主动学习的习惯,教会了学生学会学习,使学生在学习过程中减轻了压力、增强了自信心,同时也促进了每个学生的个性发展,使“自主、合作、探究”的新课程教学理念得以有效落实。那么,小学数学教师应如何有效结合学科特点,运用好该教学模式,提高教学的实效性呢?以下我结合自己运用“五学”模式进行课堂教学的实践,着重就新授课的“目标导学”环节如何灵活揭示学习目标,提高教学有效性的具体策略谈谈自己的体会和思考。

一、巧设悬念,以疑激学,在引发学生好奇心时揭示学习目标。

小学生容易被不平常的现象或内容吸引,教师要准确把握新知识的生长点,抓住小学生的好奇心,提出有潜在意义的“挑战性”问题,启其心扉,促其思维。设置的悬念应具有精、新、奇的特点,在技巧上则应“引而不发”、“令人深思”,促使学生在强烈的求知欲望的驱使下探求知识[1]。例如在教学“能被3整除的数的特征”时,教师在黑板上写出几个三位数,让学生判断是否能被3整除。学生必须通过笔算才能得到答案而不能很快说出。接着让学生任意报数,教师自己判断。学生开心地纷纷报数,教师对答如流,直接判断出任意一个数能否被3整除。学生被眼前的情景所吸引,老师用的是什么诀窍呀?――激发学生的好奇心,他们迫切想知道其中的奥秘。这时教师抓住这一“火候”,把握这个有利时机揭示学习目标:探究能被3整除的数有什么特征?这样揭示学习目标,就会把学生的思维推向“心求通而不能,口欲言而非达”的愤悱境地,引起对新知强烈的探究愿望[2],让学生在好奇心的驱动下,自觉主动地寻找解决问题的策略和方法,达到有效教学的目的。

二、引导探究,类比迁移,在引导学生探究算理或问题时揭示学习目标。

根据两个或两类数学对象的相似性,有可能把一个数学对象已知的特殊属性迁移到另一个数学对象上,使学生的大脑能将两个看似互不相及的知识联系起来。在教学“同分母分数加减法”时,我先让学生观察666+2,问:2与哪个6相加?2与6相加得到8个什么?再引导学生回忆整数、小数加减法的实质是什么?(生:是相同计数单位的个数相加减。)在这个基础上引导探究,1/8和2/8能不能直接相加,为什么?从而揭示本节课的学习目标。类比既可以帮助学生确定未知的目标,又可以帮助学生寻找解决问题的途径,依据知识之间的相互联系,由一类问题想到另一类问题的处理方法,学生的创造性思维能力在自由联想的天地中获得最大发展。

三、创设情境,以景激情,让学生在特定的“境”中产生学习的“情”时揭示学习目标。

教学情境是在课堂教学过程中,根据教学内容,为实现教学目标所创设的情感氛围,通过讲故事、玩游戏、做实验等方式,使学生在最短的时间内产生情感共鸣,带着疑问与欲望走进课堂内容的学习,并在情境创设中对所学内容在认知上形成知识建构。例如在“元角分的认识”的教学中,我们可以模拟的商品购销活动,让学生在模拟现实生活的商品买卖的实践活动中,从生活走进数学,自然而然地引出本节课的学习目标。一些学困生本来对学习有畏惧心理,看到问题就“头痛”,但如果让他们买东西,“算账”却一点不差,商品购销的情境一下子就吸引他们的眼球,他们在“购销”活动中不知不觉地参与学习,从“头痛”到“乐学”,既体验到成功的快乐,树立学习的信心,又体会到数学在实际生活中的应用价值,调动学习的积极性。

四、激发情趣,调动状态,在幽默轻松、寓意深刻但又能激发想象与思维的氛围中揭示学习目标。

数学比较抽象性,不恰当的教学手段会使学生感到枯燥无味,而一个精彩的开场白却可以使学生感受到数学的生动有趣,调动他们投入自主学习。如一年级“第几”这一内容的学习时,可以讲述一个笑话:古时候,有一个人到烧饼店吃烧饼,吃了一个不饱,又吃了一个还是不饱,直到吃完了第四个才感觉吃饱了,他拍了拍肚子,叹口气说:“唉,早知道吃第4个会饱,那我先吃第四个该多好啊!”在大家的笑声中我提出问题:“大家说那个人说的对不对呢?”学生异口同声地答:“不对!”“为什么不对呢?”在學生的积极思维和愉悦的情绪中,教师水到渠成地提出本节课的学习目标,融知识、趣味、思想于一体,寓教于乐,让学生在轻松、愉快的氛围中积极参与新课的学习。以与教学有关的趣闻、笑话作为新知识的切入点,既生动有趣,吸引他们的有意注意,又能帮助学生理解教材,为课堂教学的成功打下基础。

五、直接点题、开门见山,上课开始就直接向学生阐明本节课的学习内容和要求。

对于一些“起始课”,我们直接让学生明确本节课的学习内容,使学生的思维方向很快转移到所要解决的问题上,获得学习的主动权。例如在“测量土地”教学中,上课伊始就直接揭示这节课的学习目标:初步了解测量土地的实际意义;认识标杆、卷尺、测绳等简单的测量工具,并知道它们的不同用途;能用简单的测量工具在地面上测定直线,量出距离,学会用拉绳子的方法测量有关三角形、平行四边形、梯形的高。这种揭示学习目标的好处是使学生明确学习目标,少走弯路,提高学习效率。

例谈小学数学教学目标评价的把握 篇4

一、从关注怎么看到关注看什么

无论是教师、学生还是教材,只要学生学到分数,就必然与“阴影部分”紧密联系起来,教师就会自然地带领学生走进“阴影部分”的世界。“阴影部分”就很自然地成为分数的“代名词”,抑或成为分数的“标签”,促使教师在课堂上引导学生把认识分数的思维集中点指向“阴影部分”,从而使学生形成对分数认识的“概念表象”:阴影部分就是分数。这就抑制了学生对分数概念内涵的真实建构和分数意义的真正理解。

例如,在学生认识“几分之一”后,教师引领学生认识“几分之几”。课堂上教师出示引导学生观察并思考:阴影部分表示多少?生:1/3。紧接着教师出示:引导学生继续观察并追问:现在阴影部分表示多少?生(异口同声):2/3。教师(着急):再看一看是多少?中下等生还是坚持2/3。究其原因:教师教学时,一味地指引学生观察阴影部分,“阴影部分”已在学生的头脑中形成“思维表象”,每当出示“阴影部分”时,学生就会把观察的思维集中点聚焦到“阴影部分”的变化上。第一幅图阴影部分涂了1份,第二幅图阴影部分涂了2份,学生理所当然地说出2/3,这一思维现象符合儿童的认知特点和心理特征。因此教师教学时,引导学生观察不要一味地强化对“阴影部分”的认知,以免误导学生机械地认为“阴影部分”就是分数,重要的是引导学生观察与“阴影部分”有关联的“其他区域”,促使学生对“阴影部分”与“其他部分”及整幅图之间位置、数量等关系的把握与理解,继而在建构分数概念内涵的过程中实现对分数“核心知识”的掌握与内化。

二、从关注怎么算到关注算什么

随着口算在实际运用中不断“受阻”,笔算就随之产生了。即人们不能一口算出得数时,需要借助笔算。这就给一线教师造成概念上的片面理解,认为笔算就是列竖式计算,二者在概念内涵上是等同的,课堂上只要教会学生列竖式计算,学生就掌握了笔算,这就使学生形成笔算的“概念表象”:笔算就是会竖式计算。殊不知,会列竖式计算,只能证明学生已掌握了笔算的基本算法,即怎么用竖式进行计算,学生对于笔算过程中的数位、位数及数的大小含义等“算什么”的“核心知识”并未得到体验与理解。

例如,教学“两位数除以一位数笔算除法”。课堂上教师只是一味地带领学生掌握列竖式的书写格式及其试商方法,在经过几轮训练后,由于此类笔算试商简单,所以全班学生都能很快地掌握两位数除以一位数的竖式计算。因此,在课堂上学生做得又对又快,教师即认为本节课教学目标高效达成。其实如此教学,教师只是解决了“怎么算”的问题,至于笔算除法“算什么”的“核心知识”,学生根本无法涉足。在一次学生质量监测中,笔者出了这样一道题:□3÷6的商是两位数,□里面最小填( );如果74÷□的商是一位数,□里最小填( )。结果,两个括号学生全部填正确的只占30%左右,这足以说明大部分学生在学会了除法竖式计算后对笔算除法究竟是“算什么”的算理根本不会想,也不知道想什么。所以,笔算教学一定要在引领学生掌握“怎么算”的基础上让学生思考被除数和除数之间的位数的关系、数位的关系及数的大小含义等“算什么”的“核心知识”,使学生不仅学会“怎么算”,还能悟出为什么要这样算的道理,在掌握笔算方法的同时,促进计算技能的形成。

三、从关注怎么解到关注解什么

在解方程的教学中,如果教师不能带领学生理解数学概念的核心内涵,学生只能在教师的带领下机械行走,被动模仿,不能真正理解解方程的真正数学含义,只知道解,却不知道为何而解。在学生不能深入理解解方程的“行与思”的过程中,学生的头脑中就会逐渐形成解方程的数学“概念表象”:解方程就是求未知量的值。因此教师教学时,要能抓住数学概念“背后”的核心知识,引导学生展开数学思考,促使学生不仅知道怎么解,更重要的是对于解方程解什么的“核心知识”的真正掌握。

例如,在教学“ax+bx=c”类型的方程中,学生竟然写出了如下解方程的过程:

x+60%x=48

解:1.6x=48

x=48÷1.6

x=30

60%x=30×60%=18

学生不仅求出x的值,还求出60%x的值,认为解方程就是把方程中所有未知项的值都求出来。而且在教师强调多次以后,此情况依然没有完全改变。这一方面说明学生对“解方程”的概念建立不深刻,认为“解方程”就是求未知项的值,不理解每道方程等式中每个未知项之间的关系。另一方面说明一线教师在引导学生解方程时,一味地强调教会学生解方程的方法及手段,注重凸显了“解方程”过程中“运算”的功能,却忽视了“解方程”背后未知项的含义,即“解方程”中“运算”的最终目标和结果指向谁?求方程“解”的过程是“解什么”的过程?学生只知道机械求出方程中所有未知项的值,却很少对“方程”“解方程”“方程的解”等与方程有关的数学概念的“核心知识”进行深入思考与反思。因此,在平时的教学实践中,一线教师要从学生思路出发,从数学概念内涵出发,引领学生领悟“解什么”比“怎么解”更具意义和价值,要使学生在掌握数学概念和形成数学技能的道路上做到先“思”而后“行”,唯有如此,才能有效促进学生数学思想、方法的感悟和形成。

四、从关注怎么比到关注比什么

在教学概念的形成过程中一直彰显着“生活意义”和“算术意义”两种特性,使数学知识既来源于生活又应用于生活。因此,提高学生的实践运用能力和解决实际问题能力,理应是贯穿每节数学课的“守恒”目标。所以,教师一方面要创设情境,让学生理解数学概念的“生活定义”,另一方面要让学生把握“概念表象”背后的数学意义,从而促进学生灵活运用数学概念解决生活问题。

例如,一位教师在教学“比例尺”时,为了让学生能牢牢地记住比例尺是“图上距离∶实际距离”,而不能混淆为“实际距离∶图上距离”,在课堂上引出丰富多彩的地图引导学生观察思考:何为图上距离?何为实际距离?最终揭示:比例尺就是“图上距离”与“实际距离”的比。课堂上看似学生学得兴致盎然,轻松接收,殊不知,虽然“图上距离∶实际距离 = 比例尺”这个数学“概念表象”上呈现出“图上距离、实际距离”两个概念要素,可是在实际运用中,“图上距离”如何呈现?“实际距离”又如何呈现?“比例尺”这个比所呈现的形式又是什么?这些隐藏在比例尺概念中的“核心知识”学生全然不知,所以真正让学生根据实际情境求比例尺时,学生的错误率极高,几乎没有学生能很快算出准确的比例尺。

究其原因,是教师在课堂上过多地引导学生关注“比例尺 = 图上距离∶实际距离”的概念表象,却忽略了比例尺概念背后的核心知识。如何使学生又对又快地得出“1∶( )”形式的比例尺,需要一线教师在教学时激活学生与比例尺相关联的已有知识和经验,引领学生真正走进比例尺概念含义的建构过程中。

例如,求比例尺:图上距离2.4厘米,实际距离60千米。

虽然学生能很快得出比例尺就是2.4厘米∶60千米,可是怎样才能得出简洁、明了、规范的比例尺呢?课堂上大部分学生一脸茫然、无从下手,不知道从哪儿开始着手思考。如果教师告诉学生这里首先进行长度单位的换算,再进行比的化简,学生依然错误率很高,因为学生对于求比例尺的一般方法和操作步骤是一片空白,这就需要教师在激活学生已有知识经验的基础上要引导学生掌握求比例尺可操作的“抓手”。教学中可引导学生进行如下操作,一边规范书写一边思考:

2.4厘米∶60千米

=2.4∶6000000

=1∶2500000

(1)千米化成厘米可以怎样想?引导学生逐步思考:1千米 =1000米,1米 =100厘米,所以,只需在“60”末尾先添几个0?再添几个0?

(2)把2.4∶6000000化简成1∶( )的形式可以怎样操作?

生1:先把比的前项“2.4”转化成整数“24”,再把比的前后项同时除以24。

生2:可以直接用60除以2.4再添上5个0。

学生经历如此求比例尺的过程后,就会在头脑中形成求比例尺的一般方法与步骤,继而形成解决问题的技能,这一过程促使学生把长度单位的转化、比的性质、比的化简等与比例尺有关的“核心知识”迁移到比例尺的数学概念中去,使比例尺数学概念的内涵与外延在学生的脑海里得到建立与完善,促进学生对比例尺数学意义的深刻理解与建构。

小学数学课堂教学目标设计的策略 篇5

摘 要:教学目标设计的策略是教学目标设计的方式与方法的组合,是连接教学目标设计理论和实践的中介,因此,它对小学数学教师进行课堂教学目标设计具有直接的指导意义。现结合理论学习和实践研究,概括出了几点目标设计策略,以供参考。

关键词:数学教学;全面与简洁;过程目标与终极目标;心理描述与行为描述

中图分类号:G622 文献标识码:B 文章编号:1002-7661(2015)18-104-02

一、全面与简洁相结合

教育的宗旨是促进学生的发展。小学数学教学目标要反映全面发展的要求,注重知识与技能、数学思考、解决问题、情感与态度四个方面的有机整合,突出思想启迪、精神感悟、人格塑造等人的发展目标。这就要求进行教学目标设计时,要把知识技能、能力方法、情感态度等目标都考虑到。但是,课堂教学时间是有限的,目标设计也不可能将所有目标面面俱到。因此,如何设计全面而又简洁的数学课堂教学目标就成为很多人研究的对象。有人认为,设计上位目标如学科目标和单元目标要全面,而课时教学目标只要关注知识和能力目标就可以了;也有人提出数学课堂教学目标“只要描述双基目标就可以了”,认为“情感目标其实是附皮之毛”,渗透于其他目标之中的,“无需言传只要意会即可”(刘家宏,2005)。这些意见虽然片面偏激,但是有两点意见是可取的:第一,进行课堂教学目标设计应该确定基本目标,突出重点目标;第二,关注知识目标。知识是促进学生发展的载体,知识的学习过程与结果,引领着学生发展的方向和程度,“知识技能目标是基础和前提,方法能力目标是工具和武器,情感态度目标是内驱力和政治立场”(白月桥,2004)。因此,双基目标是最基础的目标。

正因为如此,在进行数学课堂教学目标设计时,建议首先设计双基目标,再设计其他范畴的目标,在此基础上,确定主要目标,形成课堂教学目标。以四年级上册《简单数据整理》为例,首先设计它的知识技能目标,如知道原始数据与数据整理的含义、了解统计表与统计图的组成、会看简单的统计图表、明确条形图的意义、会填写统计表、能根据条形图回答问题等,其中课堂的主要目标是会看统计表和条形统计图;在此基础上再确定与双基目标相对应的其他范畴的目标,如初步掌握数据的整理方法、养成仔细观察和分析的习惯、体验统计图的简洁明了和条形图的形象直观、感受数学与生活的密切联系、在学习过程中有良好的情感体验、发展信息意识、形成初步的统计意识和能力等,其中基本目标为初步认识数据的整理方法,体验统计表的简洁明了和条形图的形象直观;最后将选定的目标整合在一起,并进行适当的处理就可以得出完整的课堂教学目标,如“初步经历收集、整理数据的过程,会看简单的统计表和条形统计图,初步掌握数据的整理方法,体验统计表的简洁明了和条形图的形象直观”。

这种以知识为载体、以学生全面发展为宗旨、以提高学生素质为主线制定的数学课堂教学目标,前后相呼应,形成了一个整体,在表述上有取有舍,充分体现了目标既要全面又要突出重点的要求。

二、过程目标与终极目标相结合

过去,人们一直认为教学目标是教学预期的结果,因此,教学目标一般描述的是知识和能力发展的终端结果,没有把学生获得知识和形成数学能力的过程纳入目标内容。在目标描述上基本都采用了“培养学生……”“掌握……知识”的方式。以“小数点位置移动引起小数大小的变化”为例,过去制定的目标是“使学生理解和掌握小数点位置的移动引起小数大小变化的规律,培养学生的思维能力”。这种只关注结果、不关注过程的教学目标,对数学教学和学生学习没有多大的意义,形同虚设。新一轮数学课程改革认识到这一弊端带来的危害,突出强调学习过程的价值,认识到经历过程不单单是为了获得知识技能方法这些结果,它还会带给学生探索的体验、创新的尝试、实践的机会和发现的能力,这些比具体的结果更重要。但是这并不是说结果不重要,实际上新课程还提出了学习过程与学习结果并重的思想。根据这一思想在进行教学目标设计时既要重视知识技能等结果的描述,更要重视这些结果形成过程的描述,使用形成、养成、经历、体验、探索等刻画数学活动水平的过程性目标动词。

仍以“小数点位置移动引起小数大小的变化”的目标设计为例,根据过程目标与终结目标相结合的策略,可以将目标制定为“经历小数点位置移动引起小数大小变化规律的探究过程,理解并掌握规律,体验探究发现的乐趣,形成初步的探究意识和能力”。

这样设计的教学目标,使目标从结果走向过程与结果的整合,从单一片面走向多层面立体的整合,由静态走向动态与静态的整合,不仅体现了过程目标与终极目标相结合的要求,而且赋予了教学目标以“生命”的活力和意义。

三、心理描述与行为描述相结合

教学目标既是教师在教学中调控教学和进行评价的依据,也是学生学习的标准,这就要求教学目标必须具体、准确,目标的描述一般也要采用行为描述,并使用能够观察与测量的行为动词,如写出、说出、指出、比较等。但是,在研制目标的过程中,人们发现目标的行为描述并非十全十美,它存在以下不足:(1)有些范畴(如情感、态度、审美、人格)的目标,用外显行为动词表述是很困难的;(2)行为目标也很难准确地反映隐性目标。如“掌握分数的意义”“体验数学学习的乐趣”等目标,改为行为描述不是一两句话能表述清楚的。因此,人们又开始关注目标的心理描述。心理描述通常使用一些能愿感官动词,如愿意、乐于、欣赏、了解等,它的优点是概括性和完备性较强,在一定程度上起着把握教与学总方向的作用;它的不足也很明显,即具体性和可操作性较差。为了使目标的完备性与可操作性都得以体现,在小学数学课堂教学目标的描述上,应采用心理描述和行为描述相结合的思路。

四、多维分析与综合设计相结合

所谓多维分析,就是依据义务教育阶段数学课程目标和目标分类理论的要求,从多个维度(如知识技能、过程方法、能力、情感态度)来分析课堂教学目标。所谓综合设计,是指对教学目标的不同层面(如课程目标、单元目标、课时目标)和学生发展状况的不同层次进行通盘思考,并对不同维度的教学目标进行整合。多维分析与综合设计是制定教学目标两个很重要的方面,缺一不可。多维分析保证了教学目标多元性与均衡性,综合设计保证了目标的准确性与全面性,保证了不同层面的教学目标与不同维度的教学目标前后连贯、动态整合、形成合力。因此,小学数学课堂教学目标设计既要进行多维分析,又要进行综合设计。

小学数学目标教学 篇6

一、透视《标准》与教材

1.解决问题“形虽散而神不散”

毋庸置疑,教师上课前需专心研读《标准》与教材。首先,义务教育《数学课程标准(实验稿)》(以下简称“《标准》”)对解决问题的目标作如下描述:(1)初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识与技能解决问题,发展应用意识。(2)形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。(3)学会与人合作,并能与他人交流思维的过程与结果。(4)初步形成评价与反思的意识。《标准》将解决问题作为课程的具体目标之一单独提出,表明不仅把“解决问题”作为课程内容,而且还作为必须实现的目标,这也与当前国际数学教育的发展潮流相一致。

其次,通过对使用的各版本的小学数学教材的篇章结构分析不难发现,各版本的小学数学教材均没有采用系统的应用题章节,取而代之的是将“解决问题”以单元形式或问题探究形式分布于各年级教材中,并且将“解决问题”的教学贯穿于“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四个学习领域之中。教材紧靠《标准》的内容设计,与《标准》相辅相成,改变了过去教材应用题重“数量关系”而轻“应用能力”的一贯面貌,既体现了学生学习过程中“解决问题”生活化,又打破了应用题教学缺乏生机活力的旧局面,丰富了情境创设,突出了学生实践与应用能力培养的重要性,有助于学生知识学习的内化,也更有利于学生解决实际生活问题。

当然,由于《标准》将“解决问题”单独提出并且现行教材中“解决问题”内容形式“分散”的特点,教师教学时需进行整体思考。

仔细研读《标准》、教材,把握好解决问题教学的结构体系,抓好解决问题教学具体学段的主线,做到有教必备,胸有成竹。

厘清教学思维脉络,合理扬弃以往应用题的单元教学、数量关系教学的套路,把握好解决问题的关键;

情境的创设与要解决的问题本身应具有數学上的契合点,发挥数学来源于生活又高于生活的优势,教师课堂自主拓展应便于学生探究学习,努力朝着学生自主探究、发现数学的方向发展。

注重解决问题的情境创设与整个义务教育各学段数学知识的融汇贯通,使学生数学知识的掌握系统化并且使应用回归于生活。

2.问题解决“要求虽高而非高不可攀”

1978年,教育部颁发了《全日制十年制学校小学数学教学大纲(试行草案)》,在知识目标中,代数初步知识首次下放到小学,此时小学数学基础知识主要包括:算术知识、代数初步知识和几何初步知识,课程名称也由“小学算术”改为“小学数学”。在能力目标中,明确地将“逻辑推理能力”改为“逻辑思维能力”,将“解答应用题的能力”改为“解决简单的实际问题的能力”。显然,这是对学生思维与应用意识要求逐步提高的表现。不仅如此,20世纪80年代以来,国际上倡导“解决问题”的数学教学模式,在问题的障碍性和探究性方面也提出了更高的要求。

首先,以往的应用题虽有障碍性与探索性,教材最近发展区的设置也基本合乎学生的年龄和心理发展特点的,也就是说,学生能“跳一跳,够得着”。但与解决问题相比较,应用题却缺乏对学生实际情境分析的“路障”设置,纵然学生通过分析其间的数量关系,计算求解得到了答案,但免不了有纸上谈兵的嫌疑。的确,以往的应用题教学学生通过努力学习后学会了如何计算、如何作答。并且有数据显示,我国在国际数学奥林匹克(IMO)中总能取得优异的成绩,但学生实际应用的能力有没有真正提高呢?回答是否定的,不少学生成了解题的工具。

其次,尽管解决问题增添了学生理解问题中图形、文字等表达与形式上的困难,但是丰富的问题情境,更增加了问题的趣味性和可读性,有利于学生数学兴趣和数学素养的形成。例如,山东版小学数学教科书一年级统计部分创设了“我换牙了”的数学问题情境。从内容和学生综合素质发展方面讲,教材根据学生所处的年龄阶段遇到的真实发生在学生个人身上的生活细节来创建问题情境,既联系了生活实际,促进了学生的自我成长空间的关注度,同时既增加了数学信息的可读性和趣味性,又能帮助学生把抽象的知识形象化、具体化,便于学生更好地理解所学的数学知识。从培养学生思维能力方面讲,教材中问题解决的设置,使学生经历了“现实题材-提出数学问题-建立数学模型-研究运用数学方法-解决问题”的探究过程,解决问题的数学教学也不再是单纯的无意义的机械训练。

教学中,教师一定要充分挖掘教材的潜在资源,以《标准》为准绳,创造性地开发使用教材,拓展教学探究空间,扩大问题的开放性,使学生在熟悉的生活情境中学数学、用数学。数学问题情境的创设既要使学生从心理上产生问题认同感,激起学生真正解决问题的兴趣,主动进行信息的提取与加工,又要使学生产生认知冲突。因此,教师应提出与问题解决教学相契合的数学问题,只有这样才能使学生真正理解问题之所在,并发自内心的想要解决问题,达到认知理解的新局面,发展学生的应用能力,提高学生的数学综合素质。

二、聚焦教材与“解决问题”的教学内容

与过去的应用题教学相比较,当前数学解决问题的教学内容更丰富,表现为三个方面:

一是注意创设实际情境,类似于数学建模的“压缩版”,这有助于培养学生发现问题、提出问题、分析问题和解决问题的能力。例如,苏教版小学数学教材第一册第16页关于“0”的教材中,通过图画中小白兔采蘑菇、拔萝卜的具体情境,适合了学生的年龄与心理特征,直观形象地将“0”与“没有”联系起来。教材中,内容与情境创设像网一样交织在一起,因此,要求教师在理解教材的内容的前提下,创设合适问题情境。在教学“0”的认识时,可以创设这样的情境:教师启发学生说出生活中哪些地方见过“0”,在学生积极的配合下,学生可能会回答“直尺上有0”“温度计上有0”“电话号码中有0”“天气预报中有0”“旺旺果奶上有0”……这样便能把本来单纯的数字和学生熟悉的现实生活有机地联系起来,使之产生亲近感,既满足了学生的心理需要,学生也更乐于动脑、动口、动手,也增强了学生的自信心。

二是摒弃不合理的分类型、套公式的做法,在不脱离原来基本结构与基本变换的基础上,着重掌握基本数量关系,发展数量关系的基本复合,贯穿基本数学思想。《数学课程标准》指出:“数学教学要符合学生的认知水平。”心理学研究也表明“学生对一个概念的理解与否,更重要的是看其能否在具体情境中加以正确应用,而不是背诵或复述某个概念的抽象意义。”因此,教师不宜过早地用统一、抽象的符号或数学语言要求学生,更不能将数量关系式生硬地塞给学生。

新教材在对基本数量关系的理解和掌握上没有提出过高的要求,对数学模型的抽象也没有追求程式化的表达,但这并不表示基本的数量关系已经不需要学生去理解和认识了。事实上,数量关系的理解,基本数学模型的建立,基本数学思想的贯穿在“解决问题”教学中同样重要。只不过新教材在对基本数量关系的认识和理解上,希望学生能够通过具体问题的解决有所感悟,并能应用具体情境来进行表达。

三是恰当提高了教学内容的复杂程度,要求教学适合学生的年龄特点和心理水平,因势利导,循序渐进。“解决问题”中的“问题”既有非常规性问题,又有应用型问题,其解题形式也无固定的章法可依。因此,解决问题的教学是小学数学教学中比较困难的部分,也注定了研究解决问题的教学时须着眼于具体的问题情境,致力于发展学生的数学思维能力,提高学生创新与创造的能力。教学中,良好的开端是成功的一半,因此,教师首先要提高学生解决基本问题、常规性问题的能力。

基于小学数学教学内容本身基础性较强,教师自身良好的数学专业素养也能促进学生的对于问题解决的学习。因此,教师要掌握小学数学教学内容准确性以及表达的趣味性、严谨性、准确性,既使学生乐在其中,也能让学生体会到原汁原味的“数学美”。

三、洞悉教材与“解决问题”的教学策略

在新课程理念下,“解决问题”在把“提出问题、解决问题”作为目标的同时,体验解决问题策略的多样性也成为了“解决问题”的目标内涵之一。那么,教学中又该如何实现“解决问题”策略的多样化目标呢?

周玉仁教授指出:“在解决实际问题时,学生实际上完成了两个转化。從纷乱的实际问题中获取有用的信息,抽象成数学问题,这是第一个转化;然后分析其数量关系,用数学的方法求解或近似解,并在实际中检验,这是第二个转化。”笔者认为,因为数学思维的逻辑性、灵活性、深刻性、广阔性、批判性,学生在完成以上两个转化的基础上,还应该完成举一反三,触类旁通的第三类转化,即解题策略与算法多样化的转化。例如:在教学解决问题的画图策略时,就应该让学生从具体的行为上升为意识,教师应把握三个时机:第一个时机是在学生理解题意有困难,找不到问题所在、想不到解题方法时。此时,不要为学生解释题意和提示算法,而是要引导其通过画图整理信息,理解题意、抽象出问题、形成思路、寻找解法。第二个时机是学生在解决完问题后,要引导其认识画图整理信息的作用,启发学生在以后的解题中自觉地使用。第三个时机是当学生已经掌握了问题解决中的一类画图方法时,提示学生根据问题的情境思考有无其他的画图策略,也能解决问题本身。把握这三个时机对于学生完成解决问题转化极其重要。

传统的应用题教学,教师更多以列式计算来呈现问题解决的全过程。这是由传统应用题封闭的结构特征与追求程式化的解题过程的教学理念决定的。如今,考虑到《标准》理念的更新、教材结构内容的改变,教学时,教师应以学生为主体,突出解决问题教学的过程性与学生的参与性。例如:苏教版五年级上册第6单元解决问题的策略第63-67页教材内容:

例1、王大叔用1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?

例2、订阅下面的杂志,最少订阅1本,最多订阅3本。有多少种不同的订阅方法?

例3、旅游团23人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有多少种不同的安排?

对于这样的问题,通过列式计算来解决问题就不太恰当,然而如果采用列举法、穷举法问题便迎刃而解了。

因此,解决问题的教学策略的选择应根据“新课程目标理念”的变化以及具体教学内容的特点;在这个问题上,可以让学生先表述解题思路并提出问题,教师充当课堂教学的组织者,引导学生交流,将所有的情况一一列举出来,做到不重复不遗漏,促进思维发展,并通过学生的思路反馈,帮助学生自主建构问题解决的策略,逐步解决问题。当然要完成“解题策略”的多样化,除了教师在教学时要注重对学生解题策略的正确引导以外,还应该把握好时机,加强学生“一题多解”的思维锻炼,做到“润物细无声”,使学生自然、自觉地完成转化。

《标准》的实施,使得解决问题的目标理念改变,教材形式、体系格局改变,内容名称改变(“应用题”到“解决问题”),促使人们对于问题解决的教学研究,从操作应用技术层面得到提升,使理论与实践交相辉映。在进行解决问题的教学时,关注生活实际,并使生活问题数学化,让学生尝试从不同的角度寻求解决问题的方法并能有效地解决问题,促进数学的生活化,并且尝试评价不同方法之间的差异,使学生体会在解决问题的过程中与他人合作交流的愉悦和成就感。

参考文献

[1] 宋乃庆,张奠宙.小学数学教育概论.北京:高等教育出版社,2008.

[2] 刘久成.60年我国小学数学课程目标的比较与分析.中小学教师培训,2011(4).

小学数学目标教学 篇7

一、透视《标准》与教材

1. 解决问题“形虽散而神不散”

毋庸置疑, 教师上课前需专心研读《标准》与教材。首先, 义务教育《数学课程标准 (实验稿) 》 (以下简称“《标准》”) 对解决问题的目标作如下描述: (1) 初步学会从数学的角度提出问题、理解问题, 并能综合运用所学的知识与技能解决问题, 发展应用意识。 (2) 形成解决问题的一些基本策略, 体验解决问题策略的多样性, 发展实践能力与创新精神。 (3) 学会与人合作, 并能与他人交流思维的过程与结果。 (4) 初步形成评价与反思的意识。《标准》将解决问题作为课程的具体目标之一单独提出, 表明不仅把“解决问题”作为课程内容, 而且还作为必须实现的目标, 这也与当前国际数学教育的发展潮流相一致。

其次, 通过对使用的各版本的小学数学教材的篇章结构分析不难发现, 各版本的小学数学教材均没有采用系统的应用题章节, 取而代之的是将“解决问题”以单元形式或问题探究形式分布于各年级教材中, 并且将“解决问题”的教学贯穿于“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四个学习领域之中。教材紧靠《标准》的内容设计, 与《标准》相辅相成, 改变了过去教材应用题重“数量关系”而轻“应用能力”的一贯面貌, 既体现了学生学习过程中“解决问题”生活化, 又打破了应用题教学缺乏生机活力的旧局面, 丰富了情境创设, 突出了学生实践与应用能力培养的重要性, 有助于学生知识学习的内化, 也更有利于学生解决实际生活问题。

当然, 由于《标准》将“解决问题”单独提出并且现行教材中“解决问题”内容形式“分散”的特点, 教师教学时需进行整体思考。

仔细研读《标准》、教材, 把握好解决问题教学的结构体系, 抓好解决问题教学具体学段的主线, 做到有教必备, 胸有成竹。

厘清教学思维脉络, 合理扬弃以往应用题的单元教学、数量关系教学的套路, 把握好解决问题的关键;

情境的创设与要解决的问题本身应具有数学上的契合点, 发挥数学来源于生活又高于生活的优势, 教师课堂自主拓展应便于学生探究学习, 努力朝着学生自主探究、发现数学的方向发展。

注重解决问题的情境创设与整个义务教育各学段数学知识的融汇贯通, 使学生数学知识的掌握系统化并且使应用回归于生活。

2. 问题解决“要求虽高而非高不可攀”

1978年, 教育部颁发了《全日制十年制学校小学数学教学大纲 (试行草案) 》, 在知识目标中, 代数初步知识首次下放到小学, 此时小学数学基础知识主要包括:算术知识、代数初步知识和几何初步知识, 课程名称也由“小学算术”改为“小学数学”。在能力目标中, 明确地将“逻辑推理能力”改为“逻辑思维能力”, 将“解答应用题的能力”改为“解决简单的实际问题的能力”。显然, 这是对学生思维与应用意识要求逐步提高的表现。不仅如此, 20世纪80年代以来, 国际上倡导“解决问题”的数学教学模式, 在问题的障碍性和探究性方面也提出了更高的要求。

首先, 以往的应用题虽有障碍性与探索性, 教材最近发展区的设置也基本合乎学生的年龄和心理发展特点的, 也就是说, 学生能“跳一跳, 够得着”。但与解决问题相比较, 应用题却缺乏对学生实际情境分析的“路障”设置, 纵然学生通过分析其间的数量关系, 计算求解得到了答案, 但免不了有纸上谈兵的嫌疑。的确, 以往的应用题教学学生通过努力学习后学会了如何计算、如何作答。并且有数据显示, 我国在国际数学奥林匹克 (IMO) 中总能取得优异的成绩, 但学生实际应用的能力有没有真正提高呢?回答是否定的, 不少学生成了解题的工具。

其次, 尽管解决问题增添了学生理解问题中图形、文字等表达与形式上的困难, 但是丰富的问题情境, 更增加了问题的趣味性和可读性, 有利于学生数学兴趣和数学素养的形成。例如, 山东版小学数学教科书一年级统计部分创设了“我换牙了”的数学问题情境。从内容和学生综合素质发展方面讲, 教材根据学生所处的年龄阶段遇到的真实发生在学生个人身上的生活细节来创建问题情境, 既联系了生活实际, 促进了学生的自我成长空间的关注度, 同时既增加了数学信息的可读性和趣味性, 又能帮助学生把抽象的知识形象化、具体化, 便于学生更好地理解所学的数学知识。从培养学生思维能力方面讲, 教材中问题解决的设置, 使学生经历了“现实题材-提出数学问题-建立数学模型-研究运用数学方法-解决问题”的探究过程, 解决问题的数学教学也不再是单纯的无意义的机械训练。

教学中, 教师一定要充分挖掘教材的潜在资源, 以《标准》为准绳, 创造性地开发使用教材, 拓展教学探究空间, 扩大问题的开放性, 使学生在熟悉的生活情境中学数学、用数学。数学问题情境的创设既要使学生从心理上产生问题认同感, 激起学生真正解决问题的兴趣, 主动进行信息的提取与加工, 又要使学生产生认知冲突。因此, 教师应提出与问题解决教学相契合的数学问题, 只有这样才能使学生真正理解问题之所在, 并发自内心的想要解决问题, 达到认知理解的新局面, 发展学生的应用能力, 提高学生的数学综合素质。

二、聚焦教材与“解决问题”的教学内容

与过去的应用题教学相比较, 当前数学解决问题的教学内容更丰富, 表现为三个方面:

一是注意创设实际情境, 类似于数学建模的“压缩版”, 这有助于培养学生发现问题、提出问题、分析问题和解决问题的能力。例如, 苏教版小学数学教材第一册第16页关于“0”的教材中, 通过图画中小白兔采蘑菇、拔萝卜的具体情境, 适合了学生的年龄与心理特征, 直观形象地将“0”与“没有”联系起来。教材中, 内容与情境创设像网一样交织在一起, 因此, 要求教师在理解教材的内容的前提下, 创设合适问题情境。在教学“0”的认识时, 可以创设这样的情境:教师启发学生说出生活中哪些地方见过“0”, 在学生积极的配合下, 学生可能会回答“直尺上有0”“温度计上有0”“电话号码中有0”“天气预报中有0”“旺旺果奶上有0”……这样便能把本来单纯的数字和学生熟悉的现实生活有机地联系起来, 使之产生亲近感, 既满足了学生的心理需要, 学生也更乐于动脑、动口、动手, 也增强了学生的自信心。

二是摒弃不合理的分类型、套公式的做法, 在不脱离原来基本结构与基本变换的基础上, 着重掌握基本数量关系, 发展数量关系的基本复合, 贯穿基本数学思想。《数学课程标准》指出:“数学教学要符合学生的认知水平。”心理学研究也表明“学生对一个概念的理解与否, 更重要的是看其能否在具体情境中加以正确应用, 而不是背诵或复述某个概念的抽象意义。”因此, 教师不宜过早地用统一、抽象的符号或数学语言要求学生, 更不能将数量关系式生硬地塞给学生。

新教材在对基本数量关系的理解和掌握上没有提出过高的要求, 对数学模型的抽象也没有追求程式化的表达, 但这并不表示基本的数量关系已经不需要学生去理解和认识了。事实上, 数量关系的理解, 基本数学模型的建立, 基本数学思想的贯穿在“解决问题”教学中同样重要。只不过新教材在对基本数量关系的认识和理解上, 希望学生能够通过具体问题的解决有所感悟, 并能应用具体情境来进行表达。

三是恰当提高了教学内容的复杂程度, 要求教学适合学生的年龄特点和心理水平, 因势利导, 循序渐进。“解决问题”中的“问题”既有非常规性问题, 又有应用型问题, 其解题形式也无固定的章法可依。因此, 解决问题的教学是小学数学教学中比较困难的部分, 也注定了研究解决问题的教学时须着眼于具体的问题情境, 致力于发展学生的数学思维能力, 提高学生创新与创造的能力。教学中, 良好的开端是成功的一半, 因此, 教师首先要提高学生解决基本问题、常规性问题的能力。

基于小学数学教学内容本身基础性较强, 教师自身良好的数学专业素养也能促进学生的对于问题解决的学习。因此, 教师要掌握小学数学教学内容准确性以及表达的趣味性、严谨性、准确性, 既使学生乐在其中, 也能让学生体会到原汁原味的“数学美”。

三、洞悉教材与“解决问题”的教学策略

在新课程理念下, “解决问题”在把“提出问题、解决问题”作为目标的同时, 体验解决问题策略的多样性也成为了“解决问题”的目标内涵之一。那么, 教学中又该如何实现“解决问题”策略的多样化目标呢?

周玉仁教授指出:“在解决实际问题时, 学生实际上完成了两个转化。从纷乱的实际问题中获取有用的信息, 抽象成数学问题, 这是第一个转化;然后分析其数量关系, 用数学的方法求解或近似解, 并在实际中检验, 这是第二个转化。”笔者认为, 因为数学思维的逻辑性、灵活性、深刻性、广阔性、批判性, 学生在完成以上两个转化的基础上, 还应该完成举一反三, 触类旁通的第三类转化, 即解题策略与算法多样化的转化。例如:在教学解决问题的画图策略时, 就应该让学生从具体的行为上升为意识, 教师应把握三个时机:第一个时机是在学生理解题意有困难, 找不到问题所在、想不到解题方法时。此时, 不要为学生解释题意和提示算法, 而是要引导其通过画图整理信息, 理解题意、抽象出问题、形成思路、寻找解法。第二个时机是学生在解决完问题后, 要引导其认识画图整理信息的作用, 启发学生在以后的解题中自觉地使用。第三个时机是当学生已经掌握了问题解决中的一类画图方法时, 提示学生根据问题的情境思考有无其他的画图策略, 也能解决问题本身。把握这三个时机对于学生完成解决问题转化极其重要。

传统的应用题教学, 教师更多以列式计算来呈现问题解决的全过程。这是由传统应用题封闭的结构特征与追求程式化的解题过程的教学理念决定的。如今, 考虑到《标准》理念的更新、教材结构内容的改变, 教学时, 教师应以学生为主体, 突出解决问题教学的过程性与学生的参与性。例如:苏教版五年级上册第6单元解决问题的策略第63-67页教材内容:

例1、王大叔用1米长的栅栏围成一个长方形羊圈, 有多少种不同的围法?

例2、订阅下面的杂志, 最少订阅1本, 最多订阅3本。有多少种不同的订阅方法?

例3、旅游团23人到旅馆住宿, 住3人间和2人间 (每个房间不能有空床位) , 有多少种不同的安排?

对于这样的问题, 通过列式计算来解决问题就不太恰当, 然而如果采用列举法、穷举法问题便迎刃而解了。

因此, 解决问题的教学策略的选择应根据“新课程目标理念”的变化以及具体教学内容的特点;在这个问题上, 可以让学生先表述解题思路并提出问题, 教师充当课堂教学的组织者, 引导学生交流, 将所有的情况一一列举出来, 做到不重复不遗漏, 促进思维发展, 并通过学生的思路反馈, 帮助学生自主建构问题解决的策略, 逐步解决问题。当然要完成“解题策略”的多样化, 除了教师在教学时要注重对学生解题策略的正确引导以外, 还应该把握好时机, 加强学生“一题多解”的思维锻炼, 做到“润物细无声”, 使学生自然、自觉地完成转化。

《标准》的实施, 使得解决问题的目标理念改变, 教材形式、体系格局改变, 内容名称改变 (“应用题”到“解决问题”) , 促使人们对于问题解决的教学研究, 从操作应用技术层面得到提升, 使理论与实践交相辉映。在进行解决问题的教学时, 关注生活实际, 并使生活问题数学化, 让学生尝试从不同的角度寻求解决问题的方法并能有效地解决问题, 促进数学的生活化, 并且尝试评价不同方法之间的差异, 使学生体会在解决问题的过程中与他人合作交流的愉悦和成就感。

参考文献

[1]宋乃庆, 张奠宙.小学数学教育概论.北京:高等教育出版社, 2008.

[2]刘久成.60年我国小学数学课程目标的比较与分析.中小学教师培训, 2011 (4) .

小学数学目标教学 篇8

国家课程标准是课程改革的纲领性文件, 它具有法定性、核心性、指导性的地位和作用, 也是新课程实施过程中教师教和学生学的直接依据. 新教材是按三维目标设计的, 除了知识点也考虑了方法、情感因素, 需要教师去仔细体味, 充分挖掘. 新教材在内容安排上具有较大的弹性, 教师在使用时必须进行加工处理, 一方面教材上出现的内容不一定都讲, 另一方面教材上较为概要或没有的内容需要适当展开或补充, 如何取舍增补, 都需要教师去深入探讨分析. 只有这样, 才能更好地理解和把握教材, 进而提出恰当、准确的教学目标, 发挥好教材应有的作用.

二、注意教学目标制定的整体性与全面性

新课程的课堂教学十分注重追求知识技能、过程方法、情感态度价值观三个方面的有机整合, 注重结论与过程的有机融合, 知识与能力的和谐发展, 情感体验、道德生活的整体关怀.

如苏教版国标教材第五册“整十数、两位数除以一位数”, 教参拟定的教学目标是“使学生理解整十数、两位数除以一位数的算理, 掌握计算方法, 并能正确计算”. 这样进行设定是不能满足学生的认知需要的, 是不够全面的. 所以, 我们把这节课的教学目标设定为:使学生经历探索两位数除以一位数计算方法的过程, 掌握整十数、两位数除以一位数 (每一位都能整除) 的口算和两位数除以一位数 (首位能整除) 的笔算方法;通过比较、讨论, 感悟出竖式计算的优越性, 能正确进行计算, 初步学会进行简单的、有条理的思考, 能运用两位数除以一位数的除法解决一些实际问题, 感受数学与日常生活的密切联系.

三、注意教学目标制定的共同性与差异性

由于每名学生的文化背景、知识基础、思维水平不同, 在制定教学目标时要考虑学生的共性要求, 还要关注学生个性需求, 要注意柔性设计, 即教学目标的制定要留有适当的余地, 弹性化地将目标落实.

如苏教版义务教材第九册“商的近似值”的教学, 统一的教学目标要求:使学生掌握用四舍五入法截取商的近似值的方法, 能按需要在小数除法的计算中正确地截取商的近似值.而对于“结合生活实例, 使学生了解截取商的近似值的应用价值, 并能在生活中灵活解决实际问题, 体验数学与生活的紧密联系”这一教学目标则不能一刀切, 要求人人达到同一尺度.

四、注意教学目标制定的显性与隐性

知识与技能目标是显性的, 方法与过程、情感态度价值观的目标是隐性的. 制定教学目标时要对抽象的目标结果给予明确的界定, 引导教学的展开, 同时关注学习过程性与体验性、隐性与潜在性, 使之尽量具体, 具有可操作性.

在设定目标的时候, 教者在认真分析教学内容及学生特点的基础上, 结合教学过程使用了“经历”“体验”等词语, 把情感态度等方面的隐性要求通过这些词语非常明确地表达出来, 将隐性目标显性化, 形成具体的教学目标. 这样的目标对课堂教学过程具有直接的指导作用, 并且具有可监控性.

五、注意教学目标制定的思维性与思想性

课堂教学目标既要考虑它的广度, 还要注意它的深度.如苏教版义务教材第九册“平均数应用题”的教学, 在制定教学目标时, 其中有一条就是:通过比较第一、第二小组平均每人包饺子的个数, 渗透移多补少、估算、统计抽样等数学思想与方法, 并能根据数字特征选择灵活的方法解决平均数应用题. 这样的教学目标具有很大的空间, 富有挑战性, 激活了学生的思维, 激发了探索的欲望, 激起了原有的知识结构, 渗透了数学的思想与方法, 让学生触摸数学的本质.

六、注意教学目标制定的现实性与逻辑性

数学教材是按照数学知识的逻辑体系和小学生的一般认知规律进行编排的, 具有普遍性、统一性, 所以在确定教学目标时不能仅仅根据教材的逻辑体系, 还要更多考虑学生的现实基础, 使学习内容更富有问题性与挑战性.

比如在苏教版实验版第九册“小数四则混合运算”教学时, 学生在学习了小数加、减、乘、除四则运算和整数四则混合运算的基础上, 对于小数四则混合运算已经没有一点障碍, 教参上的目标是:“理解小数四则混合运算的运算顺序, 能掌握小数四则混合运算的方法, 并能正确计算. ”但学生的现实基础已经超过这一要求, 那就没有必要把教材的要求定为课堂教学目标. 可以把目标定位在“让学生结合具体问题, 应用小数四则混合运算的顺序解决问题, 比较解决的方法和结果, 初步渗透运算定律, 体会整数与小数四则混合运算在实际问题中的不同, 熟练运用小数四则混合运算解决问题, 体验解决问题策略的多样化”.

小学数学目标教学 篇9

关键词:小学数学教学,学习目标,有效性,具体策略

我县现阶段推行的“五学”课堂教学模式包括目标导学、自主研学、合作探学、展示赏学和检测评学五个基本环节,该教学模式把学生放在学习的中心位置,它的有效应用,培养了学生主动学习的习惯,教会了学生学会学习,使学生在学习过程中减轻了压力、增强了自信心,同时也促进了每个学生的个性发展,使“自主、合作、探究”的新课程教学理念得以有效落实。那么,小学数学教师应如何有效结合学科特点,运用好该教学模式,提高教学的实效性呢? 以下我结合自己运用“五学”模式进行课堂教学的实践,着重就新授课的“目标导学”环节如何灵活揭示学习目标, 提高教学有效性的具体策略谈谈自己的体会和思考。

“五学”课堂的五个教学模块具有一定的逻辑递进关系 ,没有“目标导学”的“导”,就不会有“自主探学”的“探”及“合作研学”的“研”。没有问题就没有动力,没有目标就没有方向,自主探学与合作研学时学生必须带着学习问题和目标任务去探去研。从教学目标的实践分析,有的教师揭示目标的方式和时机不妥,造成“形式主义”、“穿靴戴帽”等弊病。要发挥学习目标在优化课堂教学中的导向、调控和反馈功能,更好地引导学生进行有效的自主探究与合作学习,打破只重形式,不求实效的怪圈,是我们时刻要考虑的问题。这个环节的功夫在课外,教师只有深入研究教学内容和分析学情, 才能创设引起学生认知冲突的情境并提出有针对性的学习目标, 激发学生的学习兴趣与求知欲。

一、巧设悬念,以疑激学,在引发学生好奇心时揭示学习目标。

小学生容易被不平常的现象或内容吸引,教师要准确把握新知识的生长点,抓住小学生的好奇心,提出有潜在意义的“挑战性”问题 ,启其心扉 ,促其思维。设置的悬念应具有精、新、奇的特点,在技巧上则应“引而不发”、“令人深思”,促使学生在强烈的求知欲望的驱使下探求知识[1]。例如在教学“能被3整除的数的特征”时 ,教师在黑板上写出几个三位数 ,让学生判断是否能被3整除。学生必须通过笔算才能得到答案而不能很快说出。接着让学生任意报数,教师自己判断。学生开心地纷纷报数,教师对答如流,直接判断出任意一个数能否被3整除。学生被眼前的情景所吸引, 老师用的是什么诀窍呀? ———激发学生的好奇心,他们迫切想知道其中的奥秘。这时教师抓住这一“火候”,把握这个有利时机揭示学习目标:探究能被3整除的数有什么特征? 这样揭示学习目标,就会把学生的思维推向“心求通而不能,口欲言而非达”的愤悱境地,引起对新知强烈的探究愿望[2],让学生在好奇心的驱动下,自觉主动地寻找解决问题的策略和方法,达到有效教学的目的。

二、引导探究,类比迁移,在引导学生探究算理或问题时揭示学习目标。

根据两个或两类数学对象的相似性, 有可能把一个数学对象已知的特殊属性迁移到另一个数学对象上, 使学生的大脑能将两个看似互不相及的知识联系起来。在教学“同分母分数加减法”时,我先让学生观察666+2,问:2与哪个6相加? 2与6相加得到8个什么? 再引导学生回忆整数、小数加减法的实质是什么? (生:是相同计数单位的个数相加减。 )在这个基础上引导探究,1/8和2/8能不能直接相加,为什么? 从而揭示本节课的学习目标。类比既可以帮助学生确定未知的目标,又可以帮助学生寻找解决问题的途径,依据知识之间的相互联系,由一类问题想到另一类问题的处理方法,学生的创造性思维能力在自由联想的天地中获得最大发展。

三、以旧引新,铺路架桥,通过旧知识学习目标的温故,联想递进出新课的学习目标。

例如在教学“百分数应用题”时,先复习分数和百分数的互化及分数应用题,如:“一筐玉米倒出1/4,刚好15斤,这筐玉米共有多少斤? ”接着将题目中的1/4改为25%,引导学生计算,巧妙地把百分数应用题与分数应用题联系起来, 从而揭示出本节课的学习目标:通过探究,能正确地解答各种情形的百分数应用题。数学知识之间有密切的联系,旧知是新知的基础,新知又是旧知的发展和延伸。利用旧知做铺垫,过渡到新知,真正做到“启”而能“发”,激起学生探求新知的欲望[3]。运用这种方法时,教师要努力挖掘新旧知识的相互联系,找准新知识的切入点,使新旧知识建立合理、恰当的联系,顺利完成知识的递进迁移。

四、创设情境,以景激情,让学生在特定的“境”中产生学习的“情”时揭示学习目标。

教学情境是在课堂教学过程中,根据教学内容,为实现教学目标所创设的情感氛围,通过讲故事、玩游戏、做实验等方式,使学生在最短的时间内产生情感共鸣,带着疑问与欲望走进课堂内容的学习, 并在情境创设中对所学内容在认知上形成知识建构[4]。例如在“元角分的认识”的教学中,我们可以模拟的商品购销活动, 让学生在模拟现实生活的商品买卖的实践活动中,从生活走进数学,自然而然地引出本节课的学习目标。一些学困生本来对学习有畏惧心理,看到问题就“头痛”,但如果让他们买东西,“算账”却一点不差,商品购销的情境一下子就吸引他们的眼球,他们在“购销”活动中不知不觉地参与学习,从“头痛”到“乐学”,既体验到成功的快乐,树立学习的信心,又体会到数学在实际生活中的应用价值,调动学习的积极性。

五、激发情趣,调动状态,在幽默轻松、寓意深刻但又能激发想象与思维的氛围中揭示学习目标。

数学比较抽象性,不恰当的教学手段会使学生感到枯燥无味, 而一个精彩的开场白却可以使学生感受到数学的生动有趣,调动他们投入自主学习。如一年级“第几”这一内容的学习时,可以讲述一个笑话:古时候,有一个人到烧饼店吃烧饼,吃了一个不饱,又吃了一个还是不饱,直到吃完了第四个才感觉吃饱了,他拍了拍肚子,叹口气说:“唉,早知道吃第4个会饱,那我先吃第四个该多好啊! ”在大家的笑声中我提出问题:“大家说那个人说的对不对呢? ”学生异口同声地答:“不对! ”“为什么不对呢? ”在学生的积极思维和愉悦的情绪中,教师水到渠成地提出本节课的学习目标,融知识、趣味、思想于一体,寓教于乐,让学生在轻松、愉快的氛围中积极参与新课的学习。以与教学有关的趣闻、笑话作为新知识的切入点,既生动有趣,吸引他们的有意注意,又能帮助学生理解教材,为课堂教学的成功打下基础。

六、直接点题、开门见山,上课开始就直接向学生阐明本节课的学习内容和要求。

对于一些“起始课”,我们直接让学生明确本节课的学习内容,使学生的思维方向很快转移到所要解决的问题上,获得学习的主动权。例如在“测量土地”教学中,上课伊始就直接揭示这节课的学习目标:初步了解测量土地的实际意义;认识标杆、卷尺、测绳等简单的测量工具,并知道它们的不同用途;能用简单的测量工具在地面上测定直线,量出距离,学会用拉绳子的方法测量有关三角形、平行四边形、梯形的高。这种揭示学习目标的好处是使学生明确学习目标,少走弯路,提高学习效率。

小学数学目标教学 篇10

关键词:小学数学,课堂教学,“三个维度”

在课堂教学评价中, 如何围绕“掌握知识, 发展能力, 情感态度”三个维度的目标要求, 总结出评价课堂教学的具体的可操作的评价内容和标准, 从而发挥课堂教学评价的导向功能, 切实提高课堂教学效率。

一、对“掌握知识”层面的评价

新课标中对知识掌握的要求, 并不是要改变知识及其应用在课堂教学中的核心地位, 也没有降低小学数学课堂教学的质量要求。相反, 它对掌握知识的内容提出了更高、更加广泛的要求。要求我们在教学中应该把知识的形成过程放在教学的首位, 努力创设情境, 使学生体会知识来源于生活, 让学生经历知识的形成过程, 从而获得有用的知识和相对完整的可迁移的知识结构。

1.对“感知·理解新知”的评价

对学生在“感知·理解新知”这一阶段的评价, 应从如下几个方面去操作: (1) 为导入新知所提供的感知材料是否充分。传统的课堂教学新知的导入目标直接指向于习题、例题的解决, 在这一部分较为弱化, 而按新课标理念, 在导入新知时, 应从新知的产生和学生生活的联系等不同的角度, 提供具有丰富内涵的、现实的、有意义的感知材料和现实问题, 激发学生的求知欲和学习兴趣; (2) 选取的感知材料是否包涵了新知的本质属性。教师在备课时, 应分析新知的本质特征, 并选取适当感知材料作为载体, 恰当地承载新知的本质特征, 从而为高效率的课堂打下基础; (3) 在过渡过程中的诱导是否抓住新、旧知识的交接点, 是否利于激发学生的认知冲突, 展开积极的求知探索, 从而顺利实现学生认知的正迁移, 完成认知的“同化”或“顺应”; (4) 教学辅助手段的使用, 是否恰当, 是否起到常规教学手段所不能达到的教学效果。

2.对“抽象·概括新知”的评价

对“抽象·概括新知”的评价往往难以具体量化, 受评价者主观指标及学生在这一过程中的外显程度影响较大, 评价时应从以下几个方面着手: (1) 新知的发展过程与学生思维的发展过程是否有较高的相关性, 教者是否重视充分暴露学生的思维过程, 积极鼓励学生质疑问难; (2) 学生在总结新知的过程中, 是否建立了一个能反映知识本质的典型情境, 并以此为基础, 逐步“数学化”, 即经历一个从形象到抽象, 再到形象的认知往返过程; (3) 学生对新知本质特征抽象概括得是否正确、全面、深入, 表述是否具体严谨, 是否达到了课时教学规定的教学目标; (4) 学生在探求新知的过程中, 所表现出的个性意识倾向性发挥得如何, 学生的全员参与程度如何。

二、对“发展能力”层面的评价

数学知识本身是非常重要的, 但它并不是惟一的决定因素, 真正对学生以后的学习、生活和工作长期起作用的, 并使其终生受益的是数学的思想方法, 以及在掌握知识的过程中获得的解决问题的能力。

但因课堂上“发展能力”的目标不够明显, 目标达成难以量化, 往往在课堂评价中流于表面, 落实不到位。“发展能力一定要结合知识的传授过程去进行, 知识有其能力价值, 它凝聚在知识之中, 不思则暗, 深思则宽, 不着重分析挖掘, 不在知识传授过程中充分发挥, 就会落空。”能力的发展必须结合知识体系, 应该是有目的、有计划、有序列、有层次地由低级向高级逐步提高。

1.对课堂“巩固性练习”阶段的评价内容

(1) 给出的题目是否属于紧扣新知要点的基本型题目, 是否便于全体学生直接运用新知, 从而起到巩固理解、强化记忆的作用。

(2) 教师在指导学生运用新知的过程中, 是否立足于学生主动积极地解决问题, 以思维能力的训练为核心, 突出基本技能的形成, “扶”与“放”适度, 不包办代替学生对新知的再现。

(3) 学生运用新知解答基本型题目的技能, 以及在叙述算理、法则或解题思路的语言表达能力是否达到规定的教学目标。

(4) 教师在本阶段的课堂小结是否切中由学生板演和课堂巡视反馈问题的要害, 是否能对课堂中“生成”的各种问题, 处理得灵活机智、科学合理, “结语”是否有助于学生对新知要点的再现和发展。

2.对课堂“发展性练习”阶段的评价内容

(1) 本阶段习题设计一般应由三类不同要求的题构成;这些题目的编排是否便于培养和提高学生独立运用知识解决问题的能力。三类题目的要求如下:低档题。比基本型题目稍有变化, 其目的是让学生独立运用新知解题, 形成技能, 加深对新知的理解和记忆;中档题。以新知为主体的综合型题目。题目的编排既突出适度的综合性, 又带有一定的思考性色彩, 用以培养和训练学生解题的综合能力和思维灵活性;高档题。思考性较强, 略有难度的题目。这类题目不超越学生的知识范围和思维能力的限制, 用以解决“吃不饱”学生的心理需求和“吃得饱”学生竞争意识的激励, 满足学生的求知欲和好胜心。

(2) 在本阶段中, 评价要注意:三种题型内容安排是否合理, 是否形成体现本课本质特征的内容序列;教师安排的题量是否适中, 是否给予学生充足的练习时间;学生的情况反馈是否较好地完成本课时的教学任务, 达到了规定的教学目标。

3.对“师生总结”阶段的评价内容

(1) 教师在组织学生进行独立练习交流中, 是否为学生创设了宽松、和谐、自信、民主的课堂氛围。

(2) 教师对学生的解题交流与评定是否立足于培养学生思维的求异性、广阔性、创造性, 是否致力于培养学生勇于探索、不断进取、一丝不苟、精益求精的学习品质。

(3) 师生合作的课堂总结是否提纲挈领, 简明扼要, 便于学生回顾求知过程, 掌握新知要点, 获得求知启迪。

三、对“情感和态度”层面的评价

情感与态度, 并不是掌握知识和发展能力的“副产品”, 即学生在学习掌握知识, 发展能力过程中的“顺便”进行, 而是课堂整体目标的重要组成部分。作为一堂好课, 应使学生在掌握知识, 发展能力的过程中, 在自信心、责任感、求实态度、创新精神等非智力因素方面获得发展。

(1) 是否创设了一种能激发学生好奇心和求知欲的情境, 使学生能积极参与到数学活动中来。从而培养学生学习数学的兴趣。

(2) 是否向学生提供了具有挑战性的问题, 锻炼他们解决问题, 克服困难的意志, 使他们有经历克服困难的机会, 并能获得成功的体验, 从而建立学好数学的自信心。

(3) 课堂中, 学生创新精神、实事求是态度的培养, 以及质疑问难和独立思考等非智力因素的培养, 渗透得是否巧妙, 安排得是否合理。

小学数学目标教学 篇11

在我们的日常教学中,时常会出现这样的情况,教师原封不动按照教参所给的教学目标备课上课,而对于教学目标的出发点、过程性、归宿感并不在意。对于“教学目标”,问起来几乎所有的老师都说很重要,但到了课堂上,教学目标就成了“说起来比做起来重要”的事情,问何为有效目标,老师会说教参上规定的就是有效的,教学目标的自觉意识很令人担忧。教学目标是不能“拍脑袋”拍出来,如何才能避免教学目标的模糊性和随意性,我认为教学目标是对课程标准、教材、学生进行一致性的研究。

一、构建课堂大框架,吃透教材

数学学科是一门知识系统非常强的学科,知识之间联系十分紧密,任何新授知识都是在已经学过的旧知识基础上发展起来的,都是通过前面所学内容迁移过来的。所以,教师只有掌握教材的系统性,制定教学目标才能做到瞻前而顾后,形成系统的框架结构。

例如,教学五年级下册“长方体和正方体的体积”一课时,我分析了学生已有的知识结构,进行了几个板块设计,明确了每个步骤的教学目标和教学重难点。(1)猜想——长方体的体积可能与什么有关?(2)研究——根据所给的小正方体,分组操作(摆一摆)研究长方体体积和长、宽、高有怎样的关系。(3)交流——根据所填写的实验记录表,你发现了什么?你有什么疑问?(4)验证——弄清长×宽×高与小正方体总个数之间的关系。最后教师演示;由线到面到体的变化过程,进一步明确长方体体积公式是长×宽×高。简述几个目标,即(1)猜想。(2)研究(摆放操作,初步感知)。(3)交流(明确重点和难点)。(4)验证和总结。这种目标粗放而又细腻,简洁而又有序,使教师能从模糊不清的教学目标中短时间内快速把握教材,理清教学思路,提高教师上课思维的“层次性”和“宏观化”,教学方法只有服务于教学目标的时候,才是有价值的,才能促进教学目标真正有效落实和达成。

二、从学生出发,以人为本

当我们构建课堂大框架时,也要读懂学生,我们每天都和学生打交道,而课堂正是教师和学生思维碰撞的工作室,只有读懂学生,教学目标才能在心里生根,才能在心中发芽。

要想目标有根,必须从三个方面入手:首先,要了解学生的基础。每个学生的基础都不一样,所以在教学目标设立的时候要思考到学生的不同层次。不同的层次就会体现出不同的结果。在目标制定上就要考虑保底和封顶,既要照顾到学习能力弱的学生,又要考虑到能力强吃不饱的学生。如,教学“长方体和正方体的表面积”,我制订目标时,第一层就是让学生知道表面积就是几个面的面积之和,会计算前面、上面、右面的面积,并用三个面的面积和乘2得到表面积。而第二层就是让能力强的学生不仅知道表面积计算方法,而且能发现表面积的变化规律,如两个正方体拼起来后的不同变化,从而达到教学目标。

其次,要体会学生的思路,往往教师反复强调目标中的重点、难点和关键点。而学生的收益却是相反的,因为我们的思维方式和学生的思维方式存在着差异。所以,在制订目标的同时要从学生的角度出发。

最后,要提前发现学生的错误,学生在解决问题的时候肯定会出现各式各样的错误,在日常教学中,学生习惯用自己的思考方式来探讨数学问题,他们的方法与教科书上例题的方法很少有相似之处。此时教师在确定教学目标的时候要事先预想到学生可能出现什么样的错误,在制定目标的同时如何避免这样的错误,正如一句名言:备课不仅是备书本更是备学生。

三、关注课堂生成,展开目标

“一切皆有可能”一句广告语揭示了课堂上可能发生的情况,不是能在备课时预测的。教师在课堂中随时面临着学生自由感悟的挑战,遭遇始料未及的问题,这就要求教师不断丰富和调动自身的教学经验,以敏锐的教学眼光,积极筛选学习活动中反馈出来的一切有利于学生进一步建构的生成资源,并运用、调动自觉的教学机智和智慧进行及时备课,灵活处理好课前预设目标和课中生成资源的延伸关系。让教学目标及时生效,使课堂教学真正成为师生智慧综合生成的过程。

作为教师,在研究“教学目标”的时候,决不能“行而上”地考虑既定目标而不考虑目标背后的教学变化过程,甚至可以说在研究教学目标的同时,更重要的是研究教学目标的展开。因为只有展开的教学目标才是合理的目标,也只有聚焦的目标才是可以展开的目标。

总之,在教学研究实践中,当教学目标这一看似单调的话题不再被忽略的时候,当我们真正能够学会制定有效教学目标,掌握教学目标的专业技术,学会用“目标意识”思考和开展教学活动的时候,我们的课堂就会发生一场巨大变革,因为这个老生常谈的目标会深刻影响我们的教学观念,所谓“吃透教材”,所谓“关注学生”,所谓“促进发展”,这些有效教学的种种理念追求,那些重要的思想,将在课堂教学中重新得以落实,才能真正打造高效课堂。

小学数学目标教学 篇12

一、开放性教学内容, 促进学生个性发展

在新课程标准下, 小学数学教材的编排更贴近学生生活与实际。但时代处于不断发展状态中, 教学对象也处于动态变化中。倘若教师完全依靠教材内容, 其结果就是偏离了学生实际, 致使学生对学习素材兴趣不高, 这无形中影响了学生对数学的学习热情。美国教育家布鲁诺说:“学习的最大动力乃是对所学材料的兴趣。”因此, 在小学数学教学中, 教师需要创造性运用教材, 结合学生生活实际, 适当补充有关内容, 避免出现了“纯数学”化现象。在传统教学中, 知识呈现方法太过单一、刻板, 缺乏感染力与吸引力, 难以满足学生们不同的学习需求, 制约了学生的全面发展。因此, 在新课标数学教学中, 教师需要注意开放教学内容, 这主要表现在如下方面:开放性的内容组合;开放性的内容呈现方式;开放性的素材选择等。换而言之, 在教学过程中, 教学内容所蕴含的事件或素材应是同学们喜闻乐见的, 这样他们才愿意并乐于探索、实践操作, 或者主动运用所学知识、结合已有生活经验来分析与解决问题, 提升数学综合素养。比如“设计最佳方案购票、购物中的数学问题”、“商品价格”等与生活实际紧密相关, 蕴涵着丰富的数学知识, 既可以让学生发掘生活中的数学知识, 也可以提高学生创造能力。

比如, 学习种植问题时, 激趣引导, 启发学生探究。首先, 教师利用课件展示有关内容。招聘启事:学校为了美化校园环境, 特诚聘一名设计师。附上植树设计一份, 择优录取。要求:在一条20m长的小路边等距离植树, 并且两端都要栽。然后指导学生当当小小设计师, 运用所学知识积极思考, 设计出符合要求的方案。这样, 通过招聘启事, 给每位学生创造了自我表现的机会, 诱导学生主动而积极地融入学习过程中, 发挥自己的聪明才智, 提高能力。

再如教学“百分率应用题”这一知识点后, 教师布置学习任务:“六一”即将来临, 某儿童公园推出了一些优惠政策, 以吸引更多的游玩者。政策规定如下:购票30张以下的按原价, 即2元/每张;团体购票满30张, 9折优惠;满40张, 打八五折;满50张或50张以上8折优惠。某校一年级 (1) 班师生想游儿童公园, 人数总计45人, 同学们, 请帮忙设计出最佳购票方案。这一问题, 既紧扣教材, 也融合了实际生活, 有着多种设计方案, 属于开放性问题, 可帮助学生巩固课堂所学知识, 也可训练多元思维, 发挥学生创造能力。

二、多元化教学目标, 培养学生综合素养

在教学过程中, 教学目标有着十分重要的教育功能:第一, 定向功能。给教学预设提供重要依据;第二, 调节功能。教师可根据教学目标适时展开与调整教学活动与学习活动。第三, 评价功能。教师可依照教学目标评价教学效果, 学生可以此来评价自己的学习效果。所以, 在教学设计过程中, 教师需要重视目标设置, 以保证课堂教学有序、有效开展。但在设计教学目标时, 教师需要注意目标的多元化, 实施三维教学目标, 融合知识技能、过程方法、情感态度与价值观于一体, 从而培养学生综合素养, 让学生不仅仅学习知识, 更重要是把握方法, 提高综合能力。

同时, 在三维多样教学目标中, 知识技能是载体, 是促进过程性目标与情感性目标实现的基础。因为情感态度与价值观、过程方法都属于隐性知识, 这就不能像显性知识一样以同种方式加以呈现与表达, 而需要引导学生通过学习知识与技能进行自我体验与自我感悟而获得。因此, 在小学数学教学中, 教师需要以学生实际为出发点, 精心预设, 发掘过程价值, 明确多元目标, 然后围绕多元目标设计多种实践体验活动, 让学生在把握有关知识与技能的同时, 也获得情感态度教育, 学会自主探究, 学会合作交流, 并从中发掘数学思想与方法, 乐于学习, 善于学习, 将知识内化成自己的智慧, 将认知经历积淀成自我感悟, 提高自我建构与自我反思能力。

上一篇:词汇任务下一篇:结节性甲状腺瘤