概率统计特性

2024-10-08

概率统计特性(精选3篇)

概率统计特性 篇1

由于概率统计研究的对象主要是随机现象, 这就决定其研究方法不同于研究因果关系的逻辑思维, 而要用概率统计固有的思想方法.因此, 它的教与学也应具有不同的特点.本文将结合自己多年对该门课程的教学实践, 就中学概率统计的教学谈几点意见.

1 精心设计课题引入, 创设最佳学习情境

课题引入是教学艺术的一个重要组成部分.好的课题引入应着眼于对所授知识的超然运用与奇巧安排.因此, 教师要从讲解本课程的理论和基本知识出发.精心设计、营造氛围, 恰到好处地引入课题, 使学生进入愤悱状态, 进而萌发高涨的学习情趣, 产生学习新知识的动力.

1.1 引趣设疑法

“概率论发展简史简介”的引入.

概率论出身“不佳”, 它起源于赌博和靠运气取胜的游戏.起先, 一些赌徒出于好奇心, 把各种各样的问题拿去请教他们在数学界的朋友.这个与赌徒有关的联系, 令人遗憾地促进了概率论的缓慢的断断续续的发展…….如今概率论已脱离了它那卑微的发源地, 成为一门理论严谨、应用广泛、发展迅速的数学学科.

评注 一个概率论出身“不佳”的话题引发了学生浓厚的学习兴趣和强烈的求知欲望, 为概率统计的学习开了好头.

1.2 联系实际法

“随机事件”的引入.

在自然界和生产实践中, 有一类现象是具有确定性的…….然而, 我们生活的世界是一个充满偶然的世界, 常言道:“虽计划极其周密, 然一切却难以预料.”这恰好说明了偶然性在起作用.它跟着人们的脚步, 由生到死, 始终扮演着一个重要的角色.婴儿的出生, 偶发性是其因素之一.未出生的婴儿, 是男是女, 机会各半, 甚至人们的生病、车祸……

评注 上述课题引入, 从身边具体事例出发, 使得学生倍感亲切, 从而对随机现象的每一个可能的结果——随机事件的理解自然也就水到渠成.

1.3 以旧引新法

“离散型随机变量数学期望的定义”的引入.

本节课开始, 可先给出例子:

设某射手在同样的条件下, 瞄准靶子相继射击100次, 其结果如表1.试问:该射手每次射击平均命中多少?

在教师的指导下, 学生给出了以下两种计算方法:

法1 算术平均数法.

=0×2+5×3+6×5++10×35100=8.55

法2 采用频率的加权平均法.

=0×2100+5×3100++10×35100=8.55.

下面就在法2上借题发挥.

法2采用的是以频率为权进行加权平均的, 由于这个平均数是经过100次射击观察得出的, 因此它带有随机性, 这种随机性与频率有关.如果我们用概率来代替频率, 这样就能消除随机性.也就是说若以概率为权进行加权平均的话, 才能给出随机变量平均值的精确定义, 这就是本节课给出的“离散型随机变量的数学期望的定义”. (板书)

评注 这样的课题引入, 充分发挥了学生的主体作用, 既能促使学生知识技能产生积极的迁徒, 又能增强他们对知识加工运用的自主性、创造性.

1.4 复习引导法

“随机变量的特征数字——方差”的引入.

在不少的实际问题里, 不仅需要知道随机变量的均值, 而且还需要知道随机变量取值与均值的偏差程度.比如, 奥运会前夕, 要从两名射击运动员中挑选一名去参加奥运会, 一个公正、公平的办法就是看他们的竞技状态.假定两名射手甲与乙各射击5次所得环数如下:甲4, 8, 7, 10, 6;乙7, 7, 8, 7, 7.平均环数都是7环, 作为教练员的你, 是选择甲还是选择乙? (同学们异口同声地回答:乙.) 为什么? (同学:乙的成绩比甲稳定.) 回答得很好.从上面我们可以看出, 随机变量的这一特性用均值是反映不出来的.应当引进一个数, 用以刻划随机变量对它的均值的偏离程度.对于上述例子可以这样做, 先求每个实际取值与平均值的差的平方……, 由这个例子得到启发, 想到可用 (X-EX) 2的均值E (E-EX) 2描述X对其均值EX的偏离程度, 因而给出方差定义如下…….

评注 一个恰如其分的事例, 如饮一杯清新的甘泉, 让人浅斟细酌, 回味无穷.在这样的课堂氛围中学生会心领神会, 真正把课堂当成一种享受.

实际上, 在概率统计中, 由“醉鬼走路问题”所阐明的概率统计方法的作用开始到“n个写好地址的信封, 还有与其对应的n封信”等一类问题中有关事件概率的计算;由“贝特朗奇论”到计算几何概率时要注意的点具有所谓的均匀分布;由小概率事件的实际不可能原理, 到假设检验中的反证法;由回归一词的追溯到线性回归方程的解释……富有情趣的典故比比皆是, 令人为之驻足赏玩.在教学中抓住时机, 结合有关内容巧加应用, 创设情景, 必能妙趣横生, 使学生不但在欢愉之中巩固了知识和方法, 而且也提高了思维能力.

2 重视概念教学, 既要规范严谨, 还须形象生动

众所周知:“概念多、概型多、所用数学工具多”被称之为概率统计课的三多, 当然就中学概率统计课而言, 主要是“概念多”, 那末如何搞好中学概率统计中的有关概念的教学呢?我认为, 对概念的教学既要规范严谨, 又要形象生动, 还要善于用最通俗的语言去揭示.

比如在事件的关系及其运算中, 初学概率的人往往对“事件的对立”、“事件的互斥”、“事件的独立”以及“对立与互斥”、“互斥与独立”之间的关系搞得不太清楚.这样就直接影响到复杂事件的表述和概率的计算上.因此, 这就要求我们帮助学生自觉辨析有关概念, 促进他们的认知发展.对这部分的教学, 以我之见, 还是引入样本空间Ω为好, 因为在引入样本空间Ω后, 事件就可以用Ω的子集合来表示, 事件的关系就可以用集合之间的关系来表示, 而事件的运算又与集合的运算完全一致, 这样我们就可以借助表示集合关系的韦恩图来理解事件的包含、相等、并、交、补、互斥、对立等关系.特别是, 只要我们精心联想定义, 灵活运用集合知识, 不但能熟练地弄清事件之间的关系, 而且也能把较为复杂的事件用简单事件表示出来, 为概率论证和计算打好基础.又如, 随机变量的数学期望和方差是显示随机变量概率分布的两个重要的特征数字.教学中我们不但要引导学生从实际问题中抽象出它们的定义, 而且要注重学生的直觉思维能力的培养.使他们认识到随机变量的数学期望 (离散型) 标明了随机变量取值的“中心”位置, 而方差则刻划了随机变量离开“中心”位置的偏差程度.同时也可以视离散型随机变量期望的定义式为质点系的重心横坐标, 而方差则表示质点系相对于通过重心EX的纵轴的转动惯量.连续型随机变量的单点处的概率等于零可形象地解释为“一条线无宽度的数学想象”, 参数估计可通俗地解释为“利用样本的信息去猜未知参数的一种方法”, 假设检验的主要依据是“小概率事件的实际不可能性原理”, 所采用的方法被称之为概率论中的反证法, 等等.寥寥数语, 既帮助学生加深了对有关概念的理解, 进而促进知识的升华, 同时也引发了科学思维方法的形成.在概率统计的教学中, 只要我们认真钻研教材, 至于正态分布中密度函数及其性质, 正态分布中三倍标准差原理, 标准正态分布数值表的正确使用以及一元线性回归方程的推导和建立都可利用几何直观, 让学生在愉悦的情境下主动而有效地参与教学, 亲自体验知识的发生和发展过程, 熟悉创新规律.

3 能力培养, 贯穿始终, 愚教于乐, 融汇贯通

注重能力培养已成为我国教育改革的主旋律.在概率统计的教学中, 建议从以下几方面做起:

3.1 培养学生的概率计算能力

概率计算是概率论解题教学的一项重要内容, 它不但包括古典概率的计算问题, 而且也包括利用概率的性质, 把计算复杂事件的概率化归为计算较简单的事件的概率.刚开始学习概率论时, 学生往往感到困难, 作者认为应从两个方面来解决这个问题.首先应注意在教学中不能大量选用只是单纯计算排列组合的习题, 不能使重在掌握排列组合的计算技巧超过重在掌握概率论的基本概念;其次在解题时对概率性质的运用要予以充分的注意.下面仅就古典概型中样本空间的选取和对立事件公式Ρ (A¯) =1-Ρ (A) 的运用为例作以说明.

3.1.1 古典概型中样本空间的选取

古典概型是初等概率论中最基本的内容之一, 在概率论发展初期就引起了人们的关注.深入考察古典概率问题, 有助于我们直观地理解概率论的一些基本概念, 合理地解决产品质量控制等实际问题.因此, 掌握古典概率问题的解法, 对于学好概率论具有十分重要的意义.

设一个随机试验的全部可能结果 (样本点) 只有有限个:ω1, ω2, …, ωn, 其中每一个结果出现的可能性都相同, 即Ρ (ω1) =Ρ (ω2) ==Ρ (ωn) =1n.一个随机事件可表示为样本空间Ω={ω1, ω2, …, ωn}的一个子集A, 且它的概率为Ρ (A) =kn.其中kA所包含的样本点个数.这就是古典概型.古典概型的习题大多是求某个随机事件A的概率.这里应包含两个步骤:第一步是选取适当的样本空间Ω, 使它满足有限, 等可能的要求, 且把A表示为Ω的某个子集;第二步则是计算n (样本点总数) 及k (有利场合的个数) . (注意在简单的问题中, 计数只需枚举, 排列组合也不必用) 人们往往重视第二步而忽略了第一步.这里我们将通过一些例子谈谈重视第一步对解题的意义.

例1n个朋友随机地围绕圆桌而坐, 求其中甲、乙两人坐在一起 (座位相邻) 的概率.

解 很自然会把这个问题看作圆周排列的一个简单应用, 但我们不用这种方法.设甲已先坐好, 考虑乙的坐法.显然乙总共有 (n-1) 个位置可坐, 这 (n-1) 个位置都是等可能的, 而有利场合, 即乙和甲相邻有两个, 因此所求概率为2n-1.

如把上述解法作细致的分析, 那就是我们取样本空间Ω={ω1, ω2, …, ωn-1}, ωi表示乙坐在第i个位置上, 它满足有限与等可能的要求, 我们要求概率的事件A表示为Ω的子集{ω1, ωn-1}.显然, 对例1这样选取的样本空间Ω是最小的了.用其他办法做这道题目选取的样本空间只会更大, 比上述解法复杂.值得指出的是在我们的解法中用不到排列组合.

例2 在中国象棋的棋盘上任意地放上一只“红车”及一只“黑车”, 求它们正好可以互相“吃掉”的概率.

解 和例1一样, 我们同样可以找到最小的样本空间.任意固定“红车”的位置, “黑车”可处在90-1=89个不同位置, 当它处于和“红车”同行同列的9+8=17个位置之一时正好互相“吃掉”.故所求概率等于1789.

当然我们的例子是经过有意识的选择的, 但这种注重样本空间的选取的思想是很有用的, 掌握它也不困难, 但却往往不被人们重视.

3.1.2 对立事件公式Ρ (A¯) =1-Ρ (A) 的应用

对立事件公式Ρ (A¯) =1-Ρ (A) 给我们的启示是在计算事件A的概率时应先想一想:计算对立事件A¯的概率是否更方便些?如果注意了这一点, 我们在解题时就能自觉地应用此公式, 从而达到绕过难点, 一举成功.这点在下面的例子中可看得更清楚.

例3 从0, 1, 2, …, 9十个数码中随机而可重复地取出5个数码, 求A=“5个数码中至少有两个相同”的概率.

解 事件A中包含的基本事件情况比较复杂, 它包括“5个数码全相同”, “4个数码相同而与其余一个不同”, “3个数码相同而与其它两个不同”, 等等, 计算它们的个数比较麻烦.现在考虑事件A¯=“5个数码全不相同”, 则

Ρ (A) =1-Ρ (A¯) =1-10×9×8×7×6105=0.6976.

从上面可以看出:解答概率题是一个既有法, 有时又无定法的问题, 这就要求我们要注重积累解题经验, 总结解题规律.比如概率加法公式的正确使用、条件概率与乘法公式的运用、事件的独立性的应用、古典概型中对称性的应用、几何概率以及整值随机变量的分布列与数学期望的求解中, 都有一定的解题技能和技巧.本文就不一一赘述.

3.2 培养学生的数据处理能力

数据的处理能力现已明确为数学的一种基本能力, 概率统计教学应通过真实数据、活动和直观模拟的使用, 以使学生感到教学有意义、有用, 而不是抽象、不相关.教师要从教学实际出发, 组织学生走出课堂, 到工厂、农村、医院调查研究, 取得真实资料.然后根据要求, 制作相应的统计图表, 用回归分析方法处理具体问题.这样的活动作为课堂教学的补充, 既检验了学生对书本知识的掌握, 又增加了他们的实际工作经验.同时也使得他们在成功中品尝到了欢乐.

3.3 培养学生知识间的融会贯通的能力

数学教学是培养学生的多种能力的一个重要阵地, 纵观中学概率统计的内容, 从随机现象到随机事件的引入;从随机变量的概率分布到数字特征的定义及其应用;从不相关的独立……, 到处都有展示学生能力的广阔平台, 作为教师既要言传身教, 还要善于激发学生心灵深处的探索欲望, 让学生在探索、思辨和创造的氛围中, 发掘数学知识本身所蕴藏的妙趣神韵, 自觉地用概率方法解决中学数学中的有关问题.只有这样, 学生解决实际问题的能力才能凸现出来.限于文章篇幅, 仅从以下两例来展示概率统计与其它数学内容之间的联系, 以期能给读者一些有益的启示.

例4 求证:组合等式i=0rCmiCnr-i=Cm+nr.

分析 根据所求组合等式的特征, 构造概率模型:设有一批产品共m+n件, 其中m件是废品, 从m+n件中任取r件 (r<m+n) , 问A=“r件中有i件废品”的概率是多少 (i=0, 1, 2, 3, …, r) 显然Ρ (A) =CmiCnr-iCm+nr (i=0123r) (具有这种形式的概率计算, 称其为服从超几何分布) .而“r件中有i件废品” (i=0, 1, 2, 3, …, r) 构成一个互不相容的完备群, 故i=0rCmiCnr-iCm+nr=1, 即组合等式i=0rCmiCnr-i=Cm+nr成立.

例5 (第22届IMO试题) 设P为三角形ABC内任一点, P到三边BC, CA, AB的距离依次为d1, d2, d3, 记BC=a, CA=b, AB=c, 求u=ad1+bd2+cd3的最小值.

解 设x的分布列为

EX=a+b+c2sEX2=a2d1s+b2d2s+c2d3s.

EX2- (EX) 2≥0, 即得

a2d1s+b2d2s+c2d3s (a+b+c) 2 (2s) 2,

于是u=ad1+bd2+cd3的最小值为 (a+b+c) 22s.

4 结束语

托尔斯泰说过:“成功的教学所需要的不是强制, 而是激发学生的兴趣.”学生一旦对数学学习产生兴趣, 就会专心致志地学习数学, 积极地钻研数学, 从兴趣发展到志趣.在一种愉悦的情境下成功地进行概率统计的教学, 是我们共同的追求.让我们在愉悦中产生兴趣, 在探索中获得成功, 在成功中品尝快乐.

参考文献

[1]刘崇林.詹森不等式f (EX) ≤或≥E (f (X) ) 及其应用[J].宁夏教育学院、银川师专学报, 1991, (1) .

[2]刘崇林.一类能用概率模型解决的“分析”问题[J].宁夏教育学院、银川师专学报, 1995, (3) .

[3]刘崇林, 刘树珊.概率统计教学方法刍议[J].宁夏教育学院、银川师专学报, 1996, (3) .

概率统计特性 篇2

一年多来,我校课题组全体成员解放思想,勇于创新,以推进素质教育为出发点,认真学习相关理论,围绕《统计与概率》课堂教学改革和课题的实验工作,认真分析课堂案例,调查研究,收集材料,努力探究《统计与概率》课堂教学的有效模式,对照课题实验方案,顺利地完成了各项教育教学任务和课题研究的阶段工作。下面就这近一年来的课题研究工作总结如下。

一、做好课题研究的准备工作。

1、在课题实施之前,我们积极主动的收集和学习相关知识和理论,我们深入课堂,了解、分析我校《统计与概率的教学现状,找出教学中存在的各种问题,确定本课题的研究内容。

(1)关于小学数学统计与概率部分教学现状、存在问题的调查研究;

(2)对于人教版小学数学教材关于统计与概率部分内容的分布、与原有教材对比变化、教学难点及其编写特点的分析研究;

(3)在统计知识教学中,强化学生数据的收集、记录和整理能力的培养,促进学生关于数据的分析、处理并由此作出解释、推断与决策的能力,对数据和统计信息有良好的判断能力的教学策略改进,加强目标设定与目标达成的实验研究;

(4)培养小学生用数据表示可能性的大小并对事件作出合理推断和预测的能力的教法研究;(5)在统计和概率部分教学中,创设教学情境,促进教学有效性的研究;

(6)进行统计与概率部分的课堂教学有效模式的研究。

2、落实好课题组人员,成员如下:

组 长:陈 丽

副 组 长:陈万江 吴学峰

核 心 成 员:马玉凤 王立波 李天凤 陈维 李玉静 孙晓慧 薛丽华

二、加强对课题组的管理,进一步发挥课题的作用。

1、严格按计划实施研究,积极开展课题研究活动。

课题立项之后,我们集中大家认真学习了《统计与概率》课题研究方案,制定了课题的研究计划,对组内教师合理分工,在管理上做到定计划、定时间、定地点、定内容,让实验老师们深刻理解了《人教版小学数学教材“统计与概率”课堂教学有效性研究》课题中研究项目的主要内容和意义,进一步增强科研能力,树立科研信心每次的校本教研既有骨干教师的教学论坛,也有年青教师的课堂展示,有理论学习,也有实际的课堂点评。

2、优化听课制度,促进课题实验

学校教导处规定,每周的周三各备课组进行集体备课,下一周的周一课题组成员走进课堂听课,一方面是为课题组成员搭建相互交流的平台,另一方面也是验证前一周集体备课设计方案的可行性,这样有利于及时、灵活地掌握课题实施情况和课堂教学情况,有效地促进教师上课改课、上优质课,从而真正地把课题理念落实到每一节课堂教学之中;同时,课题组还要求听课者带着一定的目的从多个角度进行听课,并对收集到的事实材料进行多角度诠释、解读和分析,有针对性地提出讨论的问题和改进的建议。听课制度的优化,有效地避免形式主义的听课、评课活动,对促进课题研究和实验起到了很大的作用。

三、课题研究的实施过程

课题申报后,课题组成员就着手调查我校《统计与概率》的教学现状以及存在的问题。

1、人教版小学数学各册教材使用中,关于统计与可能性部分教学问题及其改进策略的调查研究。

教学现状:课堂教学多数“照本宣科”,教学目标定位不准,教师和学生都不很重视这一领域的教和学。原因有如下几点:一是教师专业知识不能适应新课程的教学需要;二是《统计与概率》这一领域里的可学习和参考的案例较少,教师看得不多,所以课堂改革的水平提高不快;三是在小学阶段,关于《统计与概率》的考试内容相对较少,且难度不大,所以教师和学生重视不够。

存在问题:统计教学中,教师只按教材帮助学生收集、整理数据,而忽视了对数据的分析和运用;概率教学中比较突出的问题是重结果、轻过程,没有把学生随机意识的培养放在重要的位置。比如,有一个老师在执教二年级《可能性》一课时,没有充分地让学生感受确定现象和不确定现象,而是把训练的重点放在让学生用“一定”“可能”和“不可能”的说话训练上,把数学课当作了语文课来上。再如,有一个老师在执教《用分数表示可能性的大小》时,始终把重点放在学生的计算训练上,而忽视了学生对事件发生的可能性从感性描述到定量刻画的过程训练上。

改进策略:(1)加强教师的专业知识的学习和培训。要求课题组的成员认真学习新课标并深刻领会其主要精神,同时督促教师学习《统计与概率》的相关理论,聘请教学骨干做专题讲座,提高教师的理论素养;(2)定期召开研讨会,选择有典型的课例进行会课或教学比赛,有的是采取同课异构的形式进行多层次的研究;(3)围绕某一难点进行针对性讨论,反复研究,取得了较为显著的成效。如,在教学《等可能性》时,多数教师都遇到了一个较为棘手的问题:当袋子里放有相同数量的黄球和白球,启发学生猜想:从中任意摸40次,摸到黄球和白球的可能性怎样?学生很容易猜想并认可结果:摸到黄球和白球的可能性相等。可是,学生实验后,立刻质疑并迅速推翻自己的猜想。此时教师无所适从,只好自圆其说:同学们,当实验的次数越多,摸到黄球的次数和摸到白球的次数就越接近。针对上述存在的问题,我们开展了一次又一次的研究,最终按照“现实情境—猜想—实验—验证猜想—分析原因”的步骤,紧紧抓住“任意”关键词,培养学生的随机意识,让学生真切地感到:袋子里放有相同数量的黄球和白球,任意去摸若干次,摸到黄球的可能性和白球的可能性相等,但结果是随机的,即摸到黄球的次数和白球的次数不一定相等。

2、创设教学情境对于小学统计与概率教学效果的作用与影响的研究。

良好的教学情境,能使学生积极主动地、充满自信的参与到学习之中,使学生的认知活动与情感活动有机地结合,从而促进学生非智力因素的发展和健康人格的形成。比如我们在研究一年级下册第98页的《统计》这一内容时,就历经了“没有教学情境—一创设有教学情境——创设有效的教学情境”的过程,研究中我们发现教学效果差异较大。

„„反复的实践和研究使我们深深地体会到:教学情境对教学效果的影响较大。只有创设有效的教学情境,创设贴近学生生活实际的教学情境,才能把学生真正地带入到具体的情境中去,使学生对数学产生一种亲近感,使学生感到数学是活生生的,感受到数学源于生活,生活中处处有数学。

3、“统计与概率”有效教学模式研究

课题研究之前,多数教师反映《统计与概率》的教学有着一定的困难,教学时也只是“照本宣科”,根本谈不上有效和优化。为此,我们通过典型引路,反复研究,不断实践,在数次的实践中摸索了“统计与概率”的教学模式:创设情境――猜想探究――验证概括――实践运用。

“创设情境”旨在把学生带入到具体的生活情境中,一方面是为了帮助学生借助已有的生活经验自主探究新知,另一方面也可以让学生初步感悟统计与概率在生活中的作用,从而调动学生学习数学的兴趣;“猜想探究” 就是先鼓励学生大胆猜想结果,然后引领学生探究新知,这样可以充分发挥学生的主体作用,把学习的主动权交个学生,让学生真正成为学习的主人,在具体的学习过程中锻炼学生的学习能力,同时也能让学生体验自主探究新知的快乐;“验证概括”就是运用多种手段帮助学生验证自己的猜想,从而使学生获得成就感,增强学生学习的自信心,同时把刚刚获得的新知高度、凝练地概括出一般的规律,培养学生分析问题的能力和严谨的思维品质“实践运用”就是将所学的知识运用于实际,体现了数学源于生活、服务生活的思想。

通过改革实验,我们高兴地发现课堂成效发生了较为显著的变化。课堂的教学结构完整了,教学板块清晰了教学目标定位准确而又全面,教师经过了迷茫无奈-有条有理-精心设计教学环节的过程。学生从被动学习-主动探究,学习方式的转变,使课堂气氛活跃了许多,也大大提高了课堂教学效率。

四、课题研究的成效

1、对课题研究的意义的理解和认识。

21世纪的数学课程改革,把《统计与概率》作为一个单独的领域,进入小学数学课程,这是一个重大的举措具有里程碑的意义。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。加强《统计与概率》课题的研究,可以强化学生数据的收集、记录和整理能力的培养,提高学生分析、处理数据并由此作出解释、推断与决策的能力。

2、重视学生学习过程的研究,把学习的主动权还给了学生

新课标明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。所以我们在数学课题的研究中,非常关注学生学习过程的研究,注重在具体的情境中对随机现象的体验,而不是单纯地只获取结论结合学生生活的实际,精心创设教学情境,使学生主动地投入到学习的状态,提出关键的问题;搜集、整理数据分析数据,作出推测,并用一种别人信服的方式交流信息。不仅让学生亲身经历统计与实验的过程,而且还让学生在实践中自我感悟信息的价值。根据获取的信息作出合理的推断,培养学生分析问题和解决问题的能力。

3、营造教研氛围,提高研究实效

我们以课题研究为契机,开展形式多样的教研活动,旨在增强教师的教科研意识,营造良好的教研氛围,丰富教师的科研素养,提高课堂教学效率。一年来,我们召开了《统计与概率》的专题研讨会,举行了课题研讨会课比赛,开展了教师百花奖比赛、课堂教学擂台赛等全校性教学教研活动,收到了较好的效果,得到了老师们的认可,兄弟学校的积极参与,社会的肯定。每次活动,我们坚持“实践、思考、再实践、再思考”的基本方法,确立一个研究主题,本着“学有所获,研有所果”的原则,发动每个教师全程参与,45周岁以下的教师必须参与课堂展示或设计,年老的教师参与课堂点评,实实在在的教研活动,不仅调动了校内教师的教研热情,也吸引了区内兄弟学校老师的加盟,他们积极参与了我们的课题研究。

五、今后的思考

虽然在课题的前期研究过程中,我们取得了初步的成效,但我们深知我们的课题研究工作还有许多不尽如人意的地方。为了进一步做好下一阶段课题的研究工作,我们想从以下几个方面力求突破:

1、细化分工,明确职责。根据课题的研究内容和前期的研究进展,我们决定对后期的研究工作作一些适当的调整,更加细化分工,各负其责,确保课题的研究工作顺利进行。通过课堂教学研究,提高学生收集、整理数据的能力,重点培养学生推断与决策的能力,体会数学的价值。以课堂教学为主阵地,重点研究概率教学,培养学生的随机意识,提高学生分析问题和预测未来的能力。

2、加强理论学习,提高研究水平。前期的研究工作我们主要把精力放在课堂教学研究上,了解《统计与概率》的教学现状、教学困惑,寻找课堂教学的有效模式,应该说在实际层面探讨的比较多。接下来的课题研究工作我们 将在关注课堂教学的同时,重视理论学习,把目光聚焦在理论层面的研究上,遵循理论结合实际的原则,用理论丰富研究成果。

统计与概率试题 篇3

一、填空。

1、简单的统计图有统计图、()统计图和()统计图。

2、扇形统计图的优点是可以很清楚地表示出()与(

3、()统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出()。

4、为了表示某地区一年内月平均气温变化的情况,可以把月平均气温制成()统计图。

5、4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是(),中位数是(),平均数是()。

6、在一组数据中,()只有一个,有时()不止一个,也可能没有()。(填众数或中位数)

二、选择题。

1、对于数据2、4、4、5、3、9、4、5、1、8,其众数、中位数与平均数分别为()。

A4,4,6B4,6,4.5C4,4,4.5D5,6,4.5

2、对于数据2,2,3,2,5,2,10,2,5,2,3,下面的.结论正确有()。

①众数是2②众数与中位数的数值不等③中位数与平均数相等

④平均数与众数数值相等。A1个B2个C3个D4个

三、下面记录的是六(1)班第一组学生期中考试成绩(单位:分)

83、89、81、55、62、70、78、94、84、97、86、100、66、75

请根据上面的记录的分数填写下表,并回答问题。

分数合计10090~9980~8970~7960~6960分以下人数

(1)该小组的平均成绩是()分。

上一篇:柔性光伏组件下一篇:中国经济发展任重道远